SiPM characterisation and updates on the scintillator and FEE designs

POLAR-2 biweekly meeting

Nicolas De Angelis
DPNC, University of Geneva
December 16, 2019

- 1 The Hamamatsu S14616 SiPM
- 2 I-V measurements and break-down voltage
- Measurement setup (probe station)
- Results
- 3 I-V measurements vs. temperature and dark noise
- Measurement setup (industrial probe station)
- I-V curves evolution with temperature
- 4 POLAR-2 module prototypes
 - Babymind board and first module prototype
- New scintillator ans grid designs
- 5 Summary and work to come

The Hamamatsu S14616 SiPM

Туре	S14161-6050HS-04
Geometrical fill factor	74%
Operating temperature	-40 to +85°C
Spectral response range	270-900 nm
PDE @450 nm (max)	50%
Breakdown voltage	38 V
Recommended V _{OP}	$V_{BD} + 2.7$
V _{OP} variation across array	typ. ± 0.05 , max. $\pm 0.1\mathrm{V}$
Cross talk probability	7%
Dark current	typ. 2.5, max. 7.5 μ A
Terminal capacitance	2000 pF
Gain	2.5 · 10 ⁶
Temperature coefficient	34 mV/°C

 \rightarrow Hamamatsu datasheet

Measurement setup (probe station)

I-V curves and break-down voltages

 \rightarrow I-V curves very stable between the different channels and arrays of SiPMs \rightarrow Break-down values to be compared with datasheet provided by Hamamatsu

Setup for measurements vs. temperature

ightarrow Break-down and dark noise vs. temperature have still to be extracted

First module prototype and readout with Babymind board

Summary and work to come

- I-V characteristics seems very stable among the different SiPM chips, temperature coefficient and dark noise vs temperature have still to be extracted from data
- incoming tests for SiPMs: I-V curves down to -60°C for one chip, measurement of the quenching resistor, measurement of the DCR vs. temperature
- A first 1/4 of module has been built and some preliminary tests with the BabyMind board (based on CITIROC ASIC) have been performed
- \bullet The BabyMind board has been upgraded and its FW updated, a proper front-end PCB is under production \to incoming tests on module protypes, 2 modules with the SiPMs that we have
- Scintillator bars and grids designs have been modified → no more truncation (bars ~3 times cheaper), bigger bars (5.9mm² instead of 5.8mm²)
- Fake scintillator bars have to be printed to do some mechanical tests with the new grids designs (grid prototypes are being printed at CERN)

