
Lecture 3: Quantum Machine Learning and 
Applications of Quantum Computing to 
HEP

Heather M. Gray
UC Berkeley/LBNL

Aka: How might this be useful for us?

Many thanks to C. Bauer, L. Linder, I. Shapoval, J.R. 
Vlimant, S.L. Wu and A. Yadav for slides and material

CERN Academic Training, March 2021



Outline for the lectures

• Lecture 1: Fundamentals
• A brief history, qubits, quantum circuits, qubit technologies

• Lecture 2: Quantum computers and quantum algorithms
• Quantum computers today, quantum algorithms, error correction, 

quantum advantage

• Lecture 3: Applications of quantum computing in HEP
• Applications of quantum computing to HEP: simulation, reconstruction 

and physics analysis; including quantum machine learning
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Quantum supremacy using a programmable 
superconducting processor

Frank Arute1, Kunal Arya1, Ryan Babbush1, Dave Bacon1, Joseph C. Bardin1,2, Rami Barends1, 
Rupak Biswas3, Sergio Boixo1, Fernando G. S. L. Brandao1,4, David A. Buell1, Brian Burkett1,  
Yu Chen1, Zijun Chen1, Ben Chiaro5, Roberto Collins1, William Courtney1, Andrew Dunsworth1, 
Edward Farhi1, Brooks Foxen1,5, Austin Fowler1, Craig Gidney1, Marissa Giustina1, Rob Graff1, 
Keith Guerin1, Steve Habegger1, Matthew P. Harrigan1, Michael J. Hartmann1,6, Alan Ho1, 
Markus Hoffmann1, Trent Huang1, Travis S. Humble7, Sergei V. Isakov1, Evan Jeffrey1,  
Zhang Jiang1, Dvir Kafri1, Kostyantyn Kechedzhi1, Julian Kelly1, Paul V. Klimov1, Sergey Knysh1, 
Alexander Korotkov1,8, Fedor Kostritsa1, David Landhuis1, Mike Lindmark1, Erik Lucero1,  
Dmitry Lyakh9, Salvatore Mandrà3,10, Jarrod R. McClean1, Matthew McEwen5,  
Anthony Megrant1, Xiao Mi1, Kristel Michielsen11,12, Masoud Mohseni1, Josh Mutus1,  
Ofer Naaman1, Matthew Neeley1, Charles Neill1, Murphy Yuezhen Niu1, Eric Ostby1,  
Andre Petukhov1, John C. Platt1, Chris Quintana1, Eleanor G. Rieffel3, Pedram Roushan1, 
Nicholas C. Rubin1, Daniel Sank1, Kevin J. Satzinger1, Vadim Smelyanskiy1, Kevin J. Sung1,13, 
Matthew D. Trevithick1, Amit Vainsencher1, Benjamin Villalonga1,14, Theodore White1,  
Z. Jamie Yao1, Ping Yeh1, Adam Zalcman1, Hartmut Neven1 & John M. Martinis1,5*

The promise of quantum computers is that certain computational tasks might be 
executed exponentially faster on a quantum processor than on a classical processor1. A 
fundamental challenge is to build a high-!delity processor capable of running quantum 
algorithms in an exponentially large computational space. Here we report the use of a 
processor with programmable superconducting qubits2–7 to create quantum states on 
53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). 
Measurements from repeated experiments sample the resulting probability 
distribution, which we verify using classical simulations. Our Sycamore processor takes 
about 200 seconds to sample one instance of a quantum circuit a million times—our 
benchmarks currently indicate that the equivalent task for a state-of-the-art classical 
supercomputer would take approximately 10,000 years. This dramatic increase in 
speed compared to all known classical algorithms is an experimental realization of 
quantum supremacy8–14 for this speci!c computational task, heralding a much-
anticipated computing paradigm.

In the early 1980s, Richard Feynman proposed that a quantum computer 
would be an effective tool with which to solve problems in physics 
and chemistry, given that it is exponentially costly to simulate large 
quantum systems with classical computers1. Realizing Feynman’s vision 
poses substantial experimental and theoretical challenges. First, can 
a quantum system be engineered to perform a computation in a large 
enough computational (Hilbert) space and with a low enough error 
rate to provide a quantum speedup? Second, can we formulate a prob-
lem that is hard for a classical computer but easy for a quantum com-
puter? By computing such a benchmark task on our superconducting 
qubit processor, we tackle both questions. Our experiment achieves 
quantum supremacy, a milestone on the path to full-scale quantum 
computing8–14.

In reaching this milestone, we show that quantum speedup is achiev-
able in a real-world system and is not precluded by any hidden physical 
laws. Quantum supremacy also heralds the era of noisy intermediate-
scale quantum (NISQ) technologies15. The benchmark task we demon-
strate has an immediate application in generating certifiable random 
numbers (S. Aaronson, manuscript in preparation); other initial uses 
for this new computational capability may include optimization16,17, 
machine learning18–21, materials science and chemistry22–24. However, 
realizing the full promise of quantum computing (using Shor’s algorithm 
for factoring, for example) still requires technical leaps to engineer 
fault-tolerant logical qubits25–29.

To achieve quantum supremacy, we made a number of techni-
cal advances which also pave the way towards error correction. We 
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QUANTUM COMPUTING

Quantum computational advantage using photons
Han-Sen Zhong1,2*, Hui Wang1,2*, Yu-Hao Deng1,2*, Ming-Cheng Chen1,2*, Li-Chao Peng1,2,
Yi-Han Luo1,2, Jian Qin1,2, Dian Wu1,2, Xing Ding1,2, Yi Hu1,2, Peng Hu3, Xiao-Yan Yang3, Wei-Jun Zhang3,
Hao Li3, Yuxuan Li4, Xiao Jiang1,2, Lin Gan4, Guangwen Yang4, Lixing You3, Zhen Wang3, Li Li1,2,
Nai-Le Liu1,2, Chao-Yang Lu1,2†, Jian-Wei Pan1,2†

Quantum computers promise to perform certain tasks that are believed to be intractable to classical
computers. Boson sampling is such a task and is considered a strong candidate to demonstrate
the quantum computational advantage. We performed Gaussian boson sampling by sending 50
indistinguishable single-mode squeezed states into a 100-mode ultralow-loss interferometer with full
connectivity and random matrix—the whole optical setup is phase-locked—and sampling the output
using 100 high-efficiency single-photon detectors. The obtained samples were validated against plausible
hypotheses exploiting thermal states, distinguishable photons, and uniform distribution. The photonic
quantum computer, Jiuzhang, generates up to 76 output photon clicks, which yields an output state-
space dimension of 1030 and a sampling rate that is faster than using the state-of-the-art simulation
strategy and supercomputers by a factor of ~1014.

T
he extendedChurch-Turing thesis is a foun-
dational tenet in computer science, which
states that a probabilistic Turing machine
can efficiently simulate any process on a
realistic physical device (1). In the 1980s,

Feynman observed that many-body quantum
problems seemed difficult for classical computers
because of the exponentially growing size of the
quantum-state Hilbert space. He proposed that a
quantum computer would be a natural solution.
A number of quantum algorithms have since

been devised to efficiently solve problems be-
lieved to be classically hard, such as Shor’s fac-
toring algorithm (2). Building a fault-tolerant
quantum computer to run Shor’s algorithm,
however, still requires long-term efforts. Quan-
tum sampling algorithms (3–6) based on plau-
sible computational complexity arguments were
proposed fornear-termdemonstrations of quan-

tum computational speed-up, relative to current
supercomputers, in solving certain well-defined
tasks. If the speed-up appears overwhelming,
such that no classical computer can perform
the same task in a reasonable amount of time
and this differential is unlikely to be overturned
by classical algorithmic or hardware improve-
ments, it is called quantum computational ad-
vantage or quantum supremacy (7, 8). Here, we
use the first term.
A recent experiment on a 53-qubit processor

generated amillion noisy (~0.2% fidelity) sam-
ples in 200 s (8), whereas a supercomputer
would take 10,000 years. It was soon argued
that the classical algorithm can be improved
so that it would cost only a fewdays to compute
all the 253 quantum probability amplitudes and
generate ideal samples (9). Thus, if the compe-
tition were to generate a much larger number

of samples (for example, ~1010), the quantum
advantage would be reversed if there were
sufficient storage. This sample size dependence
of the comparison—an analog to loopholes in
Bell tests (10)—suggests that quantum advan-
tage would require long-term competitions
between faster classical simulations and im-
proved quantum devices.
Boson sampling, proposed by Aaronson and

Arkhipov (4), was the first feasible protocol for
quantum computational advantage. In boson
sampling and its variants (11, 12), nonclassical
light is injected into a linear optical network,
and the highly random, photon number– and
path-entangled output state is measured by
single-photon detectors. The dimension of the
entangled state grows exponentially with both
the number of photons and the modes, which
quickly renders the storage of the quantum
probability amplitudes impossible. The state-
of-the-art classical simulation algorithm cal-
culates one probability amplitude (Permanent
of the submatrix) at a time. The Permanent
is classically hard, and because at least one
Permanent is evaluated for each sample (13, 14),
the sample size loophole can be avoided. In
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Fig. 1. Quantum light sources for Gaussian boson
sampling (GBS). (A) An illustration of the experimen-
tal setup for generating squeezed states. A custom-
designed laser system—consisting of a Coherent Mira
900, a pulse shaper, and a Coherent RegA 9000—
generates the pump laser, which is spectrally and
spatially shaped to reach transform limit (figs. S1 and
S2). The pulsed laser is split by beamsplitters (BSs)
into 13 paths (figs. S3 and S4) and focused onto 25
PPKTP crystals. Each crystal is placed on a thermo-
electric cooler (TEC) for wavelength tuning. The
downconverted photons are separated from the
pumping laser by a dichromic mirror (DM); the time
walk between different polarizations is compensated by
a KTP crystal. (B) Wigner functions of all the 25
sources, showing the squeezing parameter r and phase
f of each source. In each subplot, the color encoding
from purple to yellow represents a Wigner function
from zero to its maximum. (C) The measured joint
spectrum of the photon pairs indicates that the two
photons are frequency-uncorrelated. (D) The purity of
the 25 photon sources. The measured average purity is
0.938, obtained by unheralded second-order correlation measurement. (E) The measured collection efficiencies, with an average of 0.628.
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Computing in HEP

• Computing plays a vital role in our successful exploitation of physics results 
from the LHC

• Computing is used extensively from detector control, through simulation, 
to data reconstruction and analysis

• HEP also has a long tradition of being at the forefront of new computing 
technologies (and even inventing them in certain cases)

• e.g. the  WWW and the grid

• Can quantum computing be useful for HEP?
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Outline for Today
• Applications of quantum computing in HEP

• Simulation

• Parton shower correlations

• Lattice QCD

• Reconstruction

• Particle tracking

• Analysis

• Higgs analyses

• SUSY search
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Progress has been very rapid here…
Relying on a mix of published and unpublished 

results
My apologies to anyone who’s work I’ve left out 

or don’t do justice to
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Simulating Parton Shower Correlations
• Idea: exploit entanglement between qubits on a quantum computer to 

simulate correlations in the parton shower

7

Christian Bauer
Quantum algorithms for High Energy Physics Simulations
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The mixing g12 gives several interesting effects

Different real emission amplitudes
give rise to interference

Virtual diagrams give rise to
flavor change without radiation

Need to correct both real and virtual effects
Similar to including subleading color

A very simple toy model

Bauer et al., arXiv:1904.03196

Toy Model

https://arxiv.org/abs/1904.03196


Toy Model Results
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Christian Bauer
Quantum algorithms for High Energy Physics Simulations

Figure 1: The normalized differential cross section for log ✓max (a,c) and the number of emissions

(b,d). Interference effects are turned on (g12 = 1) and off (g12 = 0), where the classical simu-

lations/calculations are expected to agree with the quantum simulations and measurements. The

top plots (a,b) show results for the case where � ! ff̄ is excluded as this can be run on current

quantum hardware. The bottom plots (c,d) include the � ! ff̄ with fewer steps to reduce the

computational complexity. The ratio plots compare the g12 = 0 and g12 = 1 simulation. Over 105

events contribute to each line and the statistical uncertainties are therefore negligible. Quantum

measurements are corrected for readout errors, as described in the Methods section.
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Bauer et al., arXiv:1904.03196

Quantum circuit for the final 
state radiation algorithm for 

one of the N steps

Differential cross section as a 
function of the largest emission 

angle using IBM Q
Compare interference off (blue) 

to interference on (red)

https://arxiv.org/abs/1904.03196


Lattice QCD 
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Accelerating lattice quantum field theory calculations via interpolator optimization
using NISQ-era quantum computing

A. Avkhadiev,1, 2 P. E. Shanahan,1, 2 and R. D. Young3

1
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

2
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

3
CSSM, Department of Physics, University of Adelaide, Adelaide SA 5005, Australia

The only known way to study quantum field theories in non-perturbative regimes is using numer-
ical calculations regulated on discrete space-time lattices. Such computations, however, are often
faced with exponential signal-to-noise challenges that render key physics studies untenable even with
next generation classical computing. Here, a method is presented by which the output of small-
scale quantum computations on Noisy Intermediate-Scale Quantum era hardware can be used to
accelerate larger-scale classical field theory calculations through the construction of optimized inter-

polating operators. The method is implemented and studied in the context of the 1+1-dimensional
Schwinger model, a simple field theory which shares key features with the standard model of nuclear
and particle physics.

Numerical approaches to quantum field theory are the
only known way to make predictions for a wide range
of physical quantities from the standard model of par-
ticle physics, our best current theory of nature at the
smallest scales. Standard model calculations of nuclear
physics processes—such as those needed to interpret ex-
periments using nuclei as targets—are particularly chal-
lenging. In particular, the strong-interaction component
of the standard model, which is encoded in the theory
of quantum chromodynamics (QCD), can not be ap-
proached analytically at the relevant energy scales. The
only first-principles approach to QCD at these scales is
numerical: a discretized form of the QCD equations can
be solved using supercomputers through Monte Carlo
integration on a finite four-dimensional grid represent-
ing space-time [1, 2]. This technique, named lattice
quantum field theory (LQFT), plays an important role
in modern particle and nuclear physics and has been
essential in testing the standard model against precise
measurements of the decays and interactions of parti-
cles at frontier machines such as the Large Hadron Col-
lider [3, 4]. Calculations of nuclei, however, are limited
by exponentially bad scaling of computational cost with
the atomic number of the system being studied. Using
current methods, direct studies of nuclei with tens of
nucleons, as relevant to diverse physics programs from
direct searches for dark matter to neutrino physics, will
remain intractable, even with the advent of exascale clas-
sical computing in the next years; progress on this front
will require a revolutionary approach, and there is great
interest in the potential applications of quantum com-
puting to overcome this challenge [5, 6]. Hybrid methods
coupling classical and quantum computing o↵er a natu-
ral pathway to exploit quantum computation despite the
small number of qubits, sparse qubit connectivity, lack of
error-correction, and noisy quantum gates that are hall-
marks of current and near-term quantum computing in
the Noisy Intermediate-Scale Quantum (NISQ) era [7].

A significant contribution to the computational cost
of LQFT studies could be eliminated by the construc-

tion of optimized interpolating operators, corresponding
in broad terms to approximations to the quantum wave-
function of the desired state. Precisely, to determine ma-
trix elements of interest in some state in a LQFT compu-
tation, such as those describing an interaction or decay
process, correlation functions are calculated which en-
code the creation, interaction, and annihilation, of the
state in question. These correlation functions, however,
receive contaminating contributions from the many other
states with the quantum numbers of the state of interest.
In order to reliably extract the desired piece, the contri-
butions from all of these unwanted higher-energy states
must be suppressed. Typically, this is achieved via an
evolution in the Euclidean time of the calculation; the
unwanted states are exponentially suppressed by the en-
ergy gap to the ground state at large times, but at the
cost of an exponential growth in the statistical noise of
the Monte Carlo sampling used in the computation (and
thus computational cost). By using optimized interpo-
lating operators for state creation and annihilation, con-
structed to have significant overlap onto the state of in-
terest, this Euclidean time evolution, and thus exponen-
tial growth in noise, can be reduced. In this Letter, it is
demonstrated for the 1+1-dimensional Schwinger model
how one can construct such interpolating operators for
classical LQFT calculations using small-scale quantum
computation. Ultimately, the extension of this approach
to the more complex theory of QCD, along with advance-
ment in quantum hardware, could enable an significant
acceleration of LQFT computations for nuclear physics.

The Schwinger model: The Schwinger model [8],
which describes the theory of quantum electrodynamics
in one space and one time dimension, is a prototypical
lattice gauge theory that shares a number of key fea-
tures with QCD, including confinement. This model thus
provides a simplified framework to test new algorithms
and approaches to LQFT studies. The theory describes
fermions as a two-component spinor field  , with mass
m, coupled via charge g to an electromagnetic field Aµ,
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Quantum-Classical Computation of Schwinger Model Dynamics using Quantum
Computers

N. Klco,1, ⇤ E. F. Dumitrescu,2 A. J. McCaskey,3 T. D. Morris,4

R. C. Pooser,2 M. Sanz,5 E. Solano,5, 6 P. Lougovski,2, † and M. J. Savage1, ‡

1Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, USA
2Computational Sciences and Engineering Division,

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
3Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

4Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
5Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.

6IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain
(Dated: October 4, 2018)

We present a quantum-classical algorithm to study the dynamics of the two-spatial-site Schwinger
model on IBM’s quantum computers. Using rotational symmetries, total charge, and parity,
the number of qubits needed to perform computation is reduced by a factor of ⇠ 5, removing
exponentially-large unphysical sectors from the Hilbert space. Our work opens an avenue for ex-
ploration of other lattice quantum field theories, such as quantum chromodynamics, where classical
computation is used to find symmetry sectors in which the quantum computer evaluates the dy-
namics of quantum fluctuations.

I. INTRODUCTION

Quantum field theories (QFTs), and in particular
gauge field theories, provide the mathematical framework
to describe three of the four fundamental forces of nature.
In quantum chromodynamics (QCD), the gauge theory
describing the strong interactions [1–3], the invariance of
the laws of nature under SU(3)c transformations neces-
sitate the existence of eight gluon fields that transmit
the forces between the quarks. When calculating QCD
phenomena in the high energy (short distance) limit, per-
turbative techniques, such as Feynman diagram expan-
sions, is e�cacious. However, di�culties arise in apply-
ing such approaches to low-energy processes, in which
color confinement and the spontaneous breaking of ap-
proximate chiral symmetries dominate structure and dy-
namics. This regime requires the use of low-energy ef-
fective field theories, such as chiral perturbation theory
(�PT) [4], and numerical solutions using Lattice QCD
(LQCD) [5]. Exascale classical computing will address
Grand Challenge problems [6] in nuclear and high-energy
physics by enabling high-precision LQCD calculations
of many properties of hadrons and light nuclei as well
as low-energy scattering processes. However, these re-
sources are likely insu�cient to address other questions
and problems of importance, such as the structure, prop-
erties and dynamics of finite-density systems (due to the
presence of sign problems in the algorithms used on con-
ventional computers) or the fragmentation of high energy
quarks and gluons into hadrons. Quantum computers
may o↵er potential solutions in these systems that are

⇤ email: klcon@uw.edu
† email: lougovskip@ornl.gov
‡ email: mjs5@uw.edu

inaccessible with conventional computing [7–23].
Existing and near-term quantum hardware is imper-

fect, with a small number of qubits, sparse qubit con-
nectivity, and noisy quantum gates—all hallmarks of
quantum computers in the NISQ (Noisy Intermediate-
Scale Quantum) era [24]. These technical imperfections
constrain the circuit depth and dimensionality of prob-
lems that can be solved on available quantum computers.
Nonetheless, recent advances in developing [11, 17, 20,
23, 25–28] and implementing [13–16, 19, 21, 29] quantum
algorithms for QFT calculations have improved our un-
derstanding of the algorithmic complexity of the prob-
lem. On the other hand, rapid progress in quantum
simulations of many-body systems, such as molecules
and spin chains [30–33], has mapped out potential ways
to reduce complexity through combinations of classical
and quantum computation methods, with variational ap-
proaches [34, 35] at the forefront of new developments.
In this work, we develop a hybrid quantum-classical

computation strategy for a prototypical lattice gauge
QFT—the Schwinger 1+1 dimensional model [36, 37] on
the lattice. Using this strategy, we study the ground state
properties as well as the real-time dynamics of particle
and electric field energy density. In contrast to previ-
ous works [29, 38], we employ periodic boundary con-
ditions (PBCs) endowing the lattice with discrete rota-
tional symmetries and reflection symmetries. Projections
into symmetry sectors lead to a refined classification of
states in the Hilbert space by their momentum, charge
and parity (projections used in LQCD calculations). This
leads to a significant reduction of the Hilbert space of
the system, confining calculations to physically allowed
states. The task of determining the physical sectors of the
Hilbert space is outsourced to classical computers. The
dynamics of the model within each symmetry sector are
evaluated using a digital quantum computer by applying
unitary operators and implementing them as a sequence
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FIG. 2. The H
⇤̃=3
k=0,+ ground state energy and chiral conden-

sate (purple, blue extrapolated to -1.000(65) and -0.296(13),
respectively) expectation values as a function of r, the noise
parameter. r � 1 is the number of additional CNOT gates
inserted at each location of a CNOT gate in the original VQE
circuit. (1200 IBM allocation units and ⇠ 6.4 QPU·s)

k = 0 and ⇤̃ = 1, 2, 3 spaces as hHi = �0.91(1) MeV,
�1.01(4) MeV, and �1.01(2) MeV respectively (see Ap-
pendix E, H, and I)1. To manage inherent noise on the
chip, we have performed computations with a large num-
ber of measurement shots (8192 shots for ibmqx2 [52]
and ibmqx5 [53]). For these variational calculations, the
systematic measurement errors have been corrected via
the readout-error mitigation strategy [33, 54]. Further,
a zero-noise extrapolation error mitigation technique in-
spired by Refs. [55, 56] has been implemented. Examples
of this zero-noise extrapolation technique are shown in
Fig. 2, where the noise parameter r controls the accrual
of systematic errors by inserting r� 1 additional 2-qubit
gates (CNOT2) at every instance of a CNOT gate. In
the limit of zero noise, this modifies CNOT simply by an
identity.

For the results obtained on IBM quantum hardware,
an estimate of the length of time the quantum processing
unit (QPU) spent executing instructions based upon IBM
benchmarking is provided [52, 53, 57]. This VQE calcu-
lation required 6.4 QPU-seconds and 2.4 CPU-seconds
with a total run time of 4 hours. Clearly, a majority of
the time was spent in communications.

IV. DYNAMICAL PROPERTIES

Time evolving quantum systems is a key capabil-
ity of quantum computers. Working with the k = 0
P = +1 sector, we evolve the unoccupied state |�1ik=0,+

1 Example code snippets for calculation on IBM hardware and ta-
bles of data appearing in figures can be found in the supplemental
material [51]

FIG. 3. The probability of finding an e
+
e
� pair (blue,

lower line) and the expectation value of the energy of the elec-
tric field (purple, upper line) in the two-spatial-site Schwinger
model following time evolution with U(✓i(t)) from the initial
empty state. The solid curves are exact results while the the
data points are quadratic extrapolations obtained with the
ibmqx2 quantum computer using a circuit involving 3 CNOT
gates [60]. (1000 IBM allocation units and ⇠ 12.3 QPU·s)

(see Fig. 1 and Appendix A) forward in time with two
techniques. The first is through SU(4) parameteriza-
tion of the evolution operator and the second is us-
ing a Trotter discretization of time. The former uses
a classical computer to determine the 9 angles describ-
ing the time evolution over an arbitrary time inter-
val, which is induced by the symmetric SU(4) matrix
U(✓i(t)) = e�iHt, leading to the state |�ik=0,+(t) =
U(✓i; t)|�1ik=0,+ (see Appendix C). The most gen-
eral form of the symmetric SU(4) matrix through its
Cartan decomposition is U = KTCK where C =
e�i�x⌦�x✓7/2e�i�y⌦�y✓8/2e�i�z⌦�z✓9/2 is generated by the
Cartan subalgebra and K is a SU(2) ⌦ SU(2) transfor-
mation defined by the 6 angles, ✓1,..6 [58, 59]. Fig. 3
shows the “zero-noise” extrapolated pair probability and
expectation value of the energy in the electric field as a
function of time calculated on ibmqx2 with the Cartan
subalgebra circuit of Ref. [60].
The time evolution of this system has also been stud-

ied using a Trotterized operator (see Appendix D).
It is discretized such that e�iHt
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Track reconstruction studies

• Quantum Annealing x 2

• Quantum Associative Memory

• Quantum Hough Transform

• Quantum Graph Neural Network

11



Reconstructing Tracks
12

HL-LHC: μ= 140-200ATLAS S&C twiki

Track reconstruction is 
expected to have a large 
CPU burden at the HL-

LHC  … and even 
greater at future pp 

collider

Almost all studies here use the trackML dataset
Many restrict the multiplicity and/or focus on the central detector region 

and/or high pT

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://arxiv.org/abs/1904.06778


Quantum Annealing
• Reformulated track reconstruction as an energy minimisation problem

•  Solve using the D-Wave quantum annealer

• Solution time doesn’t scale with number of tracks

• Implemented QUBO minimisation on D-Wave and study scaling with track 
multiplicity

• Inspired from *, but use triplets (3 hits) as the qubits

• Encode the quality of the triplets based on physics properties. Pair-wise 
connections b act as constraints (>0) or incentives (<0)

• Minimizing O means selecting the best triplets to form track candidates

13

Bapst et al, arXiv:1902.08324*Stimpfl-Abele & Garrido, Fast track 
finding with neural networks Slide credit: L. Linder

https://arxiv.org/abs/1902.08324
https://www.sciencedirect.com/science/article/pii/001046559190048P?via%3Dihub
https://www.sciencedirect.com/science/article/pii/001046559190048P?via%3Dihub
https://www.sciencedirect.com/science/article/pii/001046559190048P?via%3Dihub


Implementation

• Dataset: 

• trackML dataset 

• barrel, >1 GeV, 5+ hits)

• QUBO solvers: 

• qbsolv (D-Wave + simulation)

• neal (simulation)

• Computers

• D-Wave 2X (1152 qubits),

• D-Wave 2000Q (2048 qubits)

• Fujitsu DA (1025 qubits) 

14

Slide credit: L. Linder

Doublets for a dataset 
of 2456 particles and 

16855 hits



Initial Performance with DWave
15

Physics performance as a 
function of occupancy 
using a D-Wave 2X 
(qbsolv).

Timing  building: 0-20 min | 
solving: 0-12s (sim), 0-56 min 
(D-Wave)
D-Wave | sim.  Same physics,  
important time overhead with 
D-Wave

Slide credit: L. LinderarXiv:1902.08324

https://arxiv.org/abs/1902.08324


Improved Performance + Digital Annealer

• Further work to improve the 
purity of the algorithm

• Extend to expected HL-LHC 
multiplicities

• Study performance using the 
Fujitsu Digital Annealer

• Annealing time is 
independent of the number 
of tracks

• Superior performance to 
DWave

16

Saito et al

(a) (b)

Figure 2: An example of doublets on x-y place in one collision event (a) before QUBO
solving (b) after QUBO solving. Dark (light) green line shows a reconstructed doublet
within (without) the momentum acceptance. Blue line shows a missing doublet, which should
be reconstructed but not remain after QUBO solving. Red line shows a fake doublet, which
is not associated with injected tracks and remains after QUBO solving. Since the catego-
rization of doublets is evaluated after connecting the neighbor doublets, a badly connected
doublet with wrong neighbor doublets is identified as a missing.
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(b)

Figure 3: (a) Purity (circle) and e�ciency (square) as a function of the number of particles.
Black (red) shows the results by neal (qbsolv) solver. (b) The number of tracks of each
categories. Tracks are reconstructed from connected doublets. If a track contains less than
five doublets, the track is rejected. A coloring is defined in a similar way in Figure 2.
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EPJ Web of Conferences 245, 10006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024510006

region of the detector (width of 0.07) and shifting the ⌘ region iteratively with small overlaps
of the width of 0.01.

Figure 4 shows the e�ciency and purity of an event randomly selected for the perfor-
mance evaluation as a function of the density. The performance of the Digital Annealer is
nearly the same as the neal solver for all hit density conditions.

(a) (b)

Figure 4: E�ciency (a) and purity (b) as a function of a fraction of a hit density for a HL-
LHC pileup environment. Black line is a result by the neal solver. Magenta, blue and red line
show results by the Digital Annealer with di↵erent solver-configurations.

Table 1 shows the CPU time of the annealing by the neal solver, CPU time of a pre-
processing/postprocessing by the Digital Annealer, and annealing time on the Digital An-
nealer Unit. A queue and network time are not included here. Also, a common preprocess-
ing/postprocessing time (triplet selection/QUBO building/track formation) are not shown in
the table. The annealing time on the Digital Annealer is independent of the hit density, while
the CPU time depends on the hit density. The dominant part of the computing time for the
Digital Annealer is CPU time in the case of the full density.

Table 1: A comparison of the compute time of the Digital Annealer and the neal solver. Nslice
is the number of ⌘ slices. A queue and network time of the Digital Annealer are not included
in this table.

Density [%] Nslice DA [sec] neal [sec]
CPU time Anneal time total time

5 46 0.09 0.29 0.27
10 68 0.15 0.42 0.66
20 71 0.22 0.44 1.29
40 74 0.52 0.45 2.46
60 73 0.94 0.45 4.29
80 74 1.79 0.46 7.49

100 74 3.73 0.45 12.87

5 Conclusion

We demonstrated a new method of track finding with annealing device. A QUBO is built
based on triplets, considering the relation between triplets and the property of the triplet

7
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https://inspirehep.net/files/976cf985e00c73e052acc17d9e425b13


Quantum Annealing
• A second implementation of quantum 

annealing using Hopfield networks for 
tracking from Zlokapa et al, arXiv: 
1908.04475

• KDE to estimate connection 
probability for a pair of hits

17

Zlokapa et al, arXiv: 1908.04475

chain to the largest coupling in the Hamiltonian to equal
a factor of 3. We find that this prevents chains from
breaking (via noise from thermal excitations and domain
walls) while still allowing qubits to flip to ensure that
the transverse field Hamiltonian drives the dynamics [44].
For each annealing run, we re-embed the problem 10 times
with randomized cross-term signs (gauges) to average out
noise on local fields and couplers [45]. For each gauge,
we perform 10, 000 annealing runs before selecting the
lowest-energy solution from all the outputs. Note that as
the inherent noise in the annealing hardware improves in
the future, fewer runs and gauges would be necessary. To
test the effect of the annealing time (which in principle
must be optimized in order to extract the true time to
solution [8, 38]), we compare runs from 5 to 800 µs.

3.6 Benchmark studies

To evaluate the performance of the annealing algorithm,
we benchmark against random edge selection after pre-
processing. Random edge selection simply randomly se-
lects edges as true according to the expected fraction
of true edge segments in the pre-processed data. Since
the edge selection by annealing occurs after our heuris-
tic edge selection with the Gaussian KDE and disjoint
sub-graph search, comparison to random edge selection
demonstrates that the patterns of hits are not found dur-
ing pre-processing, but rather by solving the QUBO.

4 Results

After measuring the overall tracking performance of
our methodology, we present results on the scalability of
our algorithm for both SA and QA to evaluate the pos-
sibility of a quantum speedup. We report error bars rep-
resenting the 1 standard deviation (�) spread of sector-
by-sector purity and efficiency for TrackML events, indi-
cating the robustness of the methodology. Particle mul-
tiplicity and pileup are linearly dependent, where 2,000
particles per event corresponds to an average of 40 pileup.

4.1 Tracking efficiency and purity

To compare the QA and SA performance in terms of par-
ticle multiplicity (see figure 11) and particle momentum
(see figure 12), we use two metrics:

Purity =
Number of true tracks reconstructed

Number of tracks reconstructed
,

Efficiency =
Number of true tracks reconstructed

Number of true tracks
.

Due to the limited size of the D-Wave machine (33 fully
connected logical qubits), we can only fit up to 500 tracks

on the quantum annealer. However, to show that the per-
formance of the algorithm does not significantly deterio-
rate at higher multiplicity, we include further results from
SA.

Figure 11: QA and SA benchmarked against random an-
nealing after pre-processing heuristics. All values are re-
ported with 1� error bars for tracks with at least 3 hits
indicating the spread of event sectors. Additionally, the
pre-processing places an upper bound of around 93% ef-
ficiency (indicated by the dashed line).

As particle multiplicity increases, the random edge se-
lection track efficiency and purity approach zero, while
the SA and QA reconstructions maintain their perfor-
mance. This suggests that the majority of tracking is
completed in solving the QUBO rather than in our heuris-
tic pre-processing methods. Although quantum annealing
on D-Wave hardware does not outperform SA, it consis-
tently obtains a solution of similar quality. The SA algo-
rithm’s slightly better performance may be attributable
to a lack of noise in embedding the Hamiltonian as well as
the ability to fully encode the problem without chains of
qubits that cause additional error in the readout process.

We present the performance in terms of track effi-
ciency and purity across several physical variables (see
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true using data samples outside the test set. Since tracks
typically originate from the interaction point near the ori-
gin, we train the Gaussian KDE on the z-intercept and
the angle in the rz-plane of line segments based on ground
truth in the TrackML data.

Figure 9: Gaussian kernel density estimation of a prior
probability for two hits to be connected by an edge, allow-
ing information from the interaction points and detector
geometry to be introduced into the QUBO.

We apply a cut on the Gaussian KDE to reduce the
size of the QUBO, yielding 93% of all the true edges with
approximately 1% purity. Given h hits, this has time
complexity O

�
h
2
�

as we traverse over all hits. We may
then construct the QUBO outlined earlier, again travers-
ing all edges with complexity O

�
h
2
�
.

3.4.2 Sub-graphing

Since we wish to anneal our problem using a small num-
ber of qubits, we further subdivide the problem into dis-
joint sub-graphs, separating individual communities of
hits connected by edges. To do so, we perform a flood-
fill search [36] to label each edge and prune the candi-
date edges from each node to only include the 5 edges
with the highest single-edge biases in the QUBO. Thus,
this sub-division procedure also runs in time O

�
h
2
�
. We

may then proceed to anneal the multiple QUBO problems
with the number of problems scaling like the number of
sub-graphs, i.e., as O(h2) since the sub-graphs divide the
event into disjoint edge communities. The sub-graphing
process is further detailed in section 2 of the Supplemen-
tary Material.

3.5 Annealing procedure

Due to the QUBO construction of assigning each possible
edge to a variable in the QUBO problem, we expect SA

with no pre-processing to solve the tracking problem in
exponential time with respect to the number of edges h2,
i.e., O

�
exp

�
ch

2
��

for a constant c > 0. After our sub-
graphing procedure, we divide the event into K = O(h2)
sub-graphs, and we expect total annealing time to grow
as

PK
i=1 exp (cmi) where mi is the number of edges in

sub-graph i. Hence, the overall scaling would depend on
the distribution of mi (see figure 10).

Figure 10: Histogram of sub-graph sizes mi summed over
the 5 largest event sectors (1/16 of an event) for different
track densities. Each bin corresponds to the number of
edges in a sub-graph, which is equivalent to the number
of variables in a QUBO.

However, since the sub-graphing procedure only re-
duces the complexity of the annealing (by dividing the
larger QUBO into smaller sub-QUBOs), the procedure’s
complexity is bounded from above by O

�
exp

�
ch

2
��

. To
verify this, we use SA and measure the convergence time
as a function of the distribution of sub-graph sizes in sec-
tion 4.2. Details of the SA algorithm are provided in
section 3 of the Supplementary Material.

Although QA is not thought to generally yield a
ground state solution to a QUBO problem in polynomial
time, it may reduce the size of the constant c in the time
complexity

PK
i=1 exp (cmi), potentially offering a signif-

icant speedup over classical methods [37, 38]. To assess
the possibility of a quantum speedup, we implement our
procedure on a programmable quantum annealer built by
D-Wave Systems Inc. [39] and housed at the University of
Southern California’s Information Sciences Institute. The
D-Wave 2X architecture has 1, 098 superconducting flux
qubits arranged in a Chimera graph, in which each qubit
is coupled to at most 6 others. To increase connectivity we
perform a minor-embedding operation by mapping each
QUBO problem onto ferromagnetic chains of qubits [40,
41, 42, 43]; the result is a fully connected graph of 33
logical qubits, each of which is used to represent an edge.

We optimize the ratio between coupling within each

7

https://arxiv.org/pdf/1908.04475.pdf
https://arxiv.org/pdf/1908.04475.pdf
https://arxiv.org/pdf/1908.04475.pdf


Associative Memory
18

Memory required scales 
far more slowly with the 

number of tracks

Shapoval, arXiv:1902.00498

Inspired by ideas for hardware 
based track triggers 

Slide credit: I. Shapoval

https://arxiv.org/abs/1902.00498


Implementation
• QuAM circuit generators implementing the Trugenberger’s initialization and 

generalized Grover’s algorithms.

• use open-source quantum computing platform, Qiskit

• Supported backends

• IBM QE cloud-based quantum chips [5Q Yorktown/Tenerife, 14Q 
Melbourne, 20Q Tokyo]

• Local/remote noisy simulators

19

Shapoval et al, arXiv:1902.00498

Snip
p

Slide credit: I. Shapoval

Ex.: complete circuit 
for retrieving one 2-

bit pattern

Ex.: complete circuit 
for retrieving one 2-bit 

pattern

https://qiskit.org/
https://arxiv.org/abs/1902.00498


Quantum Hough Transform
20

Slide Credit: A. Yadav Chen et al, arXiv:1908.07943

Local Maxima 
Detection using 
Grover-Long 
Algorithm

vote counts

Accumulator 
Space for 8 

tracks

https://arxiv.org/abs/1908.07943


Quantum Graph Neural Networks
• GNNs for particle tracking are being developed by the Exa.TrkX 

collaboration

• Recent studies of the application of QGNNs to particle tracking

• Hybrid quantum-classical algorithm

• Encode the hit coordinates as angles

• Iteratively apply quantum edge and node networks to propagate 
information to all detector layers

• Final application of the edge network classifies the segments

21

arXiv:2003.08126, arXiv:2007.06868.pdf, Talk by Tuysuz at CTD 2020

https://arxiv.org/pdf/2103.06995.pdf
https://arxiv.org/pdf/2007.06868.pdf
https://arxiv.org/pdf/2003.08126.pdf
https://arxiv.org/pdf/2007.06868.pdf
https://indico.cern.ch/event/831165/contributions/3717116/attachments/2022764/3383899/Tuysuz.mp4


QGNN Results
• Obtains AUC on 0.8

• Performance decreases as number of 
iterations increases

• Attributed to the limited statistics 
and network simplicity (100 events)

22

Tuysuz et al, arXiv:2007.06868

Connecting the Dots. April 20-30, 2020

Figure 5: Quantum Circuit of QEN is given on the left. Quantum Circuit of QNoN is given on the right.
The numerical values are from an example data.

1400 subgraphs are used to train the QGNN and 200 subgraphs are used in the validation set for a single
epoch. 3 independent experiments were conducted to test di↵erent iterations. The training results are shown
in Figure 6.
Figure 6 shows that the model can achieve an Area under the ROC curve (AUC) of 0.80 and a binary cross
entropy loss of 0.5. While 1.0 is the perfect score for AUC, the model seems to perform well considering its
simplicity. It was expected that the model performance to get better as the number of iterations increases.
However, higher iteration runs performed similar to Nit = 1 or even worse. There are two main reasons
leading to this. First, simple TTN models do not represent the data more than the current best results,
therefore it defines a less than perfect ending point for the training. The second issue is related to the
vanishing gradient problem. It is known that Recurrent Neural Networks su↵er from this problem and the
QGNN is no exception. Therefore, as the Nit increases the learning rate slows down. These two major issues
will be investigated deeply in future work.

(a) Validation Loss (b) Validation AUC

Figure 6: Validation Set results for a single epoch of training with di↵erent iteration values.

4

Quantum edge network

https://arxiv.org/pdf/2007.06868.pdf
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ATLAS, PLB784 (2018) 173

CMS, PLB 716, 30-61
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Three Higgs analyses  
One SUSY search

https://arxiv.org/ct?url=https://dx.doi.org/10.1016/j.physletb.2018.07.035&v=ace75255
https://www.sciencedirect.com/science/article/pii/S0370269312008581?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0370269320307838?via=ihub


Quantum Machine Learning
• QML lies at the intersection between quantum computing and machine 

learning

• Usually, we’re talking about using quantum computers to analyse classical 
data

• In many cases, the most promising methods are hybrid classical/quantum 
approaches

• Both quantum annealers and digital quantum computers have been explored

• Introductory QML textbook

• Recent review article about quantum machine learning in HEP

• Not trying to provide an overview here; rather trying to show examples of 
studies that have been performed
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Don’t fall for the hype! - Frank Zickert

https://www.pyqml.com/
https://iopscience.iop.org/article/10.1088/2632-2153/abc17d/meta


Quantum Adiabatic Machine Learning
• CMS  search using QAML [arXiv:0104129, arXiv:0001106] using 

DWave

• Pudenz et al, arXiv:1109.0325
• Training: identify optimal set of weak classifiers to form strong classifier
• Testing: evolve strong classifiers to identify anomalous elements

H → γγ

26

Slide Credit, J.R. Vlimant

https://arxiv.org/abs/quant-ph/0001106,%20https://arxiv.org/abs/quant-ph/0104129
https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/1109.0325
https://indico.cern.ch/event/719844/contributions/3047935/attachments/1746478/2828652/vlimant_DW-OpenLab_Nov18.pdf
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 D-Wave Classifier, OpenLab Q-HEP, J.-R. Vlimant
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QAML Weak/Strong Classifier

Define functions h
i
 of the

input variables into [-1,1]

such that 
➢ P(signal|h>0) > P(bkg|h>0)
➢ P(bkg|h<0) > P(signal|h<0)

i.e. Most signal on h>0, most

bkg on h<0

Define w
i
 as binary linear

combination of h
i

https://arxiv.org/abs/1109.0325 

Slide Credit, J.R. Vlimant

11/05/18

 D-Wave Classifier, OpenLab Q-HEP, J.-R. Vlimant
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QAML Target/Objective
Define as a “target” function

Per event error

Full error

➔ C
ij
 and C

iy
 are summations over the values of h

i
 over the training set

➔ λ is a parameter penalizing the number of non-zero w
i

https://arxiv.org/abs/1109.0325 

Classifier Definition

Objective Definition

11/05/18

 D-Wave Classifier, OpenLab Q-HEP, J.-R. Vlimant
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QUBO
Quadratic Unconstrained Binary Optimization

Simple conversion 
of binary 

weights to ±1

QUBO Definition

https://indico.cern.ch/event/719844/contributions/3047935/attachments/1746478/2828652/vlimant_DW-OpenLab_Nov18.pdf


 SetupH → γγ
• Dataset: 300k signal; 300k background events

• Training: subsets ranging from 100 to 20k events

• Testing: 100k signal; 100k background

• Key discriminating variables (photon momentum, invariant mass, etc)

28

Slide Credit, J.R. Vlimant

11/05/18

 D-Wave Classifier, OpenLab Q-HEP, J.-R. Vlimant
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Outline

➔ Train classical classifiers as a baseline
measurement of performance.

➔ Evaluate the exact solution of the problem
using simulating annealing of the Ising model.

➔ Scan for λ, penalty on number of weak
classifiers.

➔ Classification performance depending on the
size of the training set.

➔ Scan on the fraction of exited states included
in the classifier.

11/05/18

 D-Wave Classifier, OpenLab Q-HEP, J.-R. Vlimant
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Weak Classifier Function

Define v
shift

● Based on 70th and 30th 
percentile of the signal
distribution (s

70
, s

30
)

● If the percentile of
background at s

70
 is less

than 70%, then translate
to s

70
 and invert the

variable
● Else, check the percentile

of background at s
30

, and

if more than 30%, then
translate to s

30
.

● Else, the two distributions
are “too overlapping” and
we discard the variable.

Define h
● v

+1
 and v

-1
 are the 10th and

90th percentile of v
shift

Applied to all variables and their
product (inverse if flipped)

https://indico.cern.ch/event/719844/contributions/3047935/attachments/1746478/2828652/vlimant_DW-OpenLab_Nov18.pdf


 ResultsH → γγ 29

LETTER RESEARCH

1 9  O C T O B E R  2 0 1 7  |  V O L  5 5 0  |  N A T U R E  |  3 7 7

where si =  ± 1 is the ith Ising spin variable, Jij =  Cij/4 is the coupling 
between spins i and j, and λ= − + ∑h C Ci i j ij

1
2

 is the local field on 
spin i. The problem that quantum or simulated annealing attempt to 
solve is minimizing H and returning the minimizing, ground-state spin 
configuration s{ }i i

g . The strong classifier is then constructed as

∑= ∈ −x xR s c( ) ( ) [ 1, 1]
i

i i
g

for each new event x that we wish to classify6. We introduce an addi-
tional layer into our study by also constructing strong classifiers from 
excited-state spin configurations.

As benchmarks for traditional machine learning methods, we train a 
deep neural network (DNN) using Keras9 with the Theano backend19, 
and an ensemble of boosted decision trees using XGBoost (XGB)10, 
using  optimized choices for training hyperparameters (details of which 
can be found in Supplementary Information).

We compare the ground-state configurations for λ ∈  {0.01, 0.05, 0.1,  
0.2, 0.4, 0.8}. A larger λ implies an increased penalty against including 
additional variables, and so we expect the variables included at λ =  0.8 
to be determining the performance of the classifiers. Table 3 presents 
the relative strength of the variables in determining the performance 
of the classifier by showing how often variables are included in the 
ground-state configuration of the full 36-variable problem derived from 
20 different training sets with 20,000 training events each, as a function 
of the penalty term λ. We find that two of the original kinematic 
 variables, pT

1  and | ηγγ| , are never included. The number of classifiers 
included in the ground state of the corresponding Hamiltonian of all 
20 training samples is 16 out of 36 for λ ≤  0.05 and the following three 
for λ =  0.8: (i) / γγp mT

2 , (ii) ∆ γγ −R p( )T
1 and (iii) / γγp pT

2
T . These three 

classifiers have the greatest effect on the performance of the network, 
but would have been difficult to guess a priori in their composite form. 
The physical reason for why these variables are important for the clas-
sifier can be gleaned by considering the kinematics of the system. The 
key difference between an event in which a Higgs boson decays to two 
photons and another process that produces two photons in its final state 
is the production of the heavy particle in the event. A heavy particle 
will require considerably more energy to boost perpendicular to the 
beamline and hence we would expect real Higgs events to have a char-
acteristically lower γγpT  than do background events. Because the system 
with the Higgs boson has less transverse boost, we would expect  
the two photons to have similar pT spectra. Consequently, the second 
most energetic photon will typically be higher than in events without 
the heavy process. The pT of the first photon is largely determined by 
the overall energy that is available in the collision, which is also  

set by mγγ; hence / γγp mT
1  is largely stochastic and provides little 

discrimination.
We estimate the receiver operating characteristic (ROC) curves on 

the training set and construct a final output classifier such that for 

Table 3 | Variable inclusion in the ground states of instances of the Ising problem
λ 0 0.01 0.02 0.05 0.1 0.2 0.4 0.8 λ 0 0.01 0.02 0.05 0.1 0.2 0.4 0.8

1 0 0 0 0 0 0 0 0 19 20 20 20 20 20 18 0 0
2 20 20 20 20 20 20 20 20 20 0 0 0 0 0 0 0 0
3 20 20 20 20 20 20 0 0 21 0 0 0 0 0 0 0 0
4 20 20 20 20 20 20 2 0 22 19 19 19 19 1 0 0 0
5 19 19 19 19 19 19 19 0 23 0 0 0 0 0 0 0 0
6 20 20 20 20 20 20 20 0 24 20 20 20 20 20 20 7 0
7 20 20 20 20 20 20 20 9 25 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 26 3 2 1 0 0 0 0 0
9 5 4 4 1 0 0 0 0 27 0 0 0 0 0 0 0 0
10 20 20 20 20 20 20 20 18 28 20 20 20 20 20 20 20 20
11 20 20 20 20 20 14 17 0 29 19 19 19 16 1 0 0 0
12 20 20 20 20 20 20 20 0 30 7 6 4 1 0 0 0 0
13 20 20 20 20 20 20 20 20 31 0 0 0 0 0 0 0 0
14 19 19 19 19 19 12 0 0 32 15 15 15 11 5 0 0 0
15 20 20 20 20 20 20 20 2 33 0 0 0 0 0 0 0 0
16 17 17 16 10 6 4 1 0 34 19 19 19 19 16 0 0 0
17 20 20 20 20 14 1 0 0 35 20 20 20 20 20 20 20 19
18 20 20 20 17 2 0 0 0 36 20 20 20 20 20 20 3 0

The variables are listed by number (see Table 2). We show how many out of 20 training sets had the given variable turned on in the ground-state con!guration. Of the 36 variables, 3 were included for 
all values of the penalty term λ and for all of the training sets, pT

2, / ∆ γγRp1 ( )T
 and / γγp pT

2
T

; the variables / −p p p( )T
2

T
1

T
2  and η+ /∆p p( )T

1
T
2  were present in almost all; and 7 were never included, among which 

are the original kinematic variables pT
1 and ηγγ. 
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Figure 3 | Receiver operating characteristic (ROC) curves for the 
annealer-trained networks with f = 0.05, the DNN and XGB.  
a–d, Results shown are for the 36-variable networks at λ =  0.05, trained 
on 100 (a and b) or 20,000 (c and d) events. The ROC curve illustrates 
the diagnostic ability of a binary classifier system as its discrimination 
threshold is varied, and is created by plotting the background rejection 
against the signal efficiency at various threshold settings. The short-
dashed black line indicates no discrimination. Solid lines correspond to 
quantum (QA; green) or simulated (SA; blue) annealing, and dotted lines 
to the DNN (red) or XGB (cyan). Error bars are defined by the variation 
over the training sets and statistical error; 1σ error bars for quantum 
annealing and the DNN are shown as light blue and pale yellow shading, 
respectively, in a and c. The 1σ error bars for simulated annealing and XGB 
are included in b and d, but are too small to be visible owing to the larger 
number of events. For 100 events the annealer-trained networks have a 
larger AUROC, as shown directly in Fig. 4. The situation is reversed for 
20,000 training events.
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Solving a Higgs optimization problem with quantum 
annealing for machine learning
Alex Mott1†*, Joshua Job2,3*, Jean-Roch Vlimant1, Daniel Lidar3,4 & Maria Spiropulu1

The discovery of Higgs-boson decays in a background of standard-
model processes was assisted by machine learning methods1,2. The 
classifiers used to separate signals such as these from background 
are trained using highly unerring but not completely perfect 
simulations of the physical processes involved, often resulting in 
incorrect labelling of background processes or signals (label noise) 
and systematic errors. Here we use quantum3–6 and classical7,8 
annealing (probabilistic techniques for approximating the global 
maximum or minimum of a given function) to solve a Higgs-
signal-versus-background machine learning optimization problem, 
mapped to a problem of finding the ground state of a corresponding 
Ising spin model. We build a set of weak classifiers based on the 
kinematic observables of the Higgs decay photons, which we then 
use to construct a strong classifier. This strong classifier is highly 
resilient against overtraining and against errors in the correlations 
of the physical observables in the training data. We show that the 
resulting quantum and classical annealing-based classifier systems 
perform comparably to the state-of-the-art machine learning 
methods that are currently used in particle physics9,10. However, in 
contrast to these methods, the annealing-based classifiers are simple 
functions of directly interpretable experimental parameters with 
clear physical meaning. The annealer-trained classifiers use the 
excited states in the vicinity of the ground state and demonstrate 
some advantage over traditional machine learning methods for 
small training datasets. Given the relative simplicity of the algorithm 
and its robustness to error, this technique may find application 
in other areas of experimental particle physics, such as real-time 
decision making in event-selection problems and classification in 
neutrino physics.

The discovery of the Higgs boson at the Large Hadron Collider 
(LHC)1,2 marks the beginning of a new era in particle physics. 
Experimental particle physicists at the LHC are measuring the 
 properties of the new boson11,12, searching for heavier Higgs bosons13 
and trying to understand whether the Higgs boson interacts with 
dark matter14. Cosmologists are trying to understand the symmetry- 
breaking Higgs phase transition that took place early in the history 
of the Universe and whether that event explains the excess of matter 
compared to antimatter15. The measured mass of the Higgs boson13 
implies that the symmetry-breaking quantum vacuum is  metastable16 
unless new physics intervenes. The implications of the discovery  
of the Higgs boson will keep motivating physics research for years  
to come.

One of the key requirements for precisely measuring the  properties 
of the Higgs boson is selecting large, high-purity samples that  contain 
the production and decay of a Higgs particle. Machine learning 
 techniques17 could potentially be used as powerful tools for selecting 
such samples, but challenges remain. These challenges are greater when 
an investigation requires faithful simulation not only of the physics 

observables themselves, but also of their correlations in the data. In 
the measurement of the properties of the Higgs boson11, disagree-
ments between simulations and observations result in label noise and 
 systematic uncertainties in the efficiency of the classifiers that adversely 
effect the classification performance and translate into uncertainties on 
the measured properties of the discovered particle.

To address these challenges in the Higgs-signal-versus-background 
optimization problem, we study a binary classifier that is trained 
with classical simulated annealing7,8 and quantum annealing3–6,18. 
To implement quantum annealing we use a programmable quantum 
annealer (D-Wave Systems, Inc.) housed at the University of Southern 
California’s Information Sciences Institute, which comprises 1,098 
superconducting flux qubits. The optimization problem is mapped to 
one of finding the ground state of a corresponding Ising spin model.  
We use the excited states in the vicinity of the ground state in the 
 training method to improve the accuracy of the classifiers beyond 
the baseline ground-state-finding model. We refer to this approach as 
quantum annealing for machine learning (QAML).

1Department of Physics, California Institute of Technology, Pasadena, California 91125, USA. 2Department of Physics, University of Southern California, Los Angeles, California 90089, USA. 3Center 
for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089, USA.4Departments of Electrical Engineering, Chemistry and Physics, University 
of Southern California, Los Angeles, California 90089, USA. †Present address: DeepMind, London, UK. 
*These authors contributed equally to this work.
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Figure 1 | Representative Feynman diagrams of processes that 
contribute to the simulated distributions of the Higgs signal and of the 
background standard-model processes. The signal corresponds to the 
production of a Higgs boson (H) through the fusion of two gluons (g), 
which then decays into two photons (γ) (top). The gluon fusion and Higgs 
decay processes both proceed through virtual top quark (t) loops; t is an 
antitop quark. Representative leading-order and next-to-leading-order 
background processes are standard-model two-photon production 
processes (bottom).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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a signal efficiency εS we use the strong classifier sampled from the 
annealer with the maximum background rejection rB. We construct 
such compound classifiers for simulated and quantum annealing using 
excited states within a fraction f of the ground-state energy Eg—that is, 
all {si} such that H({si}) <  (1 −  f)Eg (note that Eg <  0). Simulated anneal-
ing is used as a natural comparison to quantum annealing on these fully 
connected problems.

In our experiments, quantum annealing struggles to find the true 
minimum of the objective function. This is probably a consequence 
of the fact that the current generation of D-Wave quantum annealers 
suffers from non-negligible noise on the programmed Hamiltonian. 
The problem of noise is compounded by the relatively sparse graph, 
which requires a chain of qubits to embed the fully connected  logical 
Hamiltonian. In our case, 12 qubits are ferromagnetically coupled 

to act as a single logical qubit. We therefore study and interrogate 
 current-generation quantum annealers and interpret their performance 
as a lower bound for the performance of future systems with lower 
noise and denser hardware graphs.

In Fig. 3 we plot the ROC curves illustrating the ability to discrimi-
nate between signal and background for each algorithm, with f =  0.05 
and training datasets with 100 or 20,000 events. We observe a clear 
separation between the annealing-based classifiers and the binary- 
decision-tree-based XGB and DNN classifiers, with the advantage of 
the annealers appearing for small training datasets, but  disappearing 
for the larger datasets. In Fig. 4 we plot the area under the ROC 
curve for each algorithm, for training datasets of various sizes and 
f =  0.05 (the largest value we used). An ideal classifier would have 
an area of 1. We find that quantum and simulated annealing have 
comparable performance, implying high robustness to approximate 
solutions of the training problem. This feature appears to general-
ize across the domain of QAML applications (Li, R. et al., submitted  
manuscript). Here the asymptotic performance of the QAML model is 
achieved with just 1,000 training events, and thereafter the algorithm 
does not benefit from additional data. This is not true for the DNN or 
XGB. A notable finding of our work is that QAML has an advantage 
over both the DNN and XGB when training datasets are small. This is 
shown in Fig. 5 in terms of the integral of the true negative differences 
over signal efficiency for various ROCs. In the same regime of small 
training datasets, quantum annealing develops a small advantage over 
simulated annealing as the fraction of excited states f used increases, 
saturating at f =  0.05. However, the uncertainties are too large to draw 
definitive conclusions in this regard. In the regime of large training 
datasets, simulated annealing has a small advantage over quantum 
annealing, to a significance of approximately 2σ.

In our study we have explored QAML, a simple method inspired by 
the prospect of using quantum annealing as an optimization technique 
for constructing classifiers, and applied the technique to the  detection 
of Higgs decays. The training data are represented in a compact 
 representation of O(N2) couplers and local biases in the Hamiltonian 
for N weak classifiers. The resulting strong classifiers perform compa-
rably to the state-of-the-art standard methods that are currently used in 
high-energy physics, and have an advantage when the training datasets 
are small. The role of quantum annealing is that of a subroutine for 
sampling the Ising problem that may in the future have advantages 
over classical samplers, either when used directly or as a way of seeding 
classical solvers with high-quality initial states.

QAML is resistant to overfitting because it involves an explicit 
linearization of correlations. It is also less sensitive to errors in the 
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Figure 4 | Area under the ROC curve (AUROC) for the annealer-trained 
networks with f = 0.05, the DNN and XGB. Results shown are for the 
36-variable networks at λ =  0.05. As in Fig. 3, the solid lines correspond 
to quantum (green) or simulated (blue) annealing, and dotted lines to the 
DNN (red) or XGB (cyan). The vertical lines denote 1σ error bars, defined 
by the variation over the training sets (grey) plus statistical error (green); 
see Supplementary Information section 6 for details of the uncertainty 
analysis. Whereas the DNN and XGB have an advantage for large training 
datasets, we find that the annealer-trained networks perform better for 
small training datasets. The overall performance of QAML and its features, 
including the advantage at small training-dataset sizes and saturation of 
the AUROC at approximately 0.64, are stable across a range of values of 
λ. An extended version of this plot, for various values of λ, is shown in 
Supplementary Fig. 2.
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Figure 5 | Difference between the AUROCs for different algorithms.  
a, Quantum annealing versus the DNN (QA −  DNN). b, Quantum 
annealing versus XGB (QA −  XGB). c, Quantum versus simulated 
annealing (QA −  SA). In all cases, the difference is shown as a function of 
training-dataset size and fraction f above the minimum energy returned 

(the same values of f are used for quantum and simulated annealing in c). 
Formally, we plot ∫ ε ε ε−r r[ ( ) ( )]di

0
1

B
QA

S B S S, where rB is the maximum 
background rejection, i ∈  {DNN, XGB, SA} and εS is the signal efficiency. 
The vertical lines denote 1σ error bars. The large error bars are due to 
noise on the programmed Hamiltonian.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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QAML with Zooming

• Recent extension to these results 
with the introduction of QAML with 
zooming

• Idea: Iteratively perform QA to obtain 
the weights on the weak classifiers 
continuous

• Binary search over energy surface 
using spin up/down outcomes

30

4

Annealing is performed with a 5 µs anneal time, with
minimal variation in performance observed for longer an-
neal times (not shown). The anneal times were selected
to attempt to achieve high performance with the short-
est anneal times possible using the D-Wave 2X device,
suggesting that future quantum annealers may achieve a
wall clock time advantage over simulated annealing if the
performance is sustained with lower anneal times.

As in QAML, we use an ensemble of excited states to
strengthen the classifier. To select the excited states, we
place two criteria: a maximum distance d to the lowest-
energy state found (i.e., an excited state must have an
energy less than (1 � d)Eground for Eground < 0 or less
than (1 + d)Eground for Eground > 0), and a maximum
total number of excited states ne to be selected. To pre-
vent an exponential increase in the tree of excited states
generated by the zooming algorithm, we also decay the
values of d and ne by iteration number. The final clas-
sifier is then defined by maximizing the area under the
ROC curve on a validation set (equivalent to the valida-
tion set used for DNN hyperparameter tuning), selecting
the best-performing excited states for di↵erent false pos-
itive rates.

B. Results

FIG. 2. Area under the ROC curve for the QAML-Z
extension, simulated annealing (SA-Z), a logistic re-
gression (LR-Z), the original QAML, a deep neural
network (DNN) and XGBoost (XGB) [65] as a func-
tion of training set size. While QAML-Z matches DNN
performance at small training set sizes, it decreases the mar-
gin between QAML and DNN by 47% for the largest training
sets. Error bars indicate 1� error, including both variation
over training sets and statistical error estimated by reweight-
ing samples from a Poisson distribution.

Compared to the QAML algorithm, the area under the
receiver operating characteristic curve (AUROC) is sig-
nificantly improved by QAML-Z on all training set sizes
(Figure 2). We select the best-performing classical clas-
sifiers (a deep neural network and XGBoost) from the
QAML Higgs optimization benchmark, although we op-
timize additional parameters of the classical algorithms
to further improve their performance from Ref. [33]. A
logistic regression (LR-Z) directly optimizes the mean-
squared error of classification over the set of augmented
classifiers that QAML-Z is applied to. When compared
to classical simulated annealing (SA-Z), QAML-Z per-
forms slightly better (see Figure 4).

FIG. 3. QAML-Z performance on the test set vs.
zooming iteration number (training set size of 1000).
Top: significant improvements by QAML-Z can be separately
seen for classifier augmentation (black) and zooming (blue)
over the original QAML algorithm (red). Bottom: Ising
model energy on the test set improves monotonically, indi-
cating negligible overfitting. Error bars indicate 1� error.

We observe the e↵ectiveness of both the zooming and
augmentation aspects of QAML-Z (Figure 3). The area
under the ROC curve illustrates both the impact of clas-
sifier augmentation and the impact of zooming, show-
ing advantages in both the classifier augmentation and

Zlokapa et al, arXiv: 1908.04480
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put vector and y⌧ = ±1 is a binary label for signal and
background) is optimized with a set of N weak classifiers
ci, each of which gives ci(x⌧ ) = ±1/N for a signal or
background prediction. Given spins si 2 {0, 1} obtained
by transforming up/down spins, let R(x⌧ ) be a strong
classifier given by

R(x⌧ ) =
NX

i=1

sici(x⌧ ), (1)

i.e., an ensemble of the weak classifiers where each weak
classifier is either turned on or o↵ (weight 1 or 0). To
minimize classification error, we simply minimize the dis-
tance between y and R:

||y �R||2 =
SX

⌧=1

�����y⌧ �
NX

i=1

sici(x⌧ )

�����

2

(2a)

= ||y||2 � 2
NX

i=1

SX

⌧=1

sici(x⌧ )y⌧

+
NX

i=1

NX

j=1

SX

⌧=1

sici(x⌧ )sjcj(x⌧ ). (2b)

Removing the spin-independent term ||y||2 and the self-
spin interactions c

2
i (x⌧ ) to construct a problem suitable

for quantum annealing, we rewrite the Hamiltonian as
follows (scaling by a factor of 2 for convenience after ma-
nipulating indices):

H =
NX

i=1

NX

j>i

SX

⌧=1

sici(x⌧ )sjcj(x⌧ )�
NX

i=1

SX

⌧=1

sici(x⌧ )y⌧ .

(3)
For convenience, we define the variables:

Cij =
SX

⌧=1

ci(x⌧ )cj(x⌧ ), (4)

Ci =
SX

⌧=1

ci(x⌧ )y⌧ . (5)

Hence, in the original QAML algorithm, the following
Ising model Hamiltonian is minimized after transforming
the range to si 2 {�1, 1}, adding an additional � regu-
larization hyperparameter to penalize nonzero si [22]:

H =
NX

i=1

0

@�� Ci +
1

2

NX

j>i

Cij

1

A si +
1

4

NX

i=1

NX

j>i

Cijsisj ,

(6)

We observe the following limitations in the QAML al-
gorithm: i) arbitrary linear combinations of weak clas-
sifiers ci are forbidden because the strong classifier R is
simply formed by turning weak classifiers ci on or o↵; ii)
the diversity of the ensemble is limited by the selection
of weak classifiers. If the set of weak classifiers can be
expanded, more nuanced ensembles with more complex
decision boundaries can be learned.

B. Zooming Extension

By iteratively performing quantum annealing, the bi-
nary weights on the weak classifiers can be made contin-
uous, resulting in a stronger classifier. This is achieved
by performing a search on the real numbers, e↵ectively
zooming in on a region of the energy surface each itera-
tion (Figure 1). We denote the zooming variant of quan-
tum annealing for machine learning as QAML-Z. Under
this reformulation, the weights of the classifiers may be
extended from the set {0, 1} to the continuous interval
[�1, 1], enabling the subtraction of classifiers to reduce
cross-correlations between weak classifiers.

E

µ0(0) = 0

E

µ0(1) = –0.5

E

µ0(2) = –0.25

FIG. 1. Zooming extension. While QAML only performs
one anneal, QAML-Z iteratively updates the weight µ (indi-
cated by the red dot) of a weak classifier (index 0 in the dia-
gram) in the strong classifier ensemble by performing a binary
search over the energy surface using spin up/down outcomes.

Let each qubit have a mean µi(t) (starting at µi(0) = 0
for all i) and let the search breadth be �(t) = b

t, where
t = 0, 1, ..., T � 1 for T iterations and 0 < b < 1
is a free parameter. Each iteration, the Hamiltonian
is centered around the previous mean and the search
breadth is narrowed. Receiving spin up or spin down
corresponds to shifting the new mean either right or
left by a distance given by the search breadth. The
weight given to each classifier is thus updated accord-
ing to the old mean and consequent shift, resulting in
a modified Hamiltonian according to the substitution
sici(x⌧ ) ! �(t)sici(x⌧ ) + µi(t)ci(x⌧ ). The full expres-
sion is:

H(t) =
NX

i=1

NX

j>i

SX

⌧=1

�
�(t)sici(x⌧ ) + µi(t)ci(x⌧ )

�

⇥
�
�(t)sjcj(x⌧ ) + µj(t)cj(x⌧ )

�

�
NX

i=1

SX

⌧=1

�
�(t)sici(x⌧ ) + µi(t)ci(x⌧ )

�
y⌧ (7a)

=
NX

i=1

0

@�Ci +
NX

j=1

µj(t)Cij

1

A�(t)si

+
NX

i=1

NX

j>i

Cij�
2(t)sisj , (7b)

where Eq. (7b) is derived after dropping constants from
the Hamiltonian and applying the same Ci and Cij no-
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zooming methodologies. Examining the normalized Ising
model energy as a function of iteration number, the
zooming algorithm is also shown to monotonically de-
crease the Hamiltonian energy with additional anneals.

C. Simulated Annealing Benchmark

Given the analogue of quantum annealing to simulated
annealing [17], we also implement the proposed zooming
algorithm in a simulated annealing framework, reporting
on simulated annealing with zooming (SA-Z). To attempt
to match the improved quantum annealing performance,
we also propose simulated annealing with excited states
and zooming (SAE-Z), in which the supremum over a set
of excited states from simulated annealing is used to im-
prove the area under ROC curve in the same manner as
in the quantum algorithm. While a ground state solution
minimizes error on the training set, it may overfit to the
training data and cause poor generalization on the test
set. Hence, the inclusion of excited states — either ther-
mal noise in simulated annealing or sampled from the
quantum annealer — can improve performance on the
test set.

FIG. 4. Comparison of quantum annealing and simu-
lated annealing for the new and original algorithms,
measured by area under ROC curve (AUROC). Al-
though QAML-Z outperforms QAML and SA-Z, the inclusion
of excited states in the SAE-Z variant reproduces QAML-Z
performance to one standard deviation. Error bars indicate
1� error.

We perform simulated annealing using the Metropolis
update rule, flipping a random spin to construct a trial
spin vector ~s

0 from the spin vector ~s.[66] If the energy
H(~s 0) < H(~s), then the new vector ~s 0 is accepted with
probability 1. However, if H(~s 0) > H(~s), the trial vec-

tor is accepted with probability exp[��(H(~s 0)�H(~s))].
After randomly selecting a spin to flip N times (where ~s
has N spins), a sweep has been completed. The inverse
temperature � is stepped with a linear inverse tempera-
ture schedule from �i = 0.1 to �f = 5 over W = 1000

sweeps, incrementing the temperature by �f��i

W after
each sweep. This process is repeated 1000 times, and
the lowest-energy state is selected in the SA-Z algorithm.
Temperature schedules reaching � as large as 10 and per-
forming up to 100,000 sweeps per read were found to have
no significant impact on the results. To assemble excited
states for the SAE-Z benchmark, we perform 5000 sweeps
for 5000 reads and select excited states using the same
criteria as for quantum annealing.

FIG. 5. Di↵erence between the lowest energy of quan-
tum annealing (QA) and simulated annealing (SA).
SA finds a lower minimum energy than QA given an identical
initial Hamiltonian. Error bars indicate 1� error.

QAML-Z performs better than SA-Z on all training
sets, with a statistically significant advantage at larger
training set sizes (Figure 4). This suggests that both
simulated and quantum annealing methods found simi-
lar ground states at the end of the zooming procedure,
although they likely took di↵erent paths to the final state
due to the fact that SA evolves purely under the classi-
cal Hamiltonian, whereas QA evolves under the trans-
verse field as well. When including excited states in sim-
ulated annealing, SAE-Z achieves statistically equivalent
performance to QAML-Z (Figure 4), with excited states
selected from a validation set improving the generaliza-
tion ability by reducing overfitting on the training set.
A slight discrepancy remains between the two anneal-
ing processes, due to the sampling of excited states from
distinct distributions of resulting states from simulated
and quantum annealing, as well as the analog errors in-
troduced in the implementation on the D-Wave device

Comparison to Simulation

https://arxiv.org/pdf/1908.04480.pdf
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Typically used 100 events and 10 variables 
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Similar performance to classical methods

Good agreement between simulation and hardware
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(a)

(b)

Figure 3. The Receiver Operating Characteristic (ROC) curves (as a benchmark in the plane
of background rejection versus signal e�ciency) of the quantum variational classifier method on
the ibmq QasmSimulator (blue), the classical SVM (yellow), and the BDT (green) for (a) the
tt̄H analysis and (b) the H ! µ

+
µ
� analysis. In each analysis, the classifiers are constructed

using ten independent datasets, each consisting of 100 events for training and 100 events for
testing. All classifiers are trained with the same 10 variables processed with the PCA method.
In this study, 10 qubits are employed on the quantum computer simulator. To visualize the
discrimination power of each algorithm, the testing events of the ten datasets are combined to
make the ROC curves. We observe that the quantum variational classifier method on the ibmq
QasmSimulator performs similarly to the classical SVM and the BDT for both the tt̄H analysis
and the H ! µ

+
µ
� analysis.

Page 8

(a)

(b)

Figure 3. The Receiver Operating Characteristic (ROC) curves (as a benchmark in the plane
of background rejection versus signal e�ciency) of the quantum variational classifier method on
the ibmq QasmSimulator (blue), the classical SVM (yellow), and the BDT (green) for (a) the
tt̄H analysis and (b) the H ! µ

+
µ
� analysis. In each analysis, the classifiers are constructed

using ten independent datasets, each consisting of 100 events for training and 100 events for
testing. All classifiers are trained with the same 10 variables processed with the PCA method.
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(a)

(b)

Figure 4. The Receiver Operating Characteristic (ROC) curves of the quantum variational
classifier method with the “ibmq boeblingen” and “ibmq paris” quantum computer hardware
(red) and with the ibmq QasmSimulator (blue) for (a) the tt̄H analysis (using “ibmq boeblingen”)
and (b) the H ! µ

+
µ
� analysis (using “ibmq paris”). For each physics analysis, one dataset

consisting of 100 events for training and 100 events for testing is utilized to construct the
classifiers. This dataset is one of the ten datasets used in Figure 3. All classifiers are trained with
the same 10 variables processed with the PCA method. In this study, 10 qubits are employed
on the quantum computer hardware and the quantum computer simulator. To visualize the
discrimination power of both the quantum simulator and quantum hardware, the testing events
of the dataset are used to make the ROC curves. We observe that, for the quantum variational
classifier method, the quantum simulator and quantum hardware results appear to be in good
agreement.
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and (b) the H ! µ

+
µ
� analysis (using “ibmq paris”). For each physics analysis, one dataset

consisting of 100 events for training and 100 events for testing is utilized to construct the
classifiers. This dataset is one of the ten datasets used in Figure 3. All classifiers are trained with
the same 10 variables processed with the PCA method. In this study, 10 qubits are employed
on the quantum computer hardware and the quantum computer simulator. To visualize the
discrimination power of both the quantum simulator and quantum hardware, the testing events
of the dataset are used to make the ROC curves. We observe that, for the quantum variational
classifier method, the quantum simulator and quantum hardware results appear to be in good
agreement.
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• Improved performance over classical methods
• Good agreement between simulation and hardware
• Impact from noise in the hardware observed
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(a)

(b)

Figure 3. ROC curves of various classifiers using the tt̄H

analysis datasets of 20000 events and 15 input variables. Each
curve represents results averaged over 60 statistically indepen-
dent datasets. (a) overlays the results of the QSVM-Kernel
algorithm (on the qsim Simulator from the Google Tensor-
Flow Quantum framework), the classical SVM algorithm and
the classical BDT algorithm. (b) overlays the QSVM-Kernel
results on the qsim Simulator from the Google TensorFlow
Quantum framework, the StatevectorSimulator from the IBM
Quantum framework and the Local Simulator from the Ama-
zon Braket framework. Here the QSVM-Kernel classifiers em-
ploy 15 qubits on the quantum simulators.

study. In Figure 5 (a), we compare the results of the
QSVM-Kernel (from the Google framework) with the
classical SVM and classical BDT using the same input
variables. In Figure 5 (b), we further display the di↵er-
ence between the QSVM-Kernel results and the classical
machine learning results. In Figure 5 (c), again, we com-
pare the Google framework, IBM framework and Amazon
framework for the QSVM-Kernel results. We find that,
the QSVM-Kernel result with 15 qubits is better than
10 qubits and similar to 20 qubits. For 10 to 20 qubits
and 20000 events, the performance of the QSVM-Kernel
algorithm is slightly better than the classical SVM algo-
rithm. Again, the three quantum computer simulators
(Google, IBM and Amazon) yield the same classification
power.

B. Results from Quantum Computer Hardware

(a)

(b)

(c)

Figure 4. The AUC for various classifiers as a function of the
tt̄H analysis dataset size (10000 to 50000 events). (a) shows
the results of the QSVM-Kernel (on the qsim Simulator from
the Google TensorFlow Quantum framework), the classical
SVM and the classical BDT. (b) further shows the di↵er-
ence between the QSVM-Kernel algorithm and the classical
algorithms. (c) shows the QSVM-Kernel results on the qsim

Simulator from the Google TensorFlow Quantum framework,
the StatevectorSimulator from the IBM Quantum framework
and the Local Simulator from the Amazon Braket framework.
Here all the classifiers use the same 15 variables and the
QSVM-Kernel classifiers employ 15 qubits on the quantum
simulators. The quoted AUCs are averaged over 60 statis-
tically independent datasets and the quoted errors are the
standard deviations for the AUCs of the 60 datasets.

After the studies using simulation of the ideal quan-
tum computers, it is now of great interest to assess
the quantum machine learning performances on today’s
noisy quantum computer hardware. For the tt̄H physics
analysis, we employ the QSVM-Kernel algorithm on
the IBM “ibmq paris” quantum computer hardware.
“ibmq paris” is a 27-qubit quantum processor based
on superconducting electronic circuits. The qubit map
of the “ibmq paris” quantum system [34] is shown in
Figure 6. Due to limited access time available to us,
we performed six runs using 15 qubits on “ibmq paris”.
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(a)
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Figure 5. AUCs of the QSVM-Kernel algorithm as a func-
tion of the number of qubits (10 to 20 qubits). The num-
ber of qubits is equal to the number of input variables. The
60 statistically independent tt̄H analysis datasets of 20000
events are used in this study. In (a), we compare the re-
sults of the QSVM-Kernel classifier (on the qsim Simulator

from the Google TensorFlow Quantum framework) with the
results of the classical SVM and classical BDT classifiers us-
ing the same input variables. In (b), we further display the
di↵erence between the QSVM-Kernel results and the classical
machine learning results. In (c), we compare the qsim Simu-

lator from the Google TensorFlow Quantum framework, the
StatevectorSimulator from the IBM Quantum framework and
the Local Simulator from the Amazon Braket framework for
the QSVM-Kernel results.

Each run processes a statistically independent dataset
of 100 events. For these six runs, the average running
time on the quantum hardware is approximately 680
minutes. The quantum circuit of the hardware runs is
kept the same as for the simulator runs, while the SVM
regularization hyperparameter is separately optimized
for hardware and simulator runs. To reduce statistical
uncertainties in evaluating kernel entries on quantum
hardware, we use 8192 measurement shots for every
kernel entry.

Figure 6. The qubit map of the “ibmq paris” quantum sys-
tem [34]. The colors indicate readout error rates of the qubits
and CNOT error rates of the connections. Our study uses
qubits 3, 5, 8, 11, 14, 16, 19, 22, 25, 24, 23, 21, 18, 15 and 12.

Figure 7. ROC curve of the QSVM-Kernel classifier with
the “ibmq paris” quantum computer hardware using the tt̄H

analysis datasets of 100 events. For comparison, we overlay
the ROC curve with the StatevectorSimulator from the IBM
Quantum framework using the same datasets. The results are
averaged over the six hardware runs. All the QSVM-Kernel
classifiers use 15 qubits and the same 15 variables.

In Figure 7, we present the ROC curve of the QSVM-
Kernel classifier with the “ibmq paris” quantum com-
puter hardware using the tt̄H analysis datasets of 100
events. For comparison, we overlay the ROC curve with
the StatevectorSimulator from the IBM Quantum frame-
work using the same datasets. The results are averaged
over the six hardware runs. All the QSVM-Kernel clas-
sifiers use 15 qubits and the same 15 variables. In Fig-
ure 8, we compare the ROC curve with the “ibmq paris”
quantum computer hardware and the ROC curve with
the StatevectorSimulator for each of the six hardware
runs. With small training samples of 100 events, the
performance achieved by the “ibmq paris” quantum com-
puter hardware is promising and approaching the noise-
less quantum computer simulator. The di↵erence be-
tween the hardware performance and the simulator per-
formance is likely due to the e↵ect of quantum hardware
noise and fluctuates among our hardware runs.
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the StatevectorSimulator from the IBM Quantum frame-
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performance achieved by the “ibmq paris” quantum com-
puter hardware is promising and approaching the noise-
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formance is likely due to the e↵ect of quantum hardware
noise and fluctuates among our hardware runs.

Noise
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:H�KDYH�EHHQ�GHYHORSLQJ�D�K\EULG�411�RI�WKUHH�OD\HUV�
ż &ODVVLFDO�OD\HU����WUDQVIRUP�LQSXW�GDWD�VR�

WKDW�LWV�QXPEHU�RI�RXWSXWV�PDWFKHV�
QXPEHU�RI�TXELWV��3&$�LV�QR�ORQJHU�
QHFHVVDU\�

ż 4XDQWXP�OD\HU��WKH�FRUH�SDUW���HQFRGH�
FODVVLFDO�GDWD�LQWR�D�TXDQWXP�VWDWH��DSSO\�
YDULDWLRQDO�FLUFXLW�FRQWDLQLQJ�WUDLQDEOH�
SDUDPHWHUV��PHDVXUH�WKH�TXDQWXP�VWDWH

ż &ODVVLFDO�OD\HU����FRQYHUW�WKH�
PHDVXUHPHQW�RI�TXELWV�WR�FODVVLILFDWLRQ�
ODEHOV

7KUHH�OD\HUV�DUH�WUDLQHG�WRJHWKHU�WR�PD[LPL]H�WKH�RYHUDOO�
SHUIRUPDQFH

0HWKRG����+\EULG�4XDQWXP�1HXUDO�1HWZRUN��411��

Slide Credit, S.L. Wu
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QML for SUSY Studies
• Variational Quantum Circuit (VQC)

• Same method as Wu et al

• Quantum Circuit Learning (QCL)

• Classical-quantum hybrid for low-depth 
circuit learning

• Input data and iteratively tune the 
circuit parameters to obtain the desired 
output

• Output calculation on QC, parameter 
turning on CC

• Search for chargino pair production via a 
Higgs boson using SUSY dataset from UCI 
ML repository (2l + MET)

• 100-10k events; 3-7 variables
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Fig. 2 Uin(x) and U(✓) circuits used in this study for the
QCL algorithm.

both real quantum computer and simulator with small
samples.

2.1.1 Quantum Circuit Learning

A QCL circuit used in this study for the 3-variable
classification is shown in Fig. 2. The Uin(x) in QCL
is characterized by the series of single-qubit rotation
gates RY and RZ [19]. The angles of the rotation gates
are obtained from the input data x to be sin�1(x) and
cos�1(x2), respectively. The input data are needed to
be normalized within the range [�1, 1] by scaling lin-
early using the maximum and minimum values of the
input variables. The normalization is performed sepa-
rately for the training and testing samples to avoid data
beyond the [�1, 1] range. In this case, the classification
performance is slightly suboptimal for the testing sam-
ple. The e↵ect is however checked to be small by com-
paring the performance with the case where the testing
sample is normalized with the scaling derived from the
training sample and clipped to [�1, 1]. The U(✓) is con-
structed using a time-evolution gate, denoted as e�iHt,
with the Hamiltonian H of an Ising model with random
coe�cients (for creating entanglement between qubits)
and the series of RX , RZ and RX gates with angles as
parameters. The nominal Ndepth

var value is set to 3 af-
ter optimization studies. This results in 27 parameters
in total for the 3-variable case. The structure for the
5- and 7-variable circuits is the same as the 3-variable
case, leading to the total parameters of 45 and 63, re-
spectively. The measurement is performed on the first
two qubits using the Pauli-Z operators, and the out-
come of the measurement is fed into the cost function
via softmax. The cost function is defined using a cross-
entropy function in scikit-learn package [21], and the
minimization of the cost function is performed using
COBYLA. See [19] for more details about the imple-
mentation.
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Fig. 3 Uin(x) and U(✓) circuits used in this study for the
VQC algorithm.

2.1.2 Variational Quantum Classification

Figure 3 shows a VQC circuit for the 3-variable classi-
fication used in this study. The Uin(x) consists of a set
of Hadamard gates and rotation gates with angles from
the input data x (the latter is represented as U�(x) in
the figure). The U�(x) is composed of single-qubit ro-
tation gates of the form U�{k}(x) = exp (i�{k}(x)Zk), a
diagonal phase gate with the linear function of �{k}(x) =
xk. This is identical to the one used in Ref. [20] as the
single-qubit gate (see Eq. (32) of the supplementary in-
formation of Ref. [20]), and is referred to as the“First
Order Expansion” (FOE). The U�(x) is not repeated

in this study unless otherwise stated, thus Ndepth
in = 1.

The U(✓) part of the circuit is also taken from that in
[20] but simplified by not repeating a set of entangling
gate (Uent) and single-qubit rotation gates RY and RZ

(surrounded by the dashed box in Fig. 3). The Uent is
implemented using the Hadamard and CNOT gates, as
in Fig. 3. The total number of ✓ parameters is 12 (20,
28) for the 3 (5, 7)-variable classification. The measure-
ment is performed on all the qubits using the Pauli Z
operators, and the measured outcomes are fed into the
cost function. The cost function for the VQC algorithm
is a cross-entropy function and the minimization is per-
formed using COBYLA as well.

2.2 Classical Approaches

The ML application to the classification of events has
been widely attempted in HEP data analyses. Among
others, a Boosted Decision Tree (BDT) in the TMVA
framework [22] is one of the most commonly used algo-
rithms. A neural network (NN) is another class of multi-
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2.1.2 Variational Quantum Classification

Figure 3 shows a VQC circuit for the 3-variable classi-
fication used in this study. The Uin(x) consists of a set
of Hadamard gates and rotation gates with angles from
the input data x (the latter is represented as U�(x) in
the figure). The U�(x) is composed of single-qubit ro-
tation gates of the form U�{k}(x) = exp (i�{k}(x)Zk), a
diagonal phase gate with the linear function of �{k}(x) =
xk. This is identical to the one used in Ref. [20] as the
single-qubit gate (see Eq. (32) of the supplementary in-
formation of Ref. [20]), and is referred to as the“First
Order Expansion” (FOE). The U�(x) is not repeated

in this study unless otherwise stated, thus Ndepth
in = 1.

The U(✓) part of the circuit is also taken from that in
[20] but simplified by not repeating a set of entangling
gate (Uent) and single-qubit rotation gates RY and RZ

(surrounded by the dashed box in Fig. 3). The Uent is
implemented using the Hadamard and CNOT gates, as
in Fig. 3. The total number of ✓ parameters is 12 (20,
28) for the 3 (5, 7)-variable classification. The measure-
ment is performed on all the qubits using the Pauli Z
operators, and the measured outcomes are fed into the
cost function. The cost function for the VQC algorithm
is a cross-entropy function and the minimization is per-
formed using COBYLA as well.

2.2 Classical Approaches

The ML application to the classification of events has
been widely attempted in HEP data analyses. Among
others, a Boosted Decision Tree (BDT) in the TMVA
framework [22] is one of the most commonly used algo-
rithms. A neural network (NN) is another class of multi-
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Fig. 5 ROC curves obtained from the test sample for the
BDT, DNN and QCL algorithms with Nvar = 7 and Ntrain

event =
10, 000. The error bands correspond to the standard devia-
tions of the values obtained by repeating the calculation over
the training and test samples.

4 Results

4.1 Qulacs Simulator

First, the classification performance of the QCL algo-
rithm evaluated using the Qulacs simulator is compared
with those of the BDT and DNN. Due to a significant
increase of the computational resources with Nvar for
the QCL (discussed in Sect. 5.4), the Nvar is considered
only up to 7.

Figure 5 shows ROC curves in the testing for the
three algorithms with Nvar = 7 and N

train
event = 10, 000,

and Figure 6 shows the comparisons of the AUC val-
ues as a function of N

train
event for Nvar = 3, 5 and 7.

For each algorithm, a single AUC value is obtained
from a test sample after each training, and the calcu-
lation is repeated 100 (30) times at N

train
event  10, 000

(50, 000  N
train
event  500, 000). The center and the width

of each curve in Fig. 5 correspond to the average value
and the standard deviation of the true/false positive
rates obtained from the repeated calculations over the
training and test samples. Shown in Fig. 6 is the aver-
age of the resulting AUC values and the standard devi-
ations of the average. As expected, it is apparent from
the BDT and DNN curves that the performance of these
two algorithms improves rapidly with increasing N

train
event

and then flattens out. The BDT works well over the en-
tire N

train
event range while the DNN performance appears

to improve faster at very small N train
event and exceed BDT

at N train
event beyond ⇠ 1, 000. In the case of Nvar = 7 and

N
train
event = 500, 000, the AUC values are 0.8729± 0.0003

Fig. 6 Average AUC values (calculated from the test sam-
ples) as a function of the training sample size for the
BDT, DNN and QCL algorithms with Nvar = 3 (circles),
5 (squares) and 7 (triangles). For the BDT and DNN, the av-
erage AUC values for the training sample of 2,000,000 events
and 18 variables are also shown with the plus markers. The
error bars represent the standard deviations of the average
AUC values. The BDT and DNN points are slightly shifted
horizontally from the nominal Ntrain

event values to avoid over-
lapping.

for the DNN and 0.8696 ± 0.0006 for the BDT. When
using all the 18 variables with 2,000,000 events for the
training and testing each, the average AUC value from
only five trials is 0.8772± 0.0004 (0.8750± 0.0004) for
the DNN (BDT).

The performance of the QCL algorithm is charac-
terized by the relatively flat AUC values regardless of
N

train
event. Increasing the Nvar appears to degrade the per-

formance if the N
train
event is fixed, and the same behav-

ior is also seen for the DNN with N
train
event  500 (not

clearly visible for the BDT). Further studies show that
the QCL performance of the flat AUC value and the
degradation with increasingNvar is related to the choice
of the variables: the Nvar = 3 variables used have su�-
cient information for the QCL algorithm to discriminate
the signal from background, and no positive impact is
seen on the performance by adding more variables or
more events. However, it is seen that the performance
improves by adding them if di↵erent combinations of
the variables are selected. The DNN algorithm over-
comes the degradation and eventually improves the per-
formance with increasing Nvar by using more data. In-
vestigating how the QCL algorithm behaves with more
data is a future subject. Nevertheless, for the Nvar and
N

train
event ( 10,000) ranges considered all the three al-

gorithms have a comparable discriminating power with
the AUC values of 0.80–0.85.
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Table 3 AUC values in the training for the VQC and QCL
algorithms running on quantum computers and simulators.
The QCL results are given for Ndepth

var = 1 and 3. The training
condition is fixed to Nvar = 3, Ntrain

event = 40 and Niter =
100 for both algorithms. The uncertainties correspond to the
standard deviations of the average AUC values over the trials.

Device/Condition AUC

VQC Johannesburg 0.799± 0.020
Boeblingen 0.807± 0.010
QASM simulator 0.815± 0.015

QCL Qulacs simulator (Ndepth
var = 1) 0.768± 0.082

Qulacs simulator (Ndepth
var = 3) 0.833± 0.063

seen in the table, the over-training largely disappears
as the sample sizes increase. Figure 9 shows the ROC
curves from the simulator for the two sample sizes of
N

train
event = 40 and 1,000, confirming that the over-taining

is not significant for the latter.
The AUC values are consistent between the quan-

tum computer and the simulator within the standard
deviation (Fig. 8), but the simulator results are con-
sidered to be systematically better because the input
samples are identical. In Table 3, the VQC results are
compared with the QCL being executed at the same
condition, i.e, Nvar = 3, N train

event = 40 and Niter = 100.
The QCL results vary with the depth of the U(✓) cir-
cuit (the nominal Ndepth

var is 3), but they agree with the
VQC results within relatively large uncertainties. Sum-
marized in Table 3 are the AUC values and their stan-
dard deviations in the training of the VQC and QCL
algorithms.

5 Discussion

5.1 Performance with di↵erent QCL models

As seen in Fig. 6, the QCL performance stays approx-
imately flat in N

train
event and gets slightly worse when in-

creasing the Nvar at fixed N
train
event. Since the computa-

tional resources needed to explore the QCL model with
more variables (Nvar >⇡ 10) or larger sample sizes
(N train

event > 10K) are beyond our capacity (Sect. 5.4),
understanding the behavior and the dependence on the
Nvar or N train

event is a subject for future study.
To investigate a possibility that the QCL perfor-

mance could be limited by insu�cient flexibility of the
circuit used (Fig. 2), alternative QCL models with the
U(✓) circuit of Ndepth

var = 5 or 7, instead of 3, are tested.
This changes the AUC values by 1-2% at most for the
N

train
event of 100 or 1,000 events, which is negligible com-

pared to the statistical fluctuation. Another type of
QCL circuit is also considered by modifying the Uin(x)
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Fig. 10 Nominal and alternative Uin(x) circuits used in QCL
to check impact on the performance.

to include 2-qubit gates for creating entanglement, as
shown in Fig. 10 (as motivated by the Second Order
Expansion in VQC; see Sect. 5.2). It turns out that the
QCL with the new Uin(x) does not increase the AUC
values when the U(✓) is fixed to the original model
with N

depth
var = 3 in Fig. 2. On the other hand, the new

Uin(x) appears to improve the performance by 5–10%
with respect to the original Uin(x) when N

depth
var is set

to 1. This indicates that a more complex structure in
the Uin(x) could help improve the performance when
the U(✓) is simplified. However, the performance of the
new Uin(x) with N

depth
var = 1 is still considerably worse

than the nominal QCL model in Fig. 2.

5.2 Performance with di↵erent VQC models

The VQC circuit used in this study (Fig. 3) is simpli-
fied with respect to the one used in Ref. [20]. To ex-
amine whether more extended circuits could improve
the performance, alternative VQC models are tested
using the QASM simulator. The first alternative model
is the one in which the U�(x) in Fig. 3 (FOE) is re-
placed with the combination of single- and two-qubit
gates of U�{k}(x) = exp (i�{k}(x)Zk) and U�{l,m}(x) =
exp (i�{l,m}(x)ZlZm) with �{l,m}(x) = (⇡ � xl)(⇡ �
xm), as used in Ref. [20]. This type of U�(x) is referred
to as the “Second Order Expansion” (SOE). The sec-
ond alternative model is the one with extended Uin(x)
and U(✓) gates by increasing the N

depth
in and N

depth
var ;

this model includes the combinations of Ndepth
in up to 2

and N
depth
var up to 3, separately for the FOE and SOE

in U�(x).
Testing these models using the QASM simulator

show that the AUC values stay almost constant (within
at most 2%) regardless of the N

depth
in or N

depth
var if the

U�(x) is fixed to either FOE or SOE. But, the per-
formance improves by about 10% when changing the
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Table 4 Number of trainable parameters used in the DNN
model of Table 1.

Ntrain
event Npar

Nvar = 3 Nvar = 5 Nvar = 7

100 353 385 417
500 625 657 689
1,000 4,481 4,609 4,737
5,000 12,801 12,929 13,057
10,000 12,801 12,929 13,057
50,000 50,117 50,433 50,689
100,000 50,117 50,433 50,689
200,000 330,241 330,753 331,265
500,000 330,241 330,753 331,265

U�(x) from FOE to SOE at fixed N
depth
in and N

depth
var .

On the other hand, no improvement is observed when
testing the SOE with a real quantum computer. More-
over, the standard deviation of the AUC values becomes
significantly larger for the SOE with quantum com-
puter. These could be qualitatively understood to be
due to increased errors from hardware noise because
the number of single- and two-qubit gate operations in-
creases by 60% when switching from the FOE to SOE
at Ndepth

in = N
depth
var = 1, therefore the VQC circuit with

SOE su↵ers more from the gate errors.

5.3 Comparison with DNN model with less number of
parameters

A characteristic di↵erence between the QCL and DNN
algorithms is on the number of trainable parameters
(Npar). As in Sect. 2.1, the Npar is fixed to 27 (45, 63)
for the QCL with 3 (5, 7) variable case. For the DNN
model in Table 1, the Npar varies with N

train
event as given

in Table 4. Typically the Npar of the DNN model is
about 6-13 times more than that of the QCL model
at N train

event = 100, and the ratio increases to 75-165 (200-
470) at N train

event = 1, 000 (10,000). Comparing the two al-
gorithms with a similar number of trainable parameters
could give more insight into the QCL performance and
reveal a potential advantage of the variational quantum
approach over the classical method. A new DNN model
is thus constructed to contain only one hidden layer
with 5 (6, 7) nodes for 3 (5, 7) variable case, resulting
in the Npar of 26 (43, 64). The rest of the model param-
eters is identical to that in Table 1. Shown in Fig. 11 is
the comparison of the AUC values for the new DNN and
QCL models at N

train
event  10, 000. It is indicated from

the figure that the QCL can learn more e�ciently than
the simple feed-forward network with the similar num-
ber of parameters when the sample size is below 1,000.
Exploiting this feature in the application to HEP data
analysis would be an interesting future subject.

Fig. 11 Average AUC values (calculated from the test sam-
ples) as a function of the training sample size up to Ntrain

event =
10, 000 for the new DNN and QCL models with Nvar = 3
(circles), 5 (squares) and 7 (triangles). The error bars repre-
sent the standard deviations of the average AUC values. The
DNN points are slightly shifted horizontally from the nominal
Ntrain

event values to avoid overlapping.

5.4 CPU/memory usages for QCL implementation

The QCL algorithm runs on the Qulacs simulator with
cloud Linux servers, as described in Sect. 3.2. Under
this condition, we examine how the computational re-
sources scale with the problem size. For the creation of
input quantum states with Uin(x), both CPU time and
memory usage grow approximately linearly withNvar or
N

train
event. The creation of the variational quantum states

with U(✓) shows an exponential increase in CPU time
and memory usage with Nvar (i.e, number of qubits) up
to Nvar = 12, roughly a factor 8 (4) increase in CPU
time (memory) by incrementing the Nvar by one. The
overall CPU time is by far dominated by the minimiza-
tion process with COBYLA. It increases linearly with
N

train
event but grows exponentially with Nvar, making it

impractical to run the algorithm a su�cient number of
times for Nvar ⇠ 10 or more. The memory usage stays
constant over Nvar during the COBYLA minimization
process.

6 Conclusion

In this paper, we present studies of quantum machine
learning for the event classification, commonly used as
the application of conventional machine learning tech-
niques to high-energy physics. The studies focus on the
application of variational quantum algorithms using the
implementations in QCL and VQC, and evaluate the
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Fig. 7 Evolution of the cost function value in the training of
the VQC algorithm with Nvar = 3 and Ntrain

event = 40. Shown
are the cost function values observed in 5 training trials for
quantum computer and QASM simulator.

Fig. 8 ROC curves in the training and testing of the VQC
algorithm with Nvar = 3 and Ntrain

event = 40. Shown are the
ROC curves (averaged over five trials in the training or test-
ing) for quantum computer and QASM simulator. The size of
the markers represents the standard deviation of the trials.
The values in the legend give the average AUC values and
the standard deviations.

4.2 Quantum Computer and QASM Simulator

The VQC algorithm with Nvar = 3 has been tested on
the 20-qubit IBM Q Network quantum computers and
the QASM simulator, as explained in Sect. 3.3. The
present study focuses only on the classification accu-
racy with the real quantum computer. Figure 7 shows
the values of the cost function in the training as a func-
tion of Niter for both the quantum computer and the
simulator. For each of the quantum computer and the

Table 2 AUC values in the testing and training for the VQC
algorithm running the QASM simulator. The training condi-
tion is fixed to Nvar = 3 and Niter = 100 for all Ntrain

event cases.
The uncertainties correspond to the standard deviations of
the average AUC values over the trials.

Ntrain
event (= Ntest

event) Testing Training

40 0.555± 0.032 0.813± 0.012
70 0.716± 0.037 0.741± 0.022
100 0.708± 0.039 0.761± 0.025
200 0.812± 0.012 0.741± 0.014
500 0.779± 0.008 0.796± 0.007
1000 0.779± 0.008 0.789± 0.005

Fig. 9 ROC curves in the training and testing of the VQC
algorithm with Ntrain

event = 40 and 1,000 for Nvar = 3. Shown
are the ROC curves (averaged over five trials in the training
or testing) for QASM simulator. The size of the markers or
the band width represent the standard deviation of the trials.
The values in the legend give the average AUC values and the
standard deviations.

simulator, the training is repeated five times over the
same set of events and their cost-function values are
shown. When running the algorithm on the quantum
computer, the first three hardware qubits [0, 1, 2] are
used [30]. The figure shows that both the quantum com-
puter and the simulator have reached the minimum val-
ues in the cost function after iterating about 50 times.
However, the cost values for the quantum computer are
constantly higher and more fluctuating after reaching
the minimum values.

The ROC curves for the quantum computer and the
simulator obtained from the training and testing sam-
ples are shown in Fig. 8, averaged over the five trials
of the training or testing. The AUC values for the test-
ing samples are considerably worse than those for the
training ones because of the small sample sizes. This
has been checked by increasing theN train

event from 40 to 70,
100, 200, 500 and 1,000 for the simulator (Table 2). As
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Incomplete list of other studies for HEP
• Quantum gate optimization for scientific applications: https://arxiv.org/pdf/

2102.10008.pdf

• Simulating collider physics on QC: https://arxiv.org/pdf/2102.05044.pdf

• Vertexing with QA: https://arxiv.org/pdf/1903.08879.pdf

• QA for jet clustering: https://journals.aps.org/prd/abstract/10.1103/
PhysRevD.101.094015

• Unfolding with QA: https://link.springer.com/article/10.1007/
JHEP11(2019)128

• Unfolding to mitigate readout errors: https://www.nature.com/articles/
s41534-020-00309-7
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And probably many more that I don’t know about yet
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Summary
• Quantum computing is an exciting field 

currently going through a rapid development 
cycle

• Major players include a wide range of tech 
companies and governments around the 
world

• A wide range of technologies are being 
explored including superconducting, trapped 
ion, photonic, silicon and topological qubits

• People are particularly excited because

• Quantum computers may be able to do 
things that classical computers cannot

• Quantum computers may be able to 
solve certain problems far more quickly

• A recent success was the demonstration of 
quantum advantage 
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Conclusion
• Currently available quantum computers have limited numbers of qubits, 

short coherence times and are very noisy

• Many problems need to be solved to continue to scale the size and 
power of quantum computers

• Projections vary wildly about when we might expect (if ever) to have a 
quantum computer of the size to be more generally useful

• HEP is increasingly becoming constrained by computing resources 

• Increasing dataset sizes, increasing complexity

• Even more true when planning future colliders

• We also have a long history of being trail blazers in many areas including 
computing

• Many interesting studies have been and continue to be performed

• Will help to determine how quantum computers can be useful for us and 
also can help to provide difficult problems which can impact design
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Thank you!


