Recap: Dark Matter Searches

- Three main ways to search for evidence of particle DM via non-gravitational interactions
 - Indirect: Seek evidence for annihilation or decay products of DM particles trapped in galactic / solar / planetary potential wells
 - X-rays, gamma rays, neutrinos, anti-matter …
 - May prove DM but not identify particle
 - Direct: Seek evidence for DM particle interactions with targets in terrestrial detectors
 - Nucleons, nuclei, electrons, photons …
 - May prove DM but not identify particle
 - Accelerator/Collider: Seek evidence for invisible particle production in SM particle collisions
 - May identify particle but cannot prove DM
WIMP Searches at Colliders

- Pre-infl. QCD axion
- Post-infl. QCD axion
- Classical QCD axion
- General thermal WIMP
- Sterile neutrino
- ADM
- Non-thermal WIMP (FIMP)
- Standard thermal WIMP (e.g. SUSY neutralino)

Collider Kinematics

- Central to all DM searches at colliders is missing (transverse) energy
 - Negative vector sum of visible products
 - Lepton colliders (LEP, ILC, CepC, FCC-ee, muon collider): 3-vector E_{miss}
 - Hadron colliders (Tevatron, LHC, FCC-hh): 2-vector E_T^{miss} (MET)
 - Care must be taken with soft particles / unclustered energy

- Lepton colliders further benefit from beam energy constraint:
 - ‘Missing mass’ / ‘recoil mass’

$$m_{\text{rec}}^2 = s + m_{\text{vis}}^2 - 2\sqrt{s} \sqrt{p_{\text{vis}}^2 + m_{\text{vis}}^2}$$
LHC Dark Matter Searches

- **Model-dependent searches (e.g. SUSY):**
 - Greater reach using (strongly coupled) decay chain → additional final state particles
 - Less inclusive
 - DM signal from R_p-conserving models
 - DM (neutralinos) pair-produced

- **Generic DM searches:**
 - DM couples to, and recoils against, specified visible final state
 - Simplified model with DM and mediator
 - Parameterisation: m_χ, m_A, g_χ, g_q, $J^{\text{CP}}(A)$, $J^{\text{CP}}(\chi)$
 - Coupling of mediator to pp enables complementary search for BSM mediator resonance
 - Usually assume DM pair production

See also: https://lpcc.web.cern.ch/content/lhc-dm-wg-dark-matter-searches-lhc
• Model-dependent SUSY searches exploit longer decay chains
• Introduces additional decay constraints on kinematics
• Event selection can exploit endpoints in
 - ‘Stransverse’ mass m_{T2}

 $$m_{T2} = \min_{p_T^{miss}=q_T(1)+q_T(2)} \left[\max(m_T(p_T(1), q_T(1)), m_T(p_T(2), q_T(2))) \right]$$
 - ‘Contransverse’ mass m_{CT}

 $$m_{CT}^2 = (E_T(1) + E_T(2))^2 + (p_T(1) + p_T(2))^2$$
• Inclusive variables:
 - ‘Effective mass’

 $$m_{eff} = \sum_{i=1}^{N} p_T(i) + E_T^{miss}$$
Electroweak SUSY Searches

- \(\chi^0_1 \chi^0_1 \) pair production invisible
- Greatest sensitivity for \(\chi^0_2 \chi^\pm_1 \) production
 - Variety of decay modes, e.g. 3l/2l/0l+MET (WZ), lbb/0l+MET (Wh), slepton
 - Assume mass degenerate \(\chi^0_2, \chi^\pm_1 \)
 - Pure wino (AMSB) / higgsino: \(\chi^0_1 \) degenerate \(\rightarrow \chi^0_2, \chi^\pm_1 \) products soft
Wino/Higgsino Searches

- Small mass splitting creates meta-stable NLSP (phase-space)
 - Dedicated search for disappearing track signatures
 - Also soft lepton signatures (larger mass splitting)

See also https://atlas.cern/updates/briefing/new-higgsino-limits
3rd Generation Searches

- Greater reach using strongly produced states
- Stop must be light to solve hierarchy problem
- Mass limits ~ 500-700 GeV for high m(stop)
Gluino Searches

• Still greater reach using gluino decays
 - High cross-section,
 - Long decay chains, high (b)-jet multiplicity → low background
 - Gluino mass correlated with stop mass → ‘gluino sucks’
 - Mass limits ~ 1000 – 1300 GeV for high m(gluino)

\[\frac{\text{pp} \rightarrow \tilde{g} \tilde{g}, \tilde{g} \rightarrow t\tilde{t}_{10} \rightarrow t\tilde{\chi}^{0}_{1} \tilde{\chi}^{0}_{1}}{\text{CMS}} \]

\[\text{ATLAS Preliminary} \]

\[\begin{align*}
\tilde{g} \rightarrow q\tilde{q}_{L}^{0} & \quad \text{0 lep. [2010.14293]} \\
\tilde{g} \rightarrow b\tilde{b}_{L}^{0} & \quad \geq 3 \text{ b-jets [CONF-2018-041]} \\
\tilde{g} \rightarrow H_{L}^{0} & \quad \geq 3 \text{ b-jets + \geq 2 lep. SS [CONF-2018-041, 1706.03731]} \\
\tilde{g} \rightarrow q\tilde{q}_{L}^{0} & \quad \text{0 lep. + 1 lep. [2010.14293, 2101.01629]} \\
\tilde{g} \rightarrow q\tilde{q}_{L}^{0} & \quad \geq 7-12 \text{ jets + 1 lep. + \geq 2 lep. SS [2009.00302, 1708.02823, 1909.08457]} \\
\tilde{g} \rightarrow q\tilde{q}(\tilde{v}_{1}v_{2})^{0} & \quad \text{via} \ 2 \text{ lep. OS SF + \geq 3 lep. [1805.11381, 1706.03731]} \\
\tilde{g} \rightarrow q\tilde{q}(\tilde{v}_{1}v_{2})^{0} & \quad \text{via} \ \tilde{v} \geq 1 \text{ \geq 1 \gamma [1808.06358]} \\
\tilde{g} \rightarrow q\tilde{q}/Z\tilde{g} \quad \text{via} \ 2 \gamma & \quad \geq 1 \text{ \gamma [1802.03158]} \\
\end{align*} \]

Colours indicate different models
Observed limits at 95% CL

\[\text{March 2021} \]

\[\text{137 fb}^{-1} \text{ (13 TeV)} \]

\[\text{CMS} \]

\[\text{1909.08457, 1-lep (M_{\tilde{t}}) \quad 1909.03460, 0-lep (M_{\tilde{t}}) \quad 2103.01290, 0-lep (stop)} \]

\[\text{1911.07556, 1-lep (M_{\tilde{t}}) \quad 2001.10086, 0-lep (same-sign)} \]

\[\text{1710.11186, 0-lep (stop), 36 fb} \]
• Disappearing track signature gives possibility for 5σ observation of wino and higgsino DM production at FCC-hh

Saito et al., EPJC 79 (2019) 469
Generic DM Searches: mono-X

- To be produced, DM must couple (in-)directly to quarks/gluons
 - Tag invisible DM events with gluon (jet) + MET (a la LEP)
- Also consider $\gamma/W/Z/H/t/b+MET$
- Resonance searches give strong limits unless DM coupling v.large
 - Mediator must couple to qq due to production process
Generic DM Searches

- Within context of specific generic model, can reinterpret mono-X+MET and resonance limits in direct detection parameter space.
 - Highly model-dependent
 - Constraints most powerful for light DM, where direct searches lose kinematic sensitivity
Invisible Higgs Decays

- Direct search for invisible Higgs decays in VBF production mode
 - BR enhanced by decays to DM in higgs portal models
 - Relevant only for $m_\chi < m_H/2$
 - Results model-dependent. Most powerful for low m_χ
- Higgs coupling combination further strengthens limit (with more assumptions)

29 Jun – 1 Jul 2021
CERN ATC Lectures: Dark Matter Searches
Search for Heavy Neutrino Dark Matter

- **10^{-21} eV**
- **peV**
- **neV**
- **μ eV**
- **meV**
- **eV**
- **keV**
- **MeV**
- **GeV**
- **TeV**
- **M_p**

- Fuzzy DM
- Pre-infl. QCD axion
- Post-infl. QCD axion
- "Classical" QCD axion
- QCD axion

- General thermal WIMP
- Sterile neutrino
- ADM
- Non-thermal WIMP (FIMP)

- Standard thermal WIMP (e.g. SUSY neutralino)

Sterile Neutrino DM

- Heavy LH neutrinos with SM couplings excluded (direct search with t-channel Z)
- RH singlet ν_R mixing with LH SM neutrinos ν_L allowed for small mixing angles θ
- ν_R decays to $3\nu_L$ (invisible) and $\nu_L + \gamma \rightarrow$ mono-energetic photon signal $E_\gamma = m_{\nu_R}/2$
- Concrete model: νMSM

- Lightest SM ν_R is DM candidate (N_1)
- Explanation for baryogenesis, ν masses etc.
3.5 keV X-Ray Line

- Bulbul et al. (2014 and later) and others claim anomalous mono-energetic 3.5 keV X-ray line in stacked XMM observations of galaxy clusters, and galactic centre.
- Signal not observed in other studies of galaxies, dwarf galaxies (Draco etc.) and stacked XMM blank-sky observations of the MW halo.
- High-res calorimetry from XRISM (ex-HITOMI SXS) will be crucial test.

Dessert et al. Science 367 (2020) 1465
Future Accelerator Searches

- Accelerator searches for production and decay of N$_2$/N$_3$
 - SHiP (production in D-decays, displaced vertices)
 - FCC-ee (following earlier searches at LEP)
Searches for Axion and ALP Dark Matter

10^{-21} eV peV neV \mu eV meV eV keV MeV GeV TeV M_P

pre-infl. QCD axion
post-infl. QCD axion
``classical'' QCD axion
QCD axion
general thermal WIMP
sterile neutrino
ADM
non-thermal WIMP (FIMP)
standard thermal WIMP (e.g. SUSY neutralino)
fuzzy DM

Axions and ALPs

- QCD axion consequence of Peccei-Quinn mechanism dynamically explaining CP-conservation in strong interactions
 - PQ symmetry: spontaneously broken global U(1)
 - Axion: pseudo-NG boson from PQ symmetry breaking (a la Higgs mechanism)

- More generically, pseudoscalar boson coupling in similar way to SM fields - ALPs

- Couples at 1-loop to photon, modifying EM interactions

- Search for coupling to strong magnetic field (inverse Primakoff effect)

$$\mathcal{L} \supset -\frac{1}{4} g_{a\gamma\gamma} a \tilde{F}_{\mu\nu} F^{\mu\nu} = g_{a\gamma\gamma} a E \cdot B,$$
Axion Parameter Space

- Benchmark models:
 - KSVZ: SM quarks uncharged under PQ symmetry → no tree-level axion-quark couplings
 - DFSZ: SM quarks charged under PQ; 2 additional higgs doublets

- Relic density from axion CDM production:
 - PQ symmetry breaking post-inflation: axion formation from topological defects; $m_a \sim 25-5000 \mu eV$
 - PQ symmetry breaking pre-inflation: axion formation from vacuum realignment; masses smaller

$\theta_i = \text{vacuum misalignment angle}$

Ringwald, Rosenberg, Rybka, PDG 2020
Axion/ALP Searches (non-halo)

- Rich hunting ground – not solely reliant on cosmological production
- Stellar/solar axions:
 - Strong constraints from stellar cooling
 - Helioscope searches (CAST, IAXO…): photons convert to axions to solar B-field; keV X-rays detected in terrestrial magnet (inverse-Primakoff)
 - Axion-electron scattering in direct WIMP searches
- ‘Shining light through walls’ (OSQAR, ALPS….)
 - ~ Solar axion (Primakoff) production in lab
- Vacuum birefringence (PVLAS …)
Direct Axion DM Searches

• Main technology: cavity haloscope (Sikivie, 1983)
 - Strong solenoidal magnetic field
 - Dilution fridge
 - Cryogenic radio receiver and amplifier
 - Tunable high-Q microwave cavity
 - CDM axions convert to mono-energetic photons via inverse Primakoff effect

• Narrowband search:
 - Run-time required for scan
 - Easy rescan to confirm signal
• Longest running haloscope, U Washington
 - Previous experiments (1980s) at U Florida

• Apparatus:
 - 8T solenoid
 - Mechanically tuned cavity (1 m x 0.5 m φ)
 - Cryogenic quantum noise limited SQUID ($T_{\text{noise}} < 100$ mK) + HEMT and Josephson Parametric amplifiers
 - World’s lowest noise non-R&D microwave receiver

• First experiment sensitive to KSVZ and DFSZ axions
• Yale, previously ADMX-HF
• Targets higher masses / frequencies
 - Smaller cavity (25 cm x 10 cm ϕ)
 - 9T field over smaller volume
 - Josephson Parametric Amplifier
• First run (2017-18) targeted post-inflationary PQ symmetry breaking models: masses \sim23-24 μeV
• Latest results (2021) uses squeezed microwave state to exceed quantum noise limit
 - Targets masses \sim 17 μeV
Other Cavity Haloscopes

- New cavity haloscope experiments
 - CULTASK/CAPP (Korea): 8 T B-field with HEMT amplifier
 - ORGAN (Australia): 14 T B-field with JPA and array of thin cavities (c.f. ‘pipe organ’)
 - CAST-RADES (CERN): 8.8 T B-field with HEMT amplifier
 - KLASH proposal (Frascati): 0.6 T B-field, large volume – targets low mass ~0.2 µeV

CAST-RADES Collaboration, arXiv:2104.13798

CAST

ORGAN Collaboration, arXiv:1706.00209

CAST-RADES Collaboration, arXiv:2104.13798
Indirect Axion DM Searches

• Strongest B-fields in known universe generated by neutron stars / magnetars
 - Expect mono-chromatic line from axion-photon conversion (inverse-Primakoff effect as haloscopes)

• Foster et al. (2020): radio-spectroscopy search with Green Bank and Effelsberg telescopes
 - Not yet competitive with haloscopes but promising

Dielectric Haloscopes

- Cavity haloscope signal ~ volume ~ $1/m_a^3$
- Dielectric haloscope (MADMAX proposal):
 - Axion to photon conversion at permittivity boundary in B-field
 - Coherent enhancement of emission with multiple low loss disks (e.g. LaAlO$_3$) with tunable $\lambda/2$ separation
 - Mirror forms longitudinal cavity. Transverse dimension non-resonant. Signal scales with length.
Low Mass Axions: Time-Dependence

- Very low mass axions induce observable time-dependent fields
- ABRACADABRA:
 - Seek AC B-field induced inside static toroidal field cavity with tuned LC circuit
- Similar approach taken by DM-radio

Magnetic Resonant Signals

• For low mass axions/ALPs, oscillating field may give rise to observable signals

• ALP-photon coupling induces pseudo-magnetic field leading to spin-precession in hyper-polarised nuclei (129Xe and 3He)
 - CASPEr-Wind: spin-precession with NMR

• Axion-gluon coupling induces oscillating nuclear EDM
 - CASPEr-Electric: apply static electric field in addition to magnetic field and perform NMR

• Coupling with electron spin induces magnetic resonance in ferromagnetic material in external B-field, with Larmor frequency tuned to axion mass
 - QUAX experiment

Axion Summary

![Axion Diagram]

- CAST limit
- transparency hint
- ALPs as dark matter
- QCD dark-matter axion pre-inflationary scenario
- QCD dark-matter axion post-inflationary scenario
- QCD axion in tension with astrophysics
• Compton wavelength of DM becomes macroscopic.

• Searches for time varying ‘fifth forces’ relevant
 - e.g. atom interferometers (MAGIS, AION etc.)
 - Huge potential for future innovation; connections with ‘quantum technologies’ initiatives
• Dark matter searches have grown rapidly over past 40 years from somewhat ‘niche’ area of astroparticle physics to major component of astrophysics, astroparticle and collider physics programmes.

• Range of candidates and interactions has expanded massively.

• No other area of particle physics has similar opportunities for innovation in detector design with potentially low barrier to realisation (e.g. ALPs searches)

• Scientific pay-off potentially immense

• Field has never been in better health
Backup
ATLAS SUSY Summary

June 2021

ATLAS SUSY Searches - 95% CL Lower Limits

<table>
<thead>
<tr>
<th>Model</th>
<th>Signature</th>
<th>$\mathcal{L} \times \mathcal{E} \times (fb^{-1})$</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{g} \rightarrow t\bar{t}$</td>
<td>0 jets</td>
<td>2-6 jets</td>
<td>139</td>
</tr>
<tr>
<td>$\tilde{b}_1 \rightarrow b\tilde{\chi}_1^0$</td>
<td>0 jets</td>
<td>2 jets</td>
<td>139</td>
</tr>
<tr>
<td>$\tilde{b}_2 \rightarrow t\tilde{\chi}_1^0$</td>
<td>0 jets</td>
<td>0 jets</td>
<td>139</td>
</tr>
<tr>
<td>$\tilde{q}_1 \rightarrow q\tilde{\chi}_1^0$</td>
<td>0 jets</td>
<td>0 jets</td>
<td>139</td>
</tr>
<tr>
<td>$\tilde{\tau}_1 \rightarrow \tau\tilde{\chi}_1^0$</td>
<td>0 jets</td>
<td>0 jets</td>
<td>139</td>
</tr>
</tbody>
</table>

EW direct

<table>
<thead>
<tr>
<th>Model</th>
<th>Signature</th>
<th>$\mathcal{L} \times \mathcal{E} \times (fb^{-1})$</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{g} \rightarrow t\bar{t}$</td>
<td>0 jets</td>
<td>2-6 jets</td>
<td>139</td>
</tr>
<tr>
<td>$\tilde{b}_1 \rightarrow b\tilde{\chi}_1^0$</td>
<td>0 jets</td>
<td>2 jets</td>
<td>139</td>
</tr>
<tr>
<td>$\tilde{b}_2 \rightarrow t\tilde{\chi}_1^0$</td>
<td>0 jets</td>
<td>0 jets</td>
<td>139</td>
</tr>
<tr>
<td>$\tilde{q}_1 \rightarrow q\tilde{\chi}_1^0$</td>
<td>0 jets</td>
<td>0 jets</td>
<td>139</td>
</tr>
<tr>
<td>$\tilde{\tau}_1 \rightarrow \tau\tilde{\chi}_1^0$</td>
<td>0 jets</td>
<td>0 jets</td>
<td>139</td>
</tr>
</tbody>
</table>

Dark Matter Searches

<table>
<thead>
<tr>
<th>Model</th>
<th>Signature</th>
<th>$\mathcal{L} \times \mathcal{E} \times (fb^{-1})$</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{g} \rightarrow t\bar{t}$</td>
<td>0 jets</td>
<td>2-6 jets</td>
<td>139</td>
</tr>
<tr>
<td>$\tilde{b}_1 \rightarrow b\tilde{\chi}_1^0$</td>
<td>0 jets</td>
<td>2 jets</td>
<td>139</td>
</tr>
<tr>
<td>$\tilde{b}_2 \rightarrow t\tilde{\chi}_1^0$</td>
<td>0 jets</td>
<td>0 jets</td>
<td>139</td>
</tr>
<tr>
<td>$\tilde{q}_1 \rightarrow q\tilde{\chi}_1^0$</td>
<td>0 jets</td>
<td>0 jets</td>
<td>139</td>
</tr>
<tr>
<td>$\tilde{\tau}_1 \rightarrow \tau\tilde{\chi}_1^0$</td>
<td>0 jets</td>
<td>0 jets</td>
<td>139</td>
</tr>
</tbody>
</table>

Reference

- ATLAS Preliminary $\sqrt{s} = 13$ TeV
- June 2021
- ATLAS CONF-2021-001
- ATLAS CONF-2021-015
- ATLAS CONF-2021-026
- ATLAS CONF-2021-028
- ATLAS CONF-2021-031
- ATLAS CONF-2021-033
- ATLAS CONF-2021-035
- ATLAS CONF-2021-040
- ATLAS CONF-2021-042

Note: Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.
SUSY Summary

Overview of SUSY results: electroweak production

<table>
<thead>
<tr>
<th>Process</th>
<th>Observed</th>
<th>Mass Scale [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \rightarrow \tilde{\chi}^0 \tilde{\chi}^\pm \rightarrow \ell^+ \ell^- \rightarrow \ell \nu \ell \tilde{\chi}^0 \tilde{\chi}^0$</td>
<td>2 or same-sign and ≥ 3ℓ: SUS-19-012</td>
<td>137 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>$pp \rightarrow \tilde{\chi}^0 \tilde{\chi}^0 \rightarrow 2\ell$</td>
<td>flavour democratic, $x = 0.5$</td>
<td>2 or same-sign and ≥ 3ℓ: SUS-19-012</td>
</tr>
<tr>
<td>$pp \rightarrow \tilde{\chi}^0 \tilde{\chi}^0 \rightarrow 2\ell$</td>
<td>flavour democratic, $x = 0.05$</td>
<td>2 or same-sign and ≥ 3ℓ/ηₚ: SUS-19-012</td>
</tr>
<tr>
<td>$pp \rightarrow \tilde{\chi}^0 \tilde{\chi}^0 \rightarrow \tau \nu \ell \rightarrow \tau \nu \ell \tilde{\chi}^0 \tilde{\chi}^0$</td>
<td>1ℓ+jets: SUS-20-003</td>
<td>≥ 3ℓ/ηₚ: SUS-19-012</td>
</tr>
<tr>
<td>$pp \rightarrow \tilde{\chi}^0 \tilde{\chi}^0 \rightarrow W \tilde{\chi}^0 \tilde{\chi}^0$</td>
<td>2ℓ and 3ℓ/soft: SUS-18-004 $\Delta M = 5-10$ GeV</td>
<td>2ℓ and opposite-sign: arXiv:2012.08600</td>
</tr>
<tr>
<td>$pp \rightarrow \tilde{\chi}^0 \tilde{\chi}^0 \rightarrow (W^/Z^) \tilde{\chi}^0$</td>
<td>2ℓ and 3ℓ/soft: SUS-18-004 higgsino simplified model, $\Delta M = 5-10$ GeV</td>
<td>2ℓ and opposite-sign: arXiv:1807.07799 $M_{\tilde{\chi}} = 1$ GeV</td>
</tr>
<tr>
<td>$pp \rightarrow \tilde{\chi}^0 \tilde{\chi}^0 \rightarrow W \tilde{\chi}^0$</td>
<td>2ℓ opposite-sign: arXiv:1807.07799 $M_{\tilde{\chi}} = 1$ GeV</td>
<td></td>
</tr>
<tr>
<td>$pp \rightarrow \tilde{\ell} \tilde{\ell}$</td>
<td>$B(\ell \nu) = 50%$, $x = 0.5$</td>
<td>2ℓ opposite-sign: arXiv:1807.07799</td>
</tr>
<tr>
<td>$pp \rightarrow \tilde{\ell}_L/R \tilde{\ell}_L/R \tilde{\ell}$</td>
<td>$\ell \nu$, μ, τ: arXiv:2012.08600</td>
<td>2ℓ opposite-sign: arXiv:1807.07799</td>
</tr>
</tbody>
</table>

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probes up to the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM, respectively, unless indicated otherwise.
Limits on generic DM models with mediators coupling preferentially to top or bottom quarks can be obtained by modifying 3rd generation SUSY searches.