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The LHCb detector

Located at point 8 of the LHC
General-purpose detector in the forward region
Specialised in studying b- and c-decays

Instrumented in the forward
region to exploit
forward-production of c- and
b-hadrons
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The LHCb detector

Instrumentation in the
forward region
(2 < η < 5)
Excellent secondary
vertex reconstruction
Precise tracking before
and after magnet
Good PID separation up
to ∼ 100 GeV/c

JINST 3 (2008) S08005
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LHCb timeline

2010 2012 2014 2016 2018 now 2022 2024 2026 2028 2030 2032

LHC HL-LHC

Run I LS 1 Run II LS 2 Run III LS 3 Run IV LS 4 Runs V+

Phase I Upgrade
Triggerless readout at 40 MHz

Phase Ib Upgrade
Possible stepping stone

Phase II Upgrade
Upgrade for HL

9 fb−1 50 fb−1 300 fb−1

Belle 2
50 ab−1

LHCb may be only dedicated B-physics experiment
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The LHCb detector: Run III upgrade

05/07/2018

Why do we want to upgrade for Run III?
• We currently level our luminosity at  

• Huge gains available if we can run at  
higher luminosities 

• Why do we run at lower luminosity? 
• Design choices for our physics programme  
• Detector and trigger limitations  

• Note that upgrading for Run 3 is before the HL-LHC era in Run 4 onwards
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R. Quagliani 20th March 2018 5

LHCb in Run I (and Run II)

LHCb Run I

LHCb upgrade

LHCb limitations and upgrade

Run III target

Run I and II

Huge gain in physics capabilities if able to run at larger luminosity                          

LHCb will further expand its physics program as GPD.

[CERN-LHCC-2011-001]

☞μ = 1.1-1.8 

☞μ = 7.6 ☞50 fb-1

☞3 (Run I) + 5 (Run II) fb-1 

New detectors and 
trigger strategy.

LHCb upgrade and trigger strategy

[Run I]

L ⇡ 4 ⇥ 1032cm�2s�1
<latexit sha1_base64="SGEvPGpYNz1aGYj+saXzIoIE0xE="></latexit><latexit sha1_base64="nc8K08Xq8OjimhfRiX3GI22Ax3Q="></latexit><latexit sha1_base64="nc8K08Xq8OjimhfRiX3GI22Ax3Q="></latexit><latexit sha1_base64="hJcrep5ixWKGo9w/GMTON94B9+g="></latexit>

Run I + II target : 8 fb-1  
Run III + IV target: 50 fb-1

A real fill with the  
upgrade overlaid

New vertex locator
New tracking (UT, SciFi)
New front-end electronics
Run at 5× higher luminosity

CERN-LHCC-2012-007
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Challenges in Run III

3

Reaching the MHz signal era

Run 3: Luminosity of 2x1033 cm-2s-1, √s = 14 TeV

At increased luminosity, charm (beauty) in 24 % (2 %) of
bunch crossings

Cannot write out charm at 7 MHz

Trigger must distinguish signal from less-interesting signal
as well as from background
No longer feasible to have first trigger based on
calorimeters and muon detectors alone
Need as much information about an event as soon as
possible→ run tracking

6

Change in trigger paradigm

Access as much information about the collision as early as possible
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Tracking at LHCb

Tracking requires readout of
several sub-detectors
Tracks must be extrapolated
between VELO, UT and SciFi
(T1–T3)
Also match to muon stations
for muon particle ID

VELO track Downstream track

Long track

Upstream track

T track

VELO
UT

T1 T2 T3
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LHCb trigger in Run III

x86 CPU farm
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Figure 2: Evolution of the LHCb trigger system. Real-time calibration and alignment was first
performed between the HLT stages in Run 2. The FPGA-based hardware stage will be removed
in Run 3. Our proposal focuses on adding GPUs to the EB servers and running the entire HLT1
sequence on GPUs. This reduces the bandwidth that needs to be transmitted from the EB nodes
to the CPU farm from 5 TB/s to 0.2TB/s. The cost savings on networking is expected to be more
than the total cost of the GPUs needed to run HLT1 on the EB servers. Furthermore, the entire
(fixed-size) CPU farm would be available for running HLT2.

(the Event Filter Farm or EFF) for processing by a software application called the high-level trigger
(HLT), which is divided into two stages. HLT1 partially reconstructs events and selects a subset for
further processing by HLT2, which performs a more complete reconstruction then executes many
selection algorithms to further reduce the rate at which data are ingested for permanent storage.

In Run 1, the combination of limited CPU in the EFF (20k logical cores), lack of experience
with the data (a new detector), and suboptimal algorithms limited HLT1 to reconstructing only
a low-fidelity subset of the interesting objects in each event. Similarly, HLT2 was not able to
reconstruct all objects, and the lack of data calibrations available in real time meant that o✏ine
reconstruction was necessary to produce the high quality data required for physics analysis. Despite
these limitations, Williams pioneered the use of ML already in 2011 in the primary HLT2-selection
algorithm, known as the Topological Trigger (TOPO). About 60% of all LHCb publications to-
date were produced using data recorded by the ML-based TOPO. By the end of Run 1, innovations
like the TOPO made it possible for LHCb to process proton-proton collisions at twice its design
maximum rate, while recording signal samples at more than twice the anticipated rates and with
higher than expected purities.

For Run 2, Williams and collaborators from the Yandex corporation reoptimized the TOPO [10].
Furthermore, they replaced the primary HLT1 algorithms with ML-based versions. In Run 2, 75%
of the data persisted by HLT1 were selected by these ML-based algorithms. Other major changes
were also made to the trigger in Run 2. Increasing the number of (logical) EFF cores to 50k and
deploying faster reconstruction algorithms allowed both HLT1 and HLT2 to execute the o✏ine

4

Hardware trigger to be removed from
Run III
HLT1 software trigger must perform at
30× higher rate with 5× the pileup
Buffer will reduce from
O(weeks)→ O(days)
Significant increase in data transfer rates
New trigger setup offers up to ∼ 10×
efficiency improvement for some physics
channels
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Alternative trigger for Run III?

x86 CPU farm
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Figure 2: Evolution of the LHCb trigger system. Real-time calibration and alignment was first
performed between the HLT stages in Run 2. The FPGA-based hardware stage will be removed
in Run 3. Our proposal focuses on adding GPUs to the EB servers and running the entire HLT1
sequence on GPUs. This reduces the bandwidth that needs to be transmitted from the EB nodes
to the CPU farm from 5 TB/s to 0.2TB/s. The cost savings on networking is expected to be more
than the total cost of the GPUs needed to run HLT1 on the EB servers. Furthermore, the entire
(fixed-size) CPU farm would be available for running HLT2.

(the Event Filter Farm or EFF) for processing by a software application called the high-level trigger
(HLT), which is divided into two stages. HLT1 partially reconstructs events and selects a subset for
further processing by HLT2, which performs a more complete reconstruction then executes many
selection algorithms to further reduce the rate at which data are ingested for permanent storage.

In Run 1, the combination of limited CPU in the EFF (20k logical cores), lack of experience
with the data (a new detector), and suboptimal algorithms limited HLT1 to reconstructing only
a low-fidelity subset of the interesting objects in each event. Similarly, HLT2 was not able to
reconstruct all objects, and the lack of data calibrations available in real time meant that o✏ine
reconstruction was necessary to produce the high quality data required for physics analysis. Despite
these limitations, Williams pioneered the use of ML already in 2011 in the primary HLT2-selection
algorithm, known as the Topological Trigger (TOPO). About 60% of all LHCb publications to-
date were produced using data recorded by the ML-based TOPO. By the end of Run 1, innovations
like the TOPO made it possible for LHCb to process proton-proton collisions at twice its design
maximum rate, while recording signal samples at more than twice the anticipated rates and with
higher than expected purities.

For Run 2, Williams and collaborators from the Yandex corporation reoptimized the TOPO [10].
Furthermore, they replaced the primary HLT1 algorithms with ML-based versions. In Run 2, 75%
of the data persisted by HLT1 were selected by these ML-based algorithms. Other major changes
were also made to the trigger in Run 2. Increasing the number of (logical) EFF cores to 50k and
deploying faster reconstruction algorithms allowed both HLT1 and HLT2 to execute the o✏ine

4

Option to move to a
GPU-based HLT1 with
GPUs installed on the
Event Builder servers
Free up full CPU farm
for HLT2 and save on
networking between
event builders and
CPU farm
Demonstrated
technical feasibility
Decision due next few
months
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Why GPUs?

Moore’s law still holds but
single-thread performance has
levelled off
Gains now to be made through
parallelisation
GPUs specialised for
massively parallel operations
(100s–1000s of cores)
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GPU architecture
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Kernel executed in many threads

Threads run same algorithm on different parts of the
data

Threads arranged within blocks within a grid

Threads within a block share memory and
synchronised

Block and grid dimensions optimised for each kernel
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Amdahl’s law

13

Amdahl’s law

Speedup in latency = 1 / (S + P/N)

S: sequential part of program

P: parallel part of program

N: number of processors

Can we use the FLOPS available on a GPU to run HLT1 @ 30 MHz?

Speedup = 1
S+P/N

S = sequential fraction

P = parallel fraction

N = number of processors

Significant gains require large fraction of sequence to be parallelised
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External constraints

∼ 250 Event Builder servers→ ∼ 500 GPUs

16− 32 GB/s PCIe rate→ sufficient for 5 TB/s input

Small raw event size ∼ 100 kB→ process several 1000 events at once per GPU
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The Allen project

Generic configurable framework for GPU-based execution of an algorithm sequence
Stand-alone software package: https://gitlab.cern.ch/lhcb/Allen
Dependencies: C++17 compiler, CUDA v10.2, boost, ZeroMQ
Built-in validation and monitoring (requires ROOT)
Process thousands of events in a single sequence

Opportunity for massive parallelisation

Cross-platform compatibility with CPU architectures
Named for Frances E. Allen
Implement HLT1 on GPUs

Photo: User:Rama / Wikimedia Commons / CC-BY-SA-2.0 fr

arXiv:1912.09161
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Algorithm sequeunce

Multiple “streams” on each GPU process “slices” of O(1000) events

Single transfer of data to GPU device
Data passed to device

All algorithms executed in order

Results passed back to the host

Configurable sequences at compile time

Configurable algorithms at run time via JSON
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Memory management

No dynamic memory allocation

Data dependencies and memory assignments resolved at compile
time

Host and device memory handled by custom memory manager
All memory allocated on startup

Assigned on demand

Failsafe mechanism to sub-divide data slices with unusually large
memory requirements and pass through problematic events
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Integration

I/O performed asynchronously by separate CPU thread
Input data banks may be read from binary files or decoded from MDF or MEP formats

Only selected events sent to output

Selection decisions and reconstructed objects added to output data

Monitoring also performed in dedicated thread
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HLT1

HLT1 involves decoding,
clustering and track
reconstruction for all tracking
subdetectors
Algorithms also perform
Kalman filter and trigger
selection
All stages of the process may
be parallelised
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Parallelisation
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Run each event in one block

Decoding→ parallelise by readout unit

Clustering→ parallelise in (overlapping) detector regions

Tracking→ parallelise by track

Vertexing→ parallelise by combination
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Example: velo clustering

26

Velo detector: clustering

Clustering with bit masks26 planes of silicon pixel detectors
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Example: velo tracking
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.

0

1

2

3

t0

t1

t2

t3

(a)

0

1 c1

c0

(b)

t0

t1

t2

t3

t4

t5

0

1

2

3

4

5

(c)

Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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Example: velo tracking
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.

0

1

2

3

t0

t1

t2

t3

(a)

0

1 c1

c0

(b)

t0

t1

t2

t3

t4

t5

0

1

2

3

4

5

(c)

Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.

0

1

2

3

t0

t1

t2

t3

(a)

0

1 c1

c0

(b)

t0

t1

t2

t3

t4

t5

0

1

2

3

4

5

(c)

Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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Example: velo vertexing
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Allen selection ingredients
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Figure 6: Efficiency of the 1-Track and 2-Track trigger lines when calculating the IP χ2 from tracks
fitted with the simple Kalman filter directly after the Velo tracking versus the parameterized
Kalman filter on the Velo-segment of a track using the momentum estimate from the Forward
tracking. Using the B0

s → φφ sample.

Figure 7: Throughput of the entire HLT1 sequence on single GPU cards.

Trigger Rate [kHz]

1-Track 249± 18
2-Track 663± 30
High-pT muon 1± 1
Displaced dimuon 50± 8
High-mass dimuon 101± 12

Total 971± 36

Table 1: Rates of the five trigger lines implemented in Allen and the total HLT1 output rate,
determined with minimum bias events.
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Figure 4: Momentum resolution of tracks passing through the Velo, UT and SciFi detectors versus
momentum, using the combination of signal samples described in the text. Points represent the
mean, error bars the width of a Gaussian distribution fitted to the resolution in every momentum
slice. The momentum distribution is overlaid as histogram.
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Figure 5: Muon identification efficiency versus momentum for tracks passing through the Velo,
UT and SciFi detectors with respect to all reconstructible muons, using the combination of
signal samples described in the text. The momentum distribution is overlaid as histogram.

4

LHCB-FIGURE-2019-009

Dan Craik (MIT) The Allen Project 2020-01-27 22 / 26

http://cds.cern.ch/record/2693058/


Allen performance

Trigger Rate [kHz]
1-Track 215 ± 18
2-Track 659 ± 31
High-pT muon 5 ± 3
Displaced dimuon 74 ± 10
High-mass dimuon 134 ± 14
Total 999 ± 38

Total rate reduced 30→ 1 MHz

Physics performance consistent with x86
baseline

Signal GEC TIS -OR- TOS TOS GEC× TOS
B0 → K ∗0µ+µ− 89 ± 2 91 ± 2 89 ± 2 79 ± 3
B0 → K ∗0e+e− 84 ± 3 69 ± 4 62 ± 4 52 ± 4
B0

s → φφ 83 ± 3 76 ± 3 69 ± 3 57 ± 3
D+

s → K+K−π+ 82 ± 4 59 ± 5 43 ± 5 35 ± 4
Z → µ+µ− 78 ± 1 99 ± 0 99 ± 0 77 ± 1

GEC = global event cut, TIS = trigger independent of signal, TOS = trigger on signal
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Allen throughput

39

Throughput on various GPUs

Throughput of the full HLT1 sequence

HLT1 can run on 500 GPUs
→ read out full detector Buy GPUs instead of expensive network

Full HLT1 algorithm can be run on ∼ 500 current GPUs
Buy GPUs instead of networking
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Allen throughput
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Figure 8: Throughput of the Allen sequence as a function of the SciFi raw data volume. The
raw data volume distribution is overlaid as histogram.
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Figure 9: Allen throughput on various GPUs with respect to their reported peak 32-bit FLOPS
performance.
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Performance scales with GPU so can expect more from 2021 GPUs
Not yet limited by Amdahl’s law
Potential to perform more tasks within HLT1
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Summary

Allen project offers a GPU-implementation of LHCb HLT1

Full track reconstruction and selection performed

Generic framework allows for configurable algorithm sequence

Feasibility for possible use in Run III already demonstrated
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