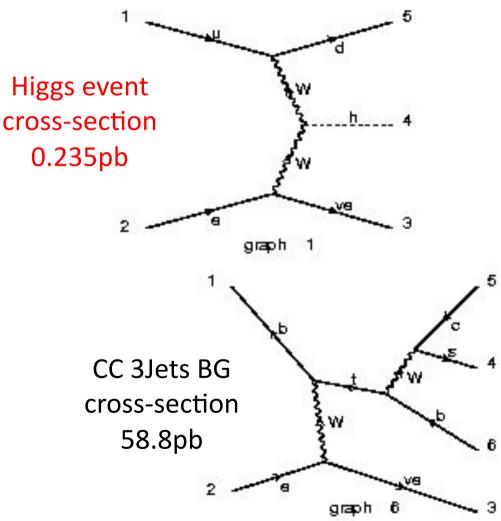
Simulation of LHeC experiment

- 1. Introduction
 - Higgs production at the LHeC
 - Parameters and procedure
- 2. Event selection and kinematics
- 3. Results
- 4. Summary/Future plan

Tokyo Institute of Technology
March 4th 2010 at LHeC meeting

Higgs production at the LHeC


Studying the measurement of H→bb mode in LHeC experiment.

In this study,

Signal: CC Higgs event

BG: CC 1 and 3 Jets BG

Parameters and Procedure

Generated Higgs and CC background events with following framework.
 MadGraph: generate possible Feynman diagrams and calculate cross sections

PYTHIA: fragment the quarks and gluons to generate hadronic

final states

PGS: detector simulation, based on parameterized resolution

smearing etc, including B-tag: based on CDF-II performance.

(Whole setup for ep collision prepared by U. Klein, Liverpool)

- Set the parameters
 - ➤ Beam energy \rightarrow E_p: 7 TeV + E_e: 150 GeV (\sqrt{s} : 2050 GeV)
 - ightharpoonup Higgs mass ightharpoonup 120 GeV : Higgs to $b\overline{b}$: 71.8%, $c\overline{c}$: 8.3%
 - ightharpoonup Luminosity \rightarrow 10 fb⁻¹
 - ➤ Energy Resolution (cal) → 80% default (60%, 40% for comparison)
 - ightharpoonup Kinematic cut ightharpoonup E_{jet} > 5GeV, θ_{jet} > 0.5°, θ_{lepton} > 10°, M_{jj} > 30GeV

Event selection including B-tag

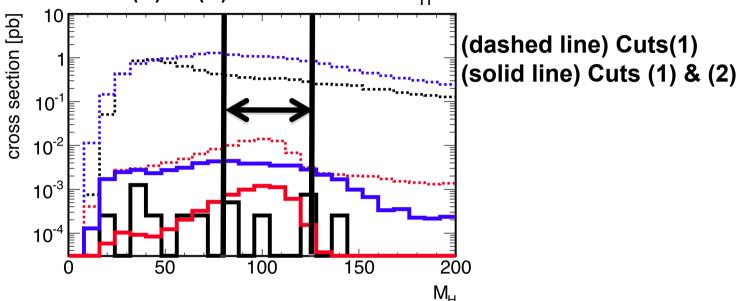
Cut (1) : $Q^2>400GeV^2$, y<0.9, missE_T>20GeV,

 N_{Jet} ($P_{T,Jet}$ >20GeV) \geq 2, $E_{T,total}$ > 100GeV,

Cut (2) : $N_{b-let}(P_{T,let}>20GeV) \ge 2$

b-Jet meant jet with B-tag requirement

Cut (3) : $N_{Jet} \ge 3$, $M_{top} < 200 \text{ GeV}$, $M_W > 130 \text{ GeV}$


• We selected lowest η jets for making M_{jj} or M_{jjj} (referring to Uta)

Jet kinematics

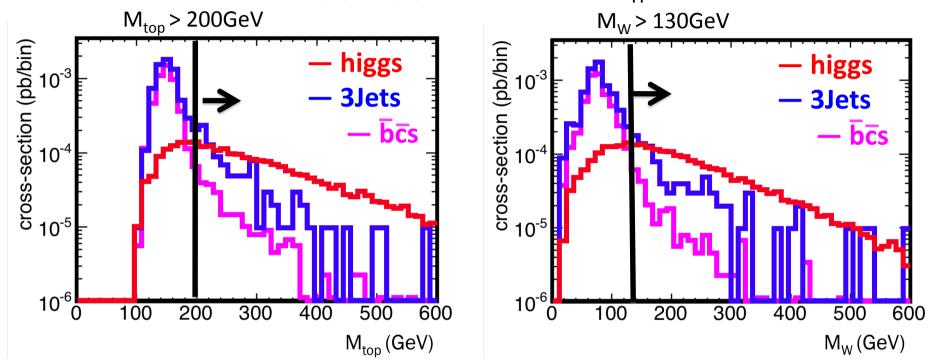
We required B-tag for at least 2 jets to reconstruct M_H (solid line)

After Cuts (1) & (2) and $80 \text{GeV} < M_H < 125 \text{GeV}$

- Higgs event
- CC 3Jets BG
- CC 1Jets BG

Higgs event / CC 1+3Jets BG
$$S/N = 401/80500 = 5.0 \times 10^{-3}$$
 (w/o B-tag) => $S/N = 47.7/251 = 0.2$ (w/ B-tag)

Components of remaining backgrounds

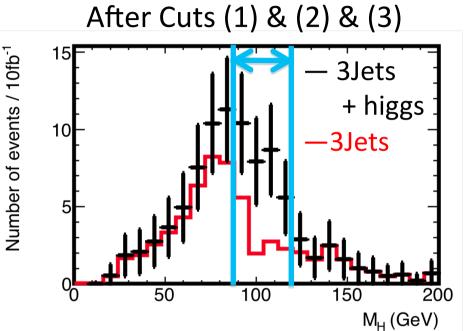

CC 3Jets BG / CC 1+3Jets BG 235/251 = 94%
$$\rightarrow \overline{bc}$$
 BG / CC 1+3 Jets BG 138/251 = 55% sub-process

5

Main components of remaining background was single-top production decay to $\overline{t} \rightarrow W\overline{b} \rightarrow \overline{b} + \overline{c} + s$.

Reduction in single top production.

After Cuts (1) & (2) and 90GeV $< M_H < 120$ GeV

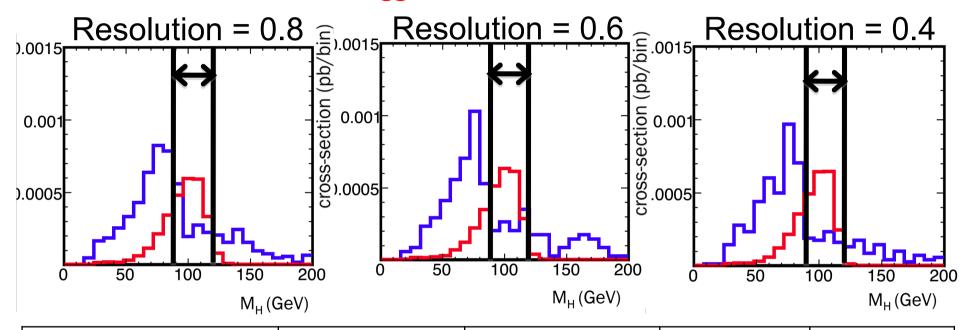


 M_{top} was reconstructed from two lowest η B-tagged jets + lowest η jet (regardless of B-tag).

 M_W was reconstructed from lowest η B-tagged jet + lowest η jet (regardless of B-tag but excluding 2^{nd} lowest η B-jet).

Number of events, S/N and S/VN for 10 fb⁻¹

- Remaining BG process : Z→bb̄
 (~130 fb for bbd̄ process)
- After Cuts (1) & (2) & (3) & M_{H,}
 Higgs event efficiency: 8.51×10⁻³


Cut $M_{H}: 90 \text{GeV} < M_{H} < 120 \text{GeV}$

Applied Cut	Higgs event	CC 3Jet BG	S/N	S/VN
No Cut	2350	5.88×10^{5}	4.0×10^{-3}	3.0
Cuts (1) & (2) & M _H	47.7	235	0.20	3.11
Cuts (1) & (2) & (3) & M _H	20.0	12.6	1.59	5.65

Dependence on hadronic energy resolution

After Cuts (1) & (2) & (3) & M_H

Higgs event — CC 3Jet BG

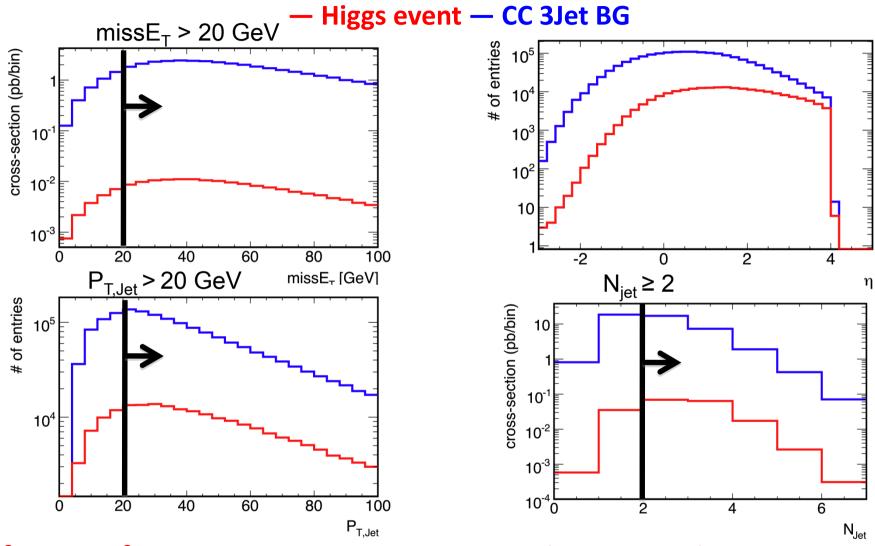
Resolution	Higgs event	CC 3Jet BG	S/N	S/√N
80 %	20.0	12.6	1.59	5.65
60 %	20.5	10.3	1.99	6.39
40 %	20.3	7.2	2.81	7.55

Summary

- Remaining t→bW→bcs background was reduced by top and W mass cut.
- After Cuts (1)-(3) & M_H for 10 fb⁻¹
 - > S/N = 20.0/12.6 = 1.59 (S/ \sqrt{N} = 5.65)
 - \triangleright Efficiency of Higgs event was 20.0 / 2350 = 8.51 × 10⁻³.
- After top and W Mass cut, a remaining BG process was Z→bb.
- Good hadronic resolution is desirable for Higgs peak separation.

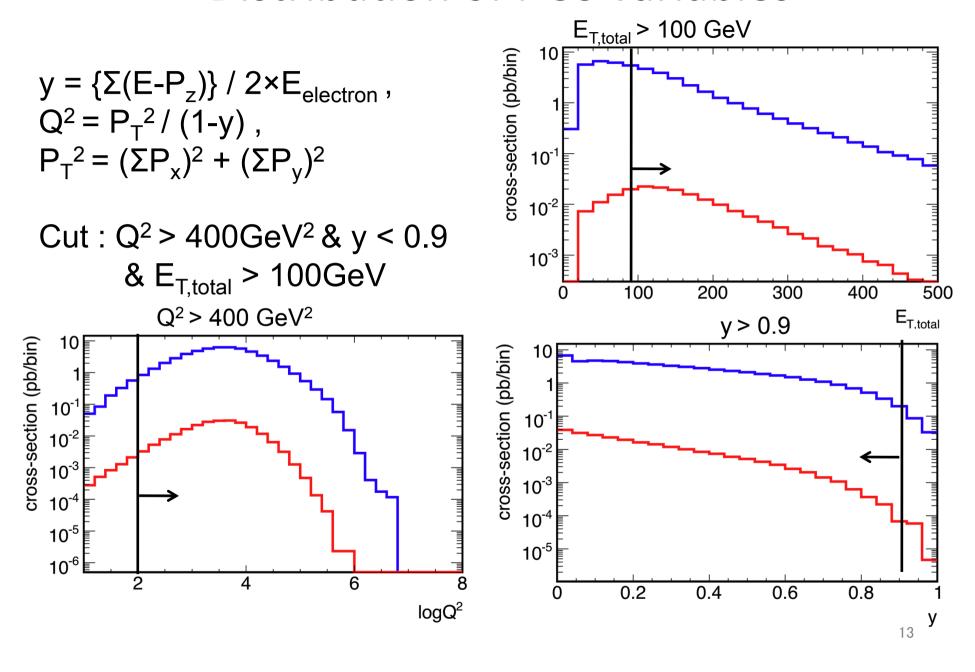
Future

 For more serious study of H→bb decay mode we should have a realistic detector simulation.


Back up

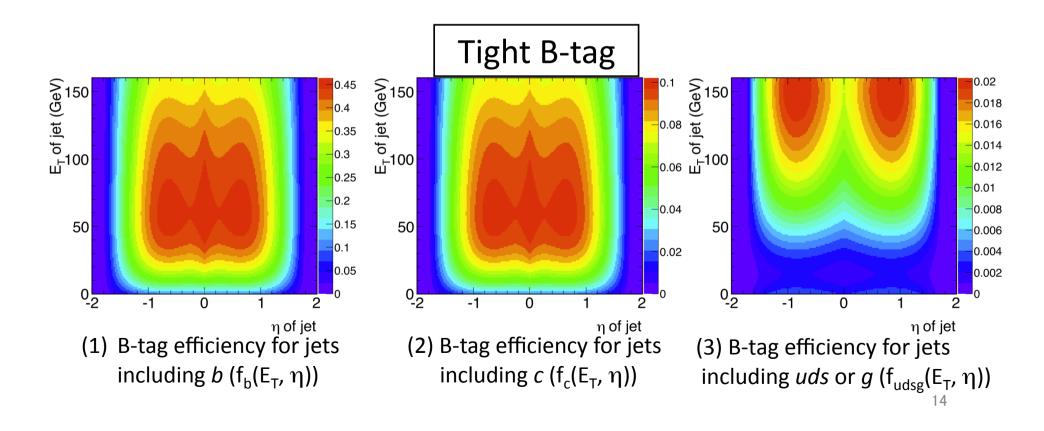
Generated processes infomation

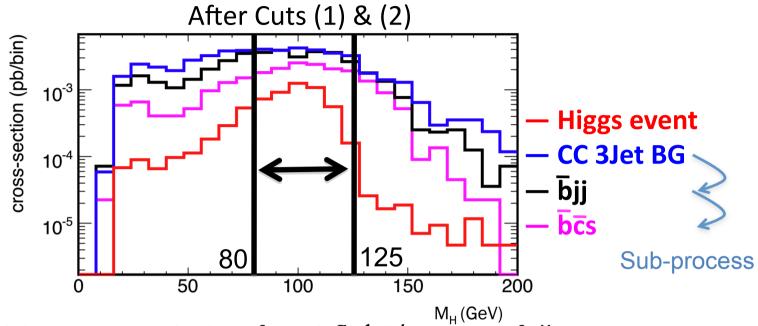
Cross-section and number of diagrams of each process


process	Cross-section (pb)	Number of diagrams
Higgs event	0.235 pb	2
CC 1Jets BG	503 pb	2
CC 3Jets BG	58.8 pb	536
CC bjj BG	5.36 pb	48
CC b̄cs BG	2.25 pb	12
CC bbj BG	0.865 pb	24
CC bbd BG (only Z→bb)	0.132 pb	5

Distribution of PGS variables

Q²>400GeV² & y<0.9 & missE_T>20GeV & N_{Jet} \ge 2 (P_{T,Jet}>20GeV) & E_{T,total} > 100GeV We named above cuts Cut (1).


Distribution of PGS variables

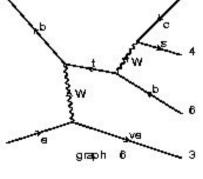

B-tag

PGS identifies to each jet whether it is a jet of b or \overline{b} quark origin (B-tag).

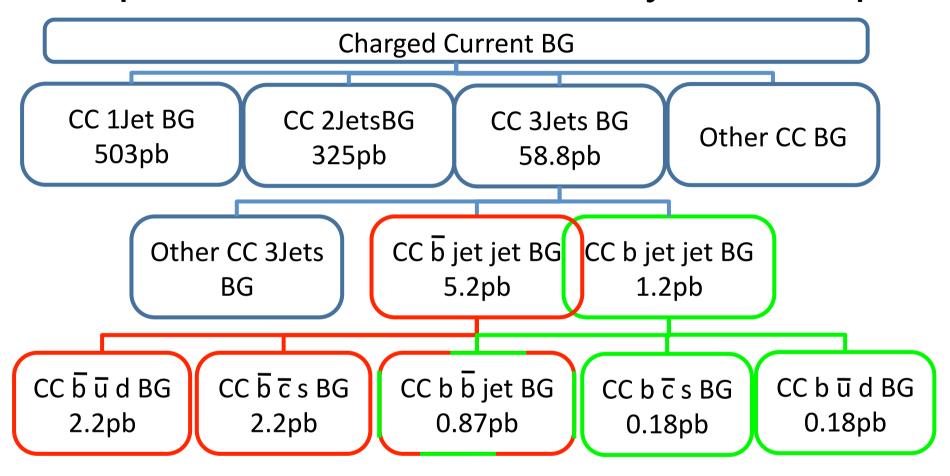
B-tag efficiency is defined depending on whether b or \overline{b} , c or \overline{c} or others (u \overline{u} , d \overline{d} , ss or g) exist within the cone of 20° from the jet. It is a function of η , E_T and calculated based on CDF performance.

Remaining BG

in 80GeV $< M_H < 125$ GeV for $10 \text{ fb}^{-1} \text{ S/N was as follows}$


Higgs / CC 3Jets BG
$$S/N = 46.9 / 229 = 0.20$$

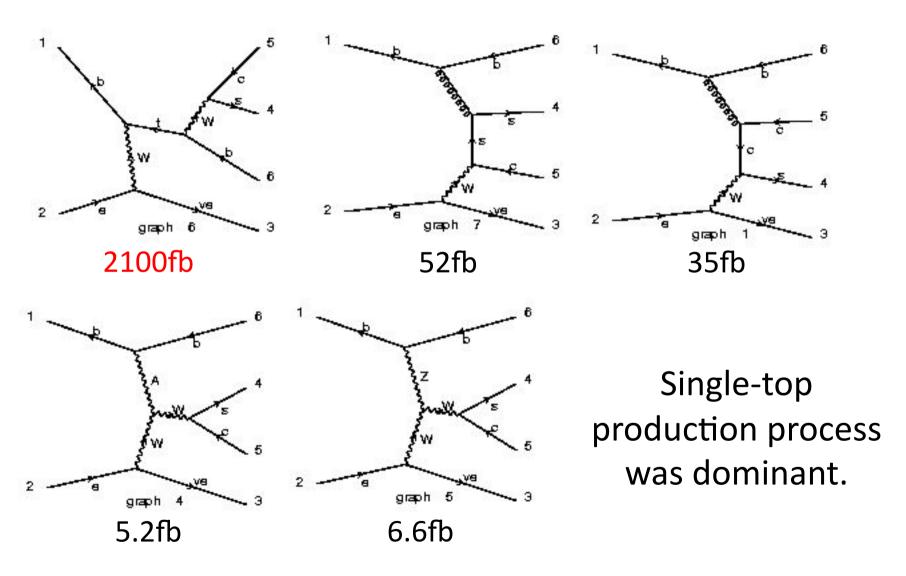
bjj BG in 3Jets BG 205 / 229 = 91 %


 \overline{bc} s BG in 3Jets BG 128 / 229 = 57 %

 Dominant process in the final CC 3Jets BG was bcs (c-jet had high B-tag efficiency.)

• 95% of bcs process came from single-top diagram. $(\bar{t} \rightarrow W^- \bar{b} \rightarrow \bar{b}\bar{c}s)$

Subprocess cross sections by MadGraph



Large cross-sction of bcs or bud 3 Jets events.

95% of these processes was single-top production $\bar{t} \to W\bar{b} \to (\bar{c}s \text{ or } \bar{u}d) \bar{b}$ They were suspected 3Jets bg for Higgs seach.

bcs process (12 diagrams)

Cross-section = 2201fb

Condition of N_{Jet}

If we reduce the $\bar{t} \to \bar{b}W^- \to \bar{b}\bar{c}s$ process, S/N will be improved. We calculated S/N for 10 fb⁻¹ on the condition following Cut (2), (2-a) and (2-b) in 80GeV < M_H < 125GeV.

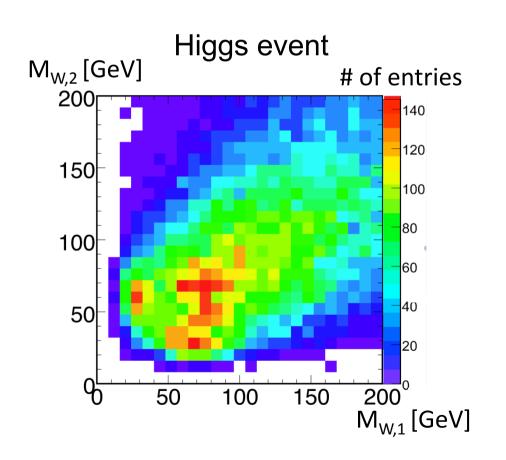
Number of events

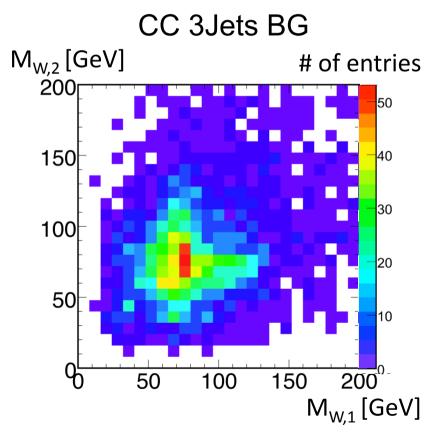
	Cut (2)	Cut (2-a)	Cut (2-b)
Number of jets	$N_{Jet} \ge 2$, $N_{bJet} \ge 2$	$N_{Jet} = N_{bJet} = 2$	$N_{Jet} \ge 3$, $N_{bJet} \ge 2$
Higgs event	47	10	37
CC 3Jets BG	229	82	147
S/N	0.21	0.12	0.252

S/N was improved with Cut (2) and (2-b) compared with Cut (2-a). Exclude the event of Cut (2-a).

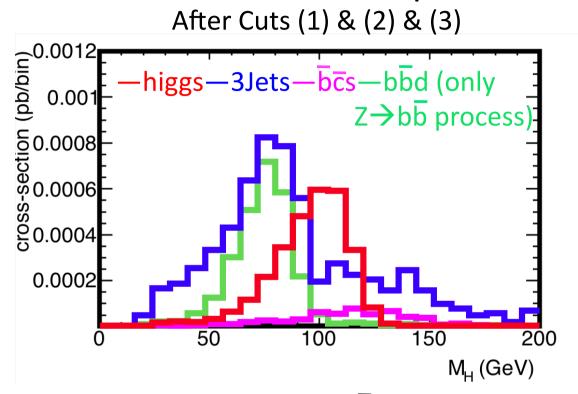
Jet selection

3 Jets for the reconstruction of top mass (M_{top}) were selected as following b-Jet1, b-Jet2 and Jet3.


- 1. We required $N_{Jet} \ge 3 \& N_{bJet} \ge 2$
- 2. We selected 2jets with B-tag requirement lowest η b-Jet (b-Jet1) & 2nd lowest η b-Jet (b-Jet2)
- 3. Excluding b-Jet1 and b-Jet2 we selected the jet with lowest η regardless of B-tag.


lowest η Jet (Jet3)

the reconstruction of M_{top} with b-Jet1, b-Jet2 and Jet3. that of W Mass (M_W) with b-Jet1 and Jet3 ($M_{W,1}$) or with b-Jet2 and Jet3 ($M_{W,2}$)


Correlation of M_{W,1} and M_{W,2}

we didn't know which \bar{c} -jet was, b-Jet1 or b-Jet2. Correlation of $M_{W,1}$ and $M_{W,2}$ is shown in two figures below.

Higgs mass after M_{top}& M_W cuts

- CCbcs BG was reduced but CC bbd BG remains.
- Peak around 80GeV was due to $Z \rightarrow b\bar{b}$ (~130 fb) process.
- In order to reduce this process changed the lower limit of M_H to 90GeV.

Number of events, S/N and S/VN for 10 fb⁻¹

* mass cut range : 90GeV < M_H < 120GeV

- (A) 200 GeV $< M_{top}$ (b-Jet1 & b-Jet2 & Jet3).
- (B) 130 GeV $< M_{W.1}$ (b-Jet1 & Jet3).
- (C) $130 \text{ GeV} < M_{W.2}$ (b-Jet2 & Jet3).

Applied Cut (Cut (b) default)	Higgs event	CC dijet BG	S/N	S/VN
$Cut(1)-(2)&M \rightarrow Cut(b)$	31.0	96.2	0.32	3.16
(A)	21.8	15.5	1.41	5.54
(A) & (B)	20.0	12.6	1.59	5.65
(A) & (C)	16.3	10.5	1.55	5.03
(A) & {(B) or (C)}	21.7	15.5	1.40	5.51
(A) & (B) & (C)	14.7	7.56	1.94	5.33

S/N was improved with only (A) and reached the highest value with Cut (A) & (B) & (C) applied. S/√N reached the highest value with Cut (A) & (B) applied.

Number of events, S/N and S/VN for 10 fb⁻¹ <loose B-tag>

```
* mass cut range: (A) 200 GeV < Mjjj (b-Jet1 & b-Jet2 & Jet3).

90GeV < M<sub>H</sub> < 120GeV (B) 130 GeV < Mjj (b-Jet1 & Jet3).

(C) 130 GeV < Mjj (b-Jet2 & Jet3).
```

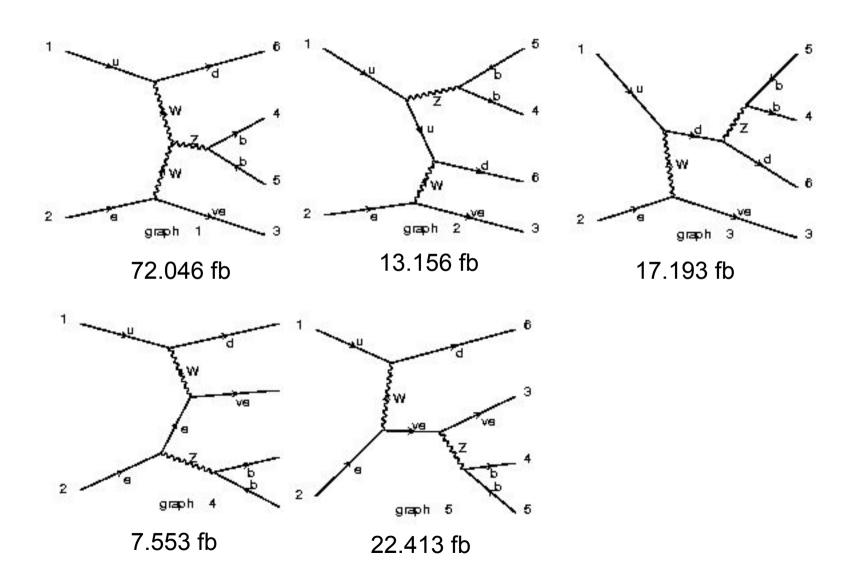
Applied Cut (Cut (b) default)	Higgs event	CC 3Jet BG	S/N	S/vN
$Cut(1)-(2)&M \rightarrow Cut(b)$	40.0	159	0.25	3.15
(A)	27.7	28.2	0.983	5.22
(A) & (B)	25.4	21.8	1.16	5.44
(A) & (C)	20.8	19.4	1.07	4.71
(A) & { (B) or (C) }	27.6	28.2	0.98	5.19
(A) & (B) & (C)	18.5	12.9	1.43	5.15

 S/\sqrt{N} reached the highest value with Cut (A) & (B) applied as well as in the case of tight B-tag requirement.

Number of events, S/N and S/VN for 10 fb⁻¹

* mass cut range : 90GeV < M_H < 120GeV

(A) 200 GeV $< M_{top}$ (b-Jet1 & b-Jet2 & Jet3).


(B) 130 GeV $< M_{W.1}$ (b-Jet1 & Jet3).

(C) 130 GeV $< M_{W.2}$ (b-Jet2 & Jet3).

Applied Cut (Cut (b) default)	Higgs event	CC dijet BG	S/N	S/vN
Cut(1)-(2)&M→Cut(b)	31.0	96.2	0.32	3.16
(A)	21.8	15.5	1.41	5.54
(B)	21.4	15.0	1.43	5.52
(C)	16.9	12.4	1.36	4.79
(B) or (C)	14.7	7.56	1.94	5.33
(B) & (C)	23.6	19.8	1.19	5.30

S/N is the same value in Cut (B) & (C) as in Cut (A) & { (B) & (C) }. Cut (A) and Cut (B) gave almost the same value for S/N and S/ \sqrt{N} .

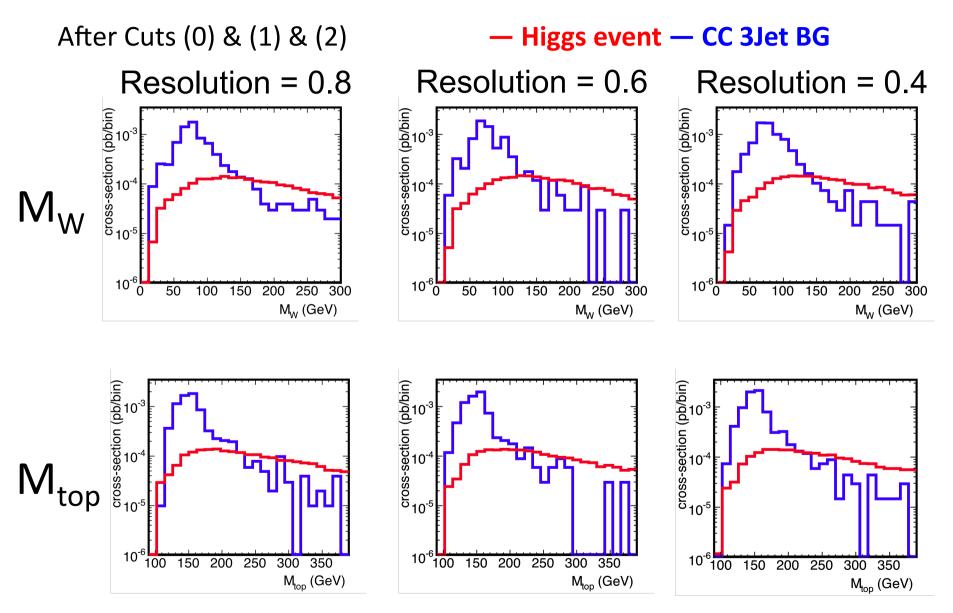
$Z \rightarrow b\bar{b}$ process (= 132fb) for CC $b\bar{b}d$ BG ~5 diagrams~

Number of events, S/N and S/√N for 10fb⁻¹

```
* mass cut :
90GeV < M<sub>H</sub> < 115GeV
```

```
(A) 200 GeV < M_{top} ( b-Jet1 & b-Jet2 & Jet3 ).
```

- (B) 130 GeV $< M_{W.1}$ (b-Jet1 & Jet3).
- (C) $130 \text{ GeV} < M_{W,2}$ (b-Jet2 & Jet3).


Resolution = 0.8

Resolution = 0.4

Applied Cut (Cut (1)-(2), M _H default)	Higgs / 3Jets BG	S/N	S/√N	Higgs / 3Jets BG	S/N	S/vN
(A)	21.8/15.5	1.41	5.54	22.2/11.9	1.86	6.42
(A) & (B)	20.0/12.6	1.59	5.65	20.3/7.2	2.81	7.55
(A)&(B)&(C)	14.7/7.56	1.94	5.33	14.9/3.23	4.61	8.29

3Jets BG was reduced by changing the value of resolution from 0.8 to 0.4.

Dependence on hadronic energy resolution

Effect of $|\eta|$ < 3 cut

After Cuts $(1) - (3) \& M_H$

Energy resolution of hadronic calorimeter	Higgs event	CC 3Jet BG	S/N	S/vN
80 %	20.0	12.6	1.59	5.65
60 %	20.5	10.3	1.99	6.39
40 %	20.3	7.2	2.81	7.55

After $|\eta| < 3$ cut

Energy resolution of hadronic calorimeter	Higgs event	CC 3Jet BG	S/N	S/vN
80 %	13.5	10.9	1.24	4.09
60 %	13.9	9.12	1.52	4.60
40 %	13.8	6.61	2.08	5.35