
The ARIES Transnational Access Status at Mid-Term Mid-term Review 25 September 2019

Maurizio Vretenar, CERN, Project Coordinator

ARIES is co-funded by the European Commission Grant Agreement number 730871

ARIES: the Transational Access concept

- In our previous programmes (EuCARD, EuCARD-2) TA had a very limited role.
- In the new ARIES, we wanted to open, support, and internationalize the access to the advanced test stands required to test new accelerator technologies.
- Test stands are usually funded by the different national laboratories; the idea was to share them at the European level, to optimise their use and at the same time to create connections between laboratories and teams.
- As you will see in the following, in same cases this strategy has been (very) successful, in other cases less.

The CERN superconducting magnet test stand

Transnational Access in ARIES

							-					
Access provider	Short name of	In	stallation	Installation	Type of	Unit of	Unit cost	Min. quantity of access to be	Access	s costs	Estimated	Estimated
short name	infrastructure	Nr	Short name	Country code	access	access	(UC) €	provided	On the basis of UC	As actual costs	number of users	number of user projects
CERN*	MagNet	1	MagNet@CERN	10	TA-uc	1h	0.00	1,920	1,548,825.60	-	40	8
UU	FREIA	1	Gersemi	SE	TA-ac	1h	-	2,880	-	183,212.80	56	8
CERN*	HiRadMat	2	HiRadMat@SPS	10	TA-uc	1h	0.00	200	654,000.00	-	20	5
GSI	UNILAC	1	M-branch	DE	TA-uc	1h	274.79	480	131,900.00	-	48	8
KIT	KIT-ATP	1	KIT-ANKA	DE	TA-uc	1h	416.22	480	199,787.04	-	64	8
KIT	KIT-ATP	2	KIT-FLUTE	DE	TA-ac	1h	-	320	-	100,975.00	40	8
CEA	IPHI	1	IPHI	FR	TA-ac	1h	-	1,440	-	267,144.00	72	12
DESY*	SINBAD	1	SINBAD	DE	TA-ac	1h	-	630	-	257,500.00	36	9
STFC	VELA	1	VELA	UK	TA-ac	1h	-	336	-	198,737.87	56	14
UU	FREIA	2	HNOSS	SE	TA-ac	1h	-	2,880	-	199,585.15	44	4
CERN*	XBox	3	XBox@CERN	10	TA-uc	1h	0.00	6,000	750,080.00	-	64	4
CNRS	LULI	1	APOLLON	FR	TA-ac	1h	-	180	-	695,456.25	48	6
CEA	LIDyL	2	LPA-UHI100	FR	TA-uc	1h	117.00	640	74,880.00	-	40	4
UL	LULAL	1	LULAL	SE	TA-uc	1h	170.00	480	81,600.00	-	36	6
											Total no. of	

14 Test Facilities grouped by technology in 5 Workpackages, offering a wide and complementary range of access.

- Magnet testing: CERN SM18 and FREIA at Uppsala.
- Material testing: HiRadMat at CERN and M-branch at GSI.
- Beam testing: protons and RF at IPHI (CEA), high current electrons in ANKA (KIT), variable electron beams at VELA (CI), short electron bunches at FLUTE (KIT) and when operational at SINBAD (DESY).
- **RF** testing at FREIA (Uppsala) and at the XBOX at CERN.
- Plasma acceleration testing at the Apollon laser (CNRS), UHI100 laser (CEA-CNRS) and Lund Laser Centre.

Total no. of users** = 664

Each WP has a common User Selection Panel (with the only exception of Materials)

WP9 – TNA : MagNet

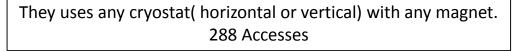
TNA is composed by two laboratories: CERN (CH) and FREIA (S).

- MagNet (@CERN) is operational
- GERSEMI (@FREIA) is starting Hardware Commissioning with possible testing by the end of the year.

5 projects were submitted for approval4 approved and 1 in evaluation process4 of them has been already performed tests

Facility	No. of projects Y1	Total no. of projects Annex 1	No. of users Y1	Total no. of users Annex 1	No. of access units Y1	Total no. of access units Annex 1
MagNet	4	8	27	40	944	1,920
Gersemi	0	8	0	56	0	2,880

Highlight: Automated HV Testing of Sc Coils


To automat High Voltage Testing of Superconducting Coils

Dr. Varadine is proud of **his students** having developed a system that turned to be efficient in the test and found users at bug laboratories

- New release has been tested in November
- Hardware and software renewed
- New functionalities (safety & HV feature) implemented

This equipment, developed by MSc students found users:@ GSI for SFRS magnets and @ CERN SM18 for HL-LHC magnets!!

Test @ MagNet

Status of WP10 (TA) – Material Testing

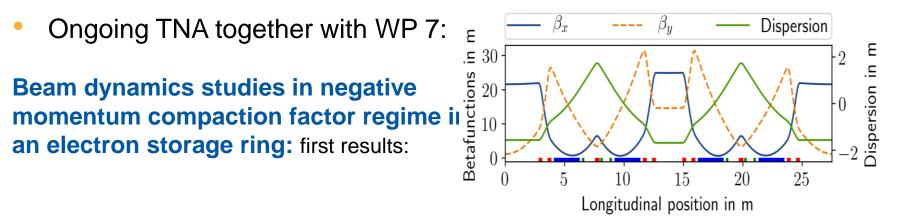
Progress:

- **CERN-HiRadMat:** 2018 was a great achievement for the HiRadMat team with the highest yearly number of experiments completed since the start of the facility operation in 2012. It is important to note that out of the 10 experiments, 40% received TNA support. 38 Researchers primarily from Europe, but also from the US, Japan and Russia, gained access to the facility amounting to more than 1500 Transnational Access hours (during 2017-2019).
- **GSI-UNILAC** resumed operations mid February 2019 until mid April 2019. The foreseen access units are already delivered within this run. Discussions with the management has been started for a simple extension with respect to the expected beam time block in 2020.

Status of contractual obligations (Milestones, Deliverables):

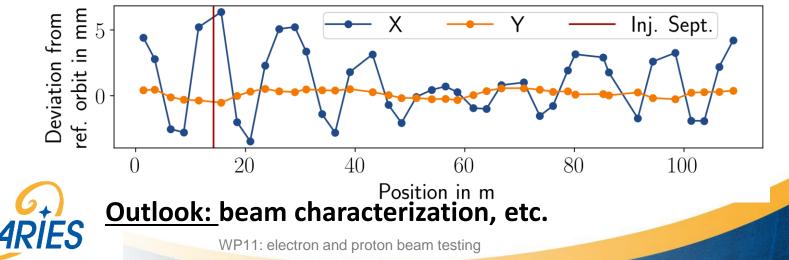
HiRadMat - CERN		User-pro	ojects	Lloors supported	Units of access	(1 h)
	Submitted	Selected	Supported	Users supported	Units of access	(1 1)
Year 1 (M1-M24)	6	6	5	38 (23*)	1544**	
Foreseen for project (M1-M48)		5		20	200	
With financial support * 25% budget overrun expected	d					
M branch GSI		User-pr	ojects	Users supported	Units of access	(1 h)
M-branch - GSI	Submitted	User-pro Selected	ojects Supported	Users supported	Units of access	(1 h)
M-branch - GSI Year 1 + 2 (M1-M48)	Submitted			Users supported 27 (12*)	Units of access	(1 h)
Year 1 + 2		Selected	Supported			(1 h)

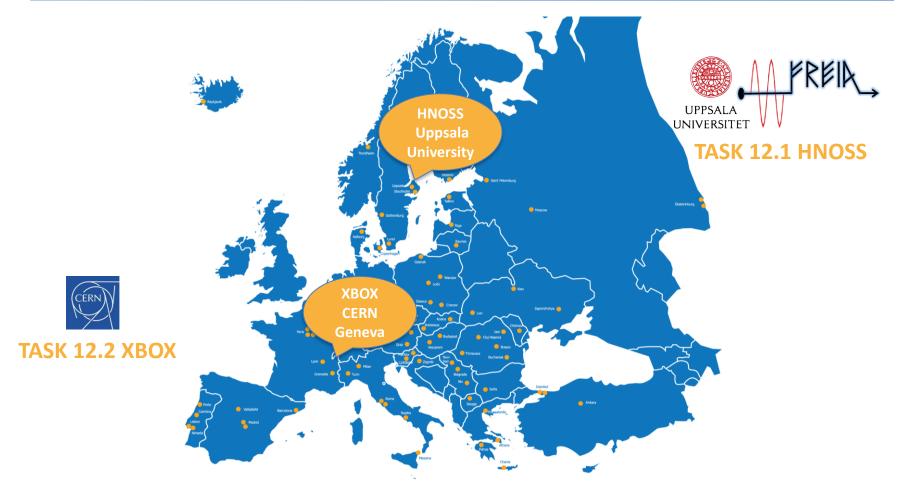
Facilities in WP11


lceland Sweden			
Norway	Facility	Part	(Foreseen) characteristics
Baltic Sea Latv	KARA	е	0.5 – 2.5 GeV, bunch length 50 down to few ps
United Kingdom Ireland	FLUTE	е	41 MeV, 1 → 300 fs, 10 Hz
11.5: VELA Netherlands Beigium	IPHI	р	3 MeV, peak current ~ 60 mA, 5% dc
11.1: ANHOA Slovakia 11.3: IPHI * 11.2: FLUTE Austria Hungary France	SINBAD	е	100 MeV, few fs, < 50 Hz
Croatia	VELA	е	6 MeV → 40 MeV, 10 → 100 Hz
Portugal Spain Tyrrhenian Sea	Greece		

• All facilities now running but SINBAD (first beams Spring 2019)

ARIES WP7 uses storage ring KARA



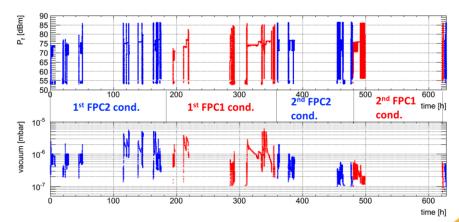

 \checkmark Injection into negative alpha optics at 500 MeV (up to 6.8 mA) \checkmark Operation with different tunes, chromaticity and alpha

 \checkmark <u>Measured</u> injection orbit at negative alpha condition

It seems injection bump needed due to septum stray field

WP12 RF Testing Facilities

The TNA within WP12 groups TWO facilities devoted to testing of superconducting RF cavities and normal conducting RF cavities.



Testing of Advanced RF Structures - Roger Ruber - 10-April-2019 -2nd ARIES annual meeting

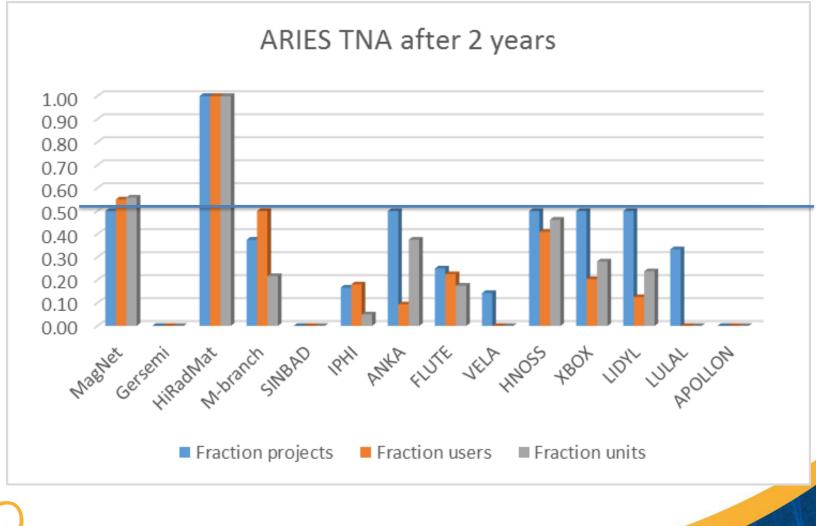
WP12.1 HNOSS - Project #2

- Double-spoke cavity cryomodule & valve box
 - from IPN Orsay, prototype for ESS
 - validation valve box in Dec. 2018 & Jan. 20
 - use simulator to validate operation
 - thermo-acoustic (Taconis) oscillations
 - \rightarrow installed RLC circuit
 - cryomodule run just started
- Results
 - warm RF conditioning
 - several multipacting bands
 - strength depends on pulse length, 1st/2nd conditioning...
 - cold RF conditioning
 - no multipacting
 - this week: cavity conditioning

Transnational access summary at M24

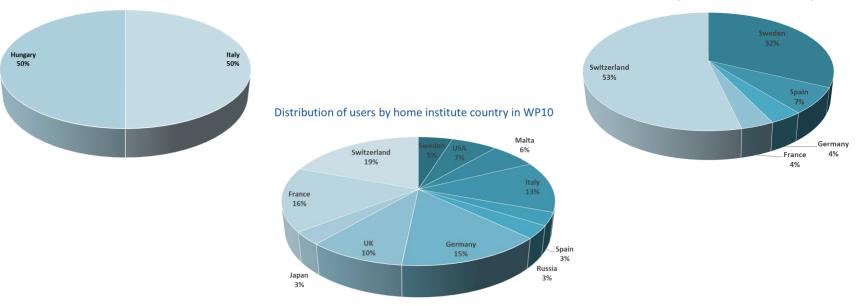
Out of the 14 facilities: 6 are correctly progressing

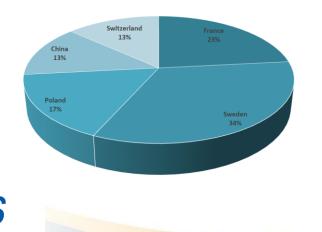
- 1 has largely exceeded its goals (and is now in shutdown)
- 4 did not start access (1 is starting now at M30)


3	have	low	or	very	' low	access
---	------	-----	----	------	-------	--------

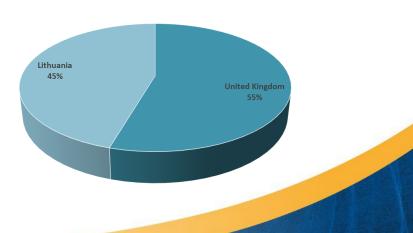
WP	Facility	Projects	Ann 1	lleare p ^o	Ann 1	Access	App 1	Fraction	Fraction	Fraction	
VVP	Facility	n°	Ann. 1	Users n°	Ann. 1	units	Ann. 1	projects	users	units	
WP9	MagNet	4	8	22	40	1072	<i>1920</i>	0.50	0.55	0.56	ok
VVP9	Gersemi	0	8	0	56	0	2880	0.00	0.00	0.00	not started
WP10	HiRadMat	6	5	38	20	1632	200	1.20	1.90	8.16	high
VVPIO	M-branch	3	8	24	48	104	480	0.38	0.50	0.22	ok
	SINBAD	0	9	0	36	0	630	0.00	0.00	0.00	not started
	IPHI	2	12	13	72	112	1440	0.17	0.18	0.08	very low
WP11	ANKA	4	8	10	64	216	480	0.50	0.16	0.45	ok
	FLUTE	2	8	9	40	76	320	0.25	0.23	0.24	low
	VELA	2	14	16	56	80	336	0.14	0.29	0.24	low
WP12	HNOSS	2	4	18	44	1330	2880	0.50	0.41	0.46	ok
VVPIZ	XBOX	2	4	13	64	1680	6000	0.50	0.20	0.28	ok
	LIDYL	2	4	5	40	152	640	0.50	0.13	0.24	ok
WP13	LULAL	2	6	0	36	0	480	0.33	0.00	0.00	not started
	APOLLON	0	6	0	48	0	180	0.00	0.00	0.00	not started
		31	104	168	664	6454	18866	0.30	0.25	0.34	

TNA graph




Distribution of users by home country

Distribution of users by home institute country in WP9


Distribution of users by home institute country in WP11

Distribution of users by home institute country in WP12

Distribution of users by home institute country in WP13

What happened

We have been overambitious, and our ambitions have been limited by two facts:

- 1. Some of the advanced test stands were too advanced prone to technical problems that have delayed their start-up and operation.
- 2. While facilities that were operating in the past have an established user base, for new facilities it takes time (and effort) to advertise and to attract users.

While we can do nothing for the technical problems, we have invested a lot of effort in advertising our facilities: web site, article in Acc. News, poster shown at conferences and meetings, leaflet, direct contacts,...

TESTING OFFERED Material testing

Magnet testing · Electron & proton beam testing Radiofrequency testing Plasma beam testing

User aroups must disseminate their results and acknowledge the ARIES project accordingly.

international organisation or to remote users

HOW TO APPLY

SUPPORT OFFERED Project members may be reimbursed User Group Leaders are invited to contact the for travel and accommodation and Facility Coordinator of their chosen installation prior will be provided with technical and to completing a formal application. Further administrative support during their information, including contact details, can be found period of access on the ARIES website.

				A CONTRACTOR
	ELECTRON	AND PROTON B	EAM TESTING	a Alasta Phil a Wiper CER
ANKA e KIT GERMANY ANKA offers users a large electron range between 0.5-2.5 GeV.	FLUTE e KIT GERMANY This linac offers electron energies of 7 MeV and 40-50 MeV.	IPHI e CEA FRANCE The high-intensity proton injector offers a beamline of 3 MeV.	SINBAD e DESY GERMANY This linac will offer ultra short electron beams, up to 100 MeV.	VELA & STFC UNITED KINGDOM VELA offers the ability to tailor the beam, set-up & shielding.
MAGI	NET TESTING		PLASMA BEAM	For further detail
GERSEMI • FREIA SWEDEN Gersemi is a vertical cryostat for device characterization with liquid helium.	MAGNET e C SWITZERLAND MagNet offers horizontal benches, liquid & nitrogen cool	rical test A helium p ing. fi	TESTING APOLLON & LULI RANCE POLLON is a multi- W facility offering oupling of up to pur beams. The pocility will be open	about the specifi capabilities of eac facility, the contac details for eac Facility Coordinato and information o how to apply, pleas
MATER	AL TESTING		users in 2018. ULAL & ULUND	visit the ARE website
HIRADMAT e CER SWITZERLAND HiRadMat offers a 440 GeV proton beam & heavy ion beams up to 21 kJ.	N UNILAC & G GERMANY The UNILAC M- features 3 ion I lines & various analysis techni	SI	ULAL offers advanced, ultra- sers, Electron seam of 100-200 MeV available.	ARIES
RADIOFREC	DUENCY TEST		JHI100 e CEA	
HNOSS & FREIA SWEDEN A horizontal cryostat where users can characterize 1-2	XBOX • CER SWITZERLAND Klystron-based band test stani high-gradient i power structure	X- 1 x- 1 ds test c k high- 1	PA-UHI00 provides the nost intense beam at he UDYL laboratory, at around 75 MeV. Suited o ultra-high intensity experiments.	

Perspectives for the underperforming TA

- Gersemi at Uppsala Univ.: the leak on the cryostat should be repaired this month. 3 projects already approved and ready to start. Will hopefully start soon but will probably not be able to reach the target.
- Sinbad at DESY: start of the facility was expected in spring 2019. Commissioning is being completed, and is actually only few months late. However, there are no experimental requests at the moment.
- APOLLON at CNRS: waiting for the nuclear safety permission to start operation. Some teams are ready to start but the initial date cannot be predicted.
- LULAL at Lund Univ.: has finally completed upgrade of laser energy. Two experiments are approved and ready to start in November.

The situation is improving, but still some TA's will likely not reach their goal.

Some others will instead exceed their goal. Is a compensation possible, and is there any rule for this compensation?

