Prospects for combined Higgs measurements at the HL-LHC with the ATLAS detector

INTRODUCTION
- Detailed measurements of Higgs boson properties are an important motivation for the High Luminosity LHC (HL-LHC).
- Prospects for measuring Higgs boson cross sections, signal strengths, branching ratios and determining couplings to individual fermions and bosons were studied for the HL-LHC with 3000 fb$^{-1}$, extrapolating the Run 2 analyses with 36 fb$^{-1}$ or 80 fb$^{-1}$.

ANALYSIS STRATEGY
- Five main production modes (ggF, VBF, WH, ZH, ttH) and seven different decay channels (H → γγ, H → bb, H → ZZ, H → WW, H → ττ, H → μμ, H → Zγ) are considered.
- Event categories based on event topology and kinematics to separate the different production processes.
- Event yields scaled to 3000 fb$^{-1}$ and taking into account the change in total cross sections from 13 to 14 TeV.

RESULTS
- **Global signal strength:**
 - Including uncertainties in predicted cross sections and BRs.
 - Relative uncertainty
Total	Stat	Exp.	Sig. theory	Bkg. theory
μ	2.5%	2.4%	0.6%	1.3%
▶	1.7%	1.0%	1.3%	1.0%

- **Production cross sections (Assuming SM BRs)**
- **Production-modes XS in different decay channels**

- **Branching ratios (Assuming SM cross section)**

- **Coupling vs. particle mass**
 - κ_F constrained to be positive.
 - No BSM contribution to Higgs boson total width.
 - The effective couplings κ_F and κ_V and the total width modifier κ_H are expressed in terms of κ_F and κ_V.

- **Generic kappa model with BSM in total width**
 - With BSM contribution to the Higgs boson total width.
 - The ggF, H → gg, H → Zγ and H → γγ loop processes are parametrised using the κ_g, $\kappa_{Zγ}$, $\kappa_{γγ}$ modifiers.
 - $\kappa_{Wγ}$, $\kappa_{Zγ}$ ≤ 1.

CONCLUSION
- The precision of the cross sections on the main production modes and the branching ratios of the main decay channels are about 2–8%.
- Not only W(Z) H, H → γγ but also V(tt) H, H → ZZ* and the two rare decays (H → μμ, H → Zγ), will still be limited by statistical uncertainty.

REFERENCES