Search for neutral long-lived particles decaying into displaced jets in the ATLAS calorimeter

Motivation for Long-Lived Particle Searches
- Long-lived particles (LLPs) have finite lifetimes τ such that $c\tau \gtrsim 10 \mu$m
- Many theories aimed at resolving fundamental mysteries such as dark matter, baryogenesis, neutrino masses, and naturalness predict the existence of neutral LLPs beyond the Standard Model (SM) [1]
- Most LHC searches focus on promptly decaying particles and could overlook the unique detector signatures of LLPs

Results
- Event Selection
 - At least one signal jet candidate must match a triggering HLT jet
 - Limits compared to a separate search at short lifetimes in Figure 12
 - Event is cut if time of signal or BIB jet candidates not consistent with IP collision

Backgrounds
- QCD multijet events with neutral hadrons are the dominant background due to large cross section
- Beam-induced background (BIB) results from particles traveling nearly parallel to the beamline upstream from ATLAS, as illustrated in Figure 3
- Cosmic rays can also fake displaced jets

Event Selection
- Two jets classified most signal-like by BDT are considered signal jet candidates
- At least one signal jet candidate must match a triggering HLT jet
- Event is cut if time of signal or BIB jet candidates not consistent with IP collision
- Low-E_T: selection
 - Complete visible with $E_T(j_1) > 160$ GeV, $p_T(j_2) > 60$ GeV, $\Sigma E_T(j) > 2.5$, $E_T^{\text{miss}} < 0.6$
 - 1 and 2 refer to the jet candidates
- H_T^{miss} is the transverse component of the vector sum of the momenta of all jets with $p_T > 30$ GeV, and H_T is the scalar sum of their p_T
- Event BDT output shown in Figures 7 and 8

Full Run 2 Analysis Plans
- Full analysis workflow preserved in RECAST framework
 - Using to reinterpret with new signals
 - Low-E_T, trigger was active for only part of 2016 but all of 2017-2018
 - Replacing per-jet BDT with a deep neural network to identify displaced jets
 - Long short-term memory (LSTM) architecture
 - Uses information from topoclusters, tracks, and muon segments
 - Studying channels that combine in-calorimeter decays with other LLP detector signatures in order to improve limits and extend to lower or higher lifetimes
 - For example, one LLP decaying in the calorimeter and the other decaying within the inner detector into two nearly trackless jets (Figure 14)

References
[2] A. Manousos et. al., ATL-SOFT-SLIDE-2016-832
Mason Profitt (University of Washington, Seattle) for the ATLAS Collaboration