Object reconstruction and event selection

- **Object reconstruction**
 - **Working points efficiency:**
 - Loose muon: highly efficient
 - Medium electron: 80%
 - Medium photon: 80%
 - Medium jet: 95%

- **Good Muon selection**
 - Tight muon
 - Relative Particle-Flow isolation < 0.15
 - $p_T > 20$ GeV, $|\eta| < 2.4$

- **Good Electron selection**
 - Medium electron
 - $p_T > 25$ GeV, $|\eta| < 2.5$

- **Good Photon selection**
 - Medium photon
 - Conversion-safe electron veto
 - $p_T > 20$ GeV and $|\eta| < 1.442$ or $1.56 < |\eta| < 2.3$

- **Event selection**
 - Two or only two same-flavor good leptons
 - Three leptons veto
 - One good photon with $p_T > 20$ GeV
 - Two jets with $p_T > 30$ GeV
 - 70 GeV < M_{jj} < 180 GeV
 - $M_{jj} > 100$ GeV

- **Signal regions**
 - 500 GeV $< M_{jj} < 400$ GeV
 - $M_{jj} > 500$ GeV
 - $|\Delta p_T| > 0.25$

- **Optimization selection**
 - $|\Delta \eta| < 0.9$
 - $|\Delta \phi| > 1.9$

Background estimation

- Background processes estimated from simulation are normalized to the best theoretical cross section prediction and all of them are reweighted to correct pileup, lepton, photon and trigger efficiencies.
- Irreducible background QCD Zγ normalization is significantly constrained by data in a low M_{jj} control region.
- A data-driven method is used to estimate non-prompt photon contribution.

- A fit was performed using the shape of σ_{data} (the shower shape variable) for data, true and fake photons.

- Build non-prompt sample by inverting one of medium cut-based photon variable with corresponding loose cut-based value while keep others invariant.
- For each event in this non-prompt sample, a photon p_T dependent weight is applied

Fiducial cross section

- $\sigma_{\text{fiducial}} = \sigma_{\text{generator}} \cdot H_{\text{signal}} - \sigma_{\text{generator-to-fiducial}}$
 - H_{signal} is the best fit signal strength which is 0.65 ± 0.24 for EWK and 0.91 ± 0.19 for EWK+QCD.
 - $\sigma_{\text{generator-to-fiducial}}$ is the cross section computed by the generator (MadGraph & aMC@NLO) which is 4.97 ± 0.25 (scale) ± 0.14 (PDF) for EWK and 15.7 ± 1.7 (scale) ± 0.2 (PDF) for EWK+QCD within the fiducial region acceptance.
 - Expected to fail bias is the efficiency to go from the generator cuts to the fiducial cuts.

Limits on anomalous quartic gauge couplings

SM Lagrangian can be extended with higher dimensional operators maintaining SU(2)×U(1) gauge symmetry.

$\mathcal{L}_{\text{new}} = \mathcal{L}_{\text{SM}} + \sum_i \frac{\lambda_i}{\Lambda^4}$

- Operator \mathcal{L}_{new}, \mathcal{L}_{SM}, and \mathcal{L}_{SM} were considered.
- For each λ_i value, the ratio of λ_i at SM was computed for every $m_{3/2}$ bin and a fit was performed.
- Considering a test statistics test: $\chi^2_{\text{expected}} = -2 \ln (\mathcal{L}_{\text{expected}}/\mathcal{L}_{\text{SM}})$
- Extract the limits directly using the delta log-likelihood function $\DeltaLL = \chi^2_{\text{expected}}/2$.
- The 95% CL limit on a one dimensional aQGC parameter corresponds to a value of 3.84.