Summary

- **Single hit resolution**
 - For the 25 µm pixels:
 - \(\sigma_{\text{tot}}(\phi) = 2 \mu \) m
 - Maintained after full layer 3 lifetime fluence: \(\sigma_{\text{tot}}(\phi_{\text{eq}} = 2 \times 10^{15} \text{ cm}^{-2}) = 3 \mu \) m

Dependence of optimal angle from fluence and bias voltage needs to be taken into account

Intrinsic resolution

- Non-irradiated, 120 V, optimal angle
 - \(\sigma_{\text{tot}} = 2.4 \pm 0.6 \mu \) m
 - \(\sigma_{\text{tot}} = 2 \pm 0.2 \mu \) m

- Irradiated sensors:
 - CERN PS @ 3.3 \(\times \) 10^{15} p/cm^2 (\(\phi_{\text{eq}} = 2.1 \times 10^{15} \text{ cm}^{-2} \)) → Layer 3
 - Ljubljana TRIGA reactor (\(\phi_{\text{eq}} = 4 \times 10^{15} \text{ cm}^{-2} \)) → Layer 3 < \(\phi_{\text{eq}} < \) Layer 2

Single hit resolution extraction

- From the uncertainty propagation:
 - Uncertainty on single hit \(\Delta s_{B} \) independent from \(\Delta s_{C} \) and \(\Delta s_{A} \)
 - For non-irradiated sensors
 - \(\Delta s_{B} = \Delta s_{C} = \Delta s_{A} = \Delta s \)
 - For irradiated sensors
 - \(\Delta s_{B} = \Delta s_{C} = \Delta s_{A} = \Delta s \)

The Phase-2 Inner Tracker

- Radiation hard
- Thin n/p sensors
- 6 times smaller pixels
- Increased granularity
- Increased pseudo-rapidity coverage

Tested HPK planar pixel sensors

- 150 µm thickness & 100 x 25 µm^2
- Bump bonded to PSI ROC4SENS analog ROC

Why precision resolution measurements?

- What is the resolution of the small pitch pixel sensors?
- Does resolution degrade with radiation damage?
- How to measure the spatial resolution with 25 µm pitch?

“The DREIMASTER”

- 3 parallel planes of sensors
- Does not rely on an external reference tracking detector
- Resolution measurement by the triplet method
- Measurements @ DESY test beam facility → electron beam @ 1-6 GeV

Single hit resolution

- Non-Irradiated @ 120 V, room temperature
- Irradiated @ 800V, cooled @ ~ -24°C
- Foreseen Lorentz angle in CMS: 11° @ 300V before irradiation

Incline angle dependence on beam incidence angle

- \(\Delta s_{A} = 0.03 \pm 0.01 \mu \) m, proton, 600 V, optimal angle
- \(\Delta s_{B} = 0.07 \pm 0.05 \mu \) m, proton, 600 V, optimal angle

Optimal angle for charge sharing

- \(\text{Optimal angle for } \sigma = \text{pitch} \times \text{thickness} / \text{pitch} = 9.5° \)

Irene Zoi for the CMS Tracker Group

- iris.zoi@cern.ch