

Updated measurement of decay-time-dependent CP asymmetries in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays

*on behalf of the LHCb Collaboration

1. Motivation

- CP violation in charm decays very small
- Significant enhancements due to new physics possible
- Charm hadrons: unique opportunity to measure CPV in systems containing uptype quark
- Discovery of direct CPV in charm decays

$$- (\sim 10^{-3})[1]$$

- No evidence of indirect CPV
 - Expected scale $(10^{-4} 10^{-5})[2, 3]$
- A_{Γ} highest precision probe of CPV in charm mixing

$$\mathbf{A}_{\Gamma}(f) = \frac{\hat{\tau}(\bar{D}^0 \to f) - \hat{\tau}(D^0 \to f)}{\hat{\tau}(\bar{D}^0 \to f) + \hat{\tau}(D^0 \to f)}$$

3. Analysis strategy

- 1. Select a clean $B \to \overline{D}^0 \mu X$ sample
- 2. Split data in approximate equi-populated decay-time bins
- 3. Simultaneous fit to the D^0 and $\bar{D^0}$ mass distribution to determine the asymmetry between signal yields
- 4. Fit the yield asymmetry vs decay-time
- Validate analysis strategy on $D^0 \to K\pi$ (no CPV, $A_{\Gamma}=0$)

4. Selection

Around $9 \times 10^6~KK$, $3 \times 10^6~\pi\pi$ and 76×10^6 $K\pi$ (control channel) events after selection.

References

- [1] LHCb Collaboration. Observation of CP violation in charm decays, Phys. Rev. Lett. 122, 211803
- [2] M. Bobrowski, A. Lenz, J. Riedl, and J. Rohrwild. How large can the SM contribution to CP violation in $D^0 - \bar{D}^0$ mixing be?, J. High Energ. Phys. 2010, 9 (2010)
- [3] Grossman, Yuval and Kagan, Alexander L. and Nir, Yosef. New physics and CP violation in singly Cabibbo suppressed D decays, Phys. Rev. D 75, (2007) 036008.
- [4] LHCb Collaboration. Updated measurement of decaytime-dependent CP asymmetries in $D^0 \rightarrow K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays, Phys. Rev. D **101** (2020) no.1, 012005

2. How to measure A_{Γ} ?

• Identifying flavor of the D-meson:

Semileptonic $B \rightarrow D\mu$ decays are used to tag the flavor of the D-meson.

• Estimating time-dependent asymmetry:

$$A_{CP}^{RAW}(t) = \frac{N(\bar{D}^{0}(t) \to f_{CP}) - N(D^{0}(t) \to f_{CP})}{N(\bar{D}^{0}(t) \to f_{CP}) + N(D^{0}(t) \to f_{CP})} = A_{CP}(t) + A_{\mu} + A_{prod} + O(A^{3})$$

$$A_{CP}(t) = \frac{\Gamma(\bar{D}^{0}(t) \to f_{CP}) - \Gamma(D^{0}(t) \to f_{CP})}{\Gamma(\bar{D}^{0}(t) \to f_{CP}) + \Gamma(D^{0}(t) \to f_{CP})} \approx A_{CP}^{dir} - \frac{t}{\tau} A_{\Gamma}$$

5. Mass Fit

 $\pi\pi$: $\sim 1.5 \times 10^5$ events per decay-time bin

- 1. Create D^0 and D^0 subsamples by muon tag
- 2. Divide data in 20 decaytime bins
- 3. Estimate asymmetry by simultaneous fit to D^0 and \bar{D}^0 mass spectrum in each decay-time bin

6. Systematics

Mistag: unrelated muons with the D^0 candidates lies pseudoexperiments (PE). between 1% and 3%.

Generate PE with realistic mistag fraction and assess impact on fit parameters.

probability to wrongly associate Systematics are studied by large samples of

Source of uncertainty	$A_{\Gamma}(K^{+}K^{-})$ [10 ⁻⁴]	$A_{\Gamma}(\pi^{+}\pi^{-})$ [10 ⁻⁴]
Decay-time resolution and acceptance	0.3	0.4
Mistag probability	0.3	0.6
Mass-fit model	0.3	0.3
Total	0.5	0.8

No additional Several crosschecks systematics were observed performed

7. Final result

This analysis[4]:

$$A_{\Gamma}(K^{+}K^{-}) = (-4.3 \pm 3.6 \pm 0.5) \times 10^{-4}$$

 $A_{\Gamma}(\pi^{+}\pi^{-}) = (2.2 \pm 7.0 \pm 0.8) \times 10^{-4}$

Combination with previous LHCb measurements:

$$A_{\Gamma}(K^{+}K^{-}) = (-4.4 \pm 2.3 \pm 0.6) \times 10^{-4}$$

 $A_{\Gamma}(\pi^{+}\pi^{-}) = (2.5 \pm 4.3 \pm 0.7) \times 10^{-4}$

No indication of CP violation in mixing or in the interference between mixing and decay in neutral D-decays.