

LHCb's Real-time Analysis Project and Development of Fast Tracking

André Günther, Physikalisches Institut, Heidelberg University

LHCb's upgraded tracking system

Figure 3: LHCb track types produced by different reconstruction algorithms. Long tracks have the best momentum estimate. [1]

HLT1 Long Track Reconstruction

- on reconstruction efficiency of highmomentum long tracks from B mesons
- is able to reconstruct tracks at 30 MHz event rate

Idea: almost no magnetic field within last SciFi station

- use momentum estimate from upstream track to open search window
- find hit doublet on straight line (red)
- extrapolate to other SciFi stations
- collect hits close to extrapolated position
- perform fit of candidate

Tracking Efficiency on Simulation

Contact and References

André Günther: p.gunther@cern.ch [1] LHCB-TDR-015

LHCb-PUB-2014-001 LHCb-DP-2019-002 LHCB-TDR-018

Main Upgrade Challenge: An Efficient Trigger

Figure 1: Signal rates of two-track combinations reconstructed by the Software Trigger as a function of transverse momentum cuts. Adapted from LHCB-PUB-2014-027.

- signal rates alone higher than current raw data storage capability
- hardware trigger selection (e.g. transverse momentum cut) not effective anymore
- partial and full event reconstruction needed to efficiently select interesting pp collisions
 - \rightarrow 40 MHz read-out (40× Run II rate)
 - + Software Trigger with Real-time Analysis
- reduced event model necessary
 - → selectively store event information with Turbo persistence model

Real-time data processing @ LHCb

Figure 2: LHCb data processing scheme during Run III.

- "real-time" means period between collisions and permanent data storage
- first trigger stage (HLT1) performs partial event reconstruction
- online detector calibration and alignment
- second trigger stage (HLT2) provides offline-like reconstruction quality

Turbo persistence model

- only persist objects involved in trigger decision
 - \rightarrow allows to store $5 \times$ higher event rate
- persistence of additional objects can be requested

Figure 4: Turbo persistence model with different levels of persistence. [3, 4]

HLT2 Long Track Reconstruction - Forward Tracking

Figure 5: Sketch of the track reconstruction in the SciFi stations. [2]

- focuses on long track reconstruction
- efficiency provides tracks with best momentum
- resolution event throughput has to be im-

proved!

Algorithm:

- extrapolate VELO tracks to SciFi stations
- open symmetric hit search window and collect hits
- project hits onto reference plane
- select hit clusters (track candidates)
- perform fit of candidate

Improvements:

- more precise VELO track extrapolation
 - → collect less wrong hits
 - → 20% event throughput increase
- store hits in "struct-of-array" memory layout
 - → use SIMD CPU instructions
 - \rightarrow 15% event throughput increase