

Introduction to Isolation Forest

Salvatore Di Carlo

16/12/2019

Outline

• What is the Isolation forest technique:

- Decision trees
- Random forest
- Isolation forest
- Why it is useful:
 - Example: wire scanner calibrations
 - Outliers detection
- How to use it:
 - Code snippet
- Conclusion

Decision trees

- Used for classification/regression.
- Learns a hierarchy of if/else tests.
- The N samples will be split until each leaf contains different values of the feature X.
- The argument generalizes to dataset containing several features X1,X2,X3...
- The algorithms chooses the split that minimizes the variance within the leaves after the split.
- Random forests are ensembles of several (different) decision trees and the prediction is the average results.

N pure leaves (if the samples are different)

The Isolation Forest technique

- The Isolation Forest is a technique for the detection of outlier samples.
- Since outliers have features X that differ significantly from most of the samples, they are isolated earlier in the hierarchy of a decision tree.
- Outliers are detected by setting a threshold on the mean length (number of splits) from the top of the tree downwards.
- The Scikit-learn implementation provides a score for each sample that increases from -1 to +1 with the number of splits.

Example: Wire Scanners calibrations

Wire scanners are calibrated by using a laser in order to transform the angular coordinate α into the cartesian coordinate *y*.

Outliers detection

- The algorithm is applied to our dataset of calibrations and returns a score for each sample.
- The sample with lower score are likely to be outliers.
- The outlier threshold on the score must be set by the user.
- In our case, we can set the threshold in a way that the parameter b from the fitting for the inliers (total dataset without the outliers) is reasonably close to the nominal fork length.

Inliers/Outliers comparison

66 74

75

81

86 92

98 103 142

146

148

- The initial dataset contained 242 samples;
- Choosing a threshold score of 0.04 provides 18 candidate outliers
- The mean of each feature for the inliers is significantly different from the corresponding value for the outliers;
- b (fork length) can should be either about 150 mm or about 180 mm.

INLIEKS												
		A	v. Speed [rads-1]	а	b	C	:	d	res_r	ms_fun	res_	rms_pol
	count		224.000000	224.000000	224.000000	224.00000	224.000	000	224.000000		224.000000	
	mean		93.879464	90.783892	161.658324	1.009472	. 1.545	312	0.012232		0.011963	
	std		27.826798	9.015463	15.786919	0.009238	0.146	737	0.017091		0.016969	
				IERS								
Av. Speed [rads	-1]	Scan		Serial	a	b	с		d	res_rms_	fun	res_rms_pol
1	126	IN	PSB_PXBWSRA0	05-CR000002	-6.949080	45.151601	2.807945	-2.51	1018	1.778	010	14.142109
1	120	OUT	PSB_PXBWSRA0	05-CR000002	-7.276314	44.814874	2.835180	-2.556	6390	1.783	502	15.824297
1	123	IN	PSB_PXBWSRA0	05-CR000006	56.274344	117.166833	1,212458	1.339	9496	0.122	250	1.371147
	53	IN	PSB_PXBWSRA0	05-CR000007	12.296238	57.868795	2.381853	0.349	9101	1.480	598	4.753168
	53	IN	PSB_PXBWSRA0	05-CR000007	-16.377113	36.291998	4.099571	-1.572	2101	6.806	953	14.810047
1	102	IN	PSB_PXBWSRA0	05-CR000007	-21.596523	37.521772	4.212057	-1.873	3593	9.329	634	25.449834
	112	IN	PSB_PXBWSRA0	05-CR000007	-21.127661	37.151954	4.423333	-2.016	6384	9.497	816	29.187143
	59	OUT	PSB_PXBWSRA0	05-CR000007	-16.379993	36.291681	4.099854	-1.571	1310	6.809	331	14.815095
f	106	OUT	PSB_PXBWSRA0	05-CR000007	-21.563820	37.374712	4.318452	-1.951	1819	9.523	586	27.950754
1	122	OUT	PSB_PXBWSRA0	05-CR000007	-21.615759	37.527720	4.212631	-1.87	1267	9.341	669	25.516649
	110	IN	PS_PXBWSRB0	11-CR000001	100.594327	179.214612	1.012507	0.799	9985	0.076	210	0.075414
	57	OUT	PS_PXBWSRB0	11-CR000001	97.175192	175.315330	1.028967	0.770	0325	0.023	056	0.022058
1	107	OUT	PS_PXBWSRB0	11-CR000001	112.164005	191.693287	0.964516	0.898	5065	0.098	010	0.092833
	115	OUT	PS_PXBWSRB0	11-CR000001	102.035065	180.732285	1.006146	0.817	7653	0.019	974	0.019211
	116	IN	PS_PXBWSRB0	11-CR000003	95.899272	173.410579	1.036613	1.527	7444	0.058	205	0.055469
1	127	OUT	PS_PXBWSRB0	11-CR000003	96.537273	174.022595	1.034126	1.533	3044	0.059	705	0.057539
	111	OUT	PS_PXBWSRB0	11-CR0000	126.051426	207.808798	0.904873	1.67	5835	0.051	006	0.044033
	112	OUT	PS_PXBWSRB0	11-CR000013	97 445857	175 353764	1 030407	1.53	7276	0 053	843	0.050050

Code snippet

Main model parameters:

- behaviour: this parameter has not effect, is deprecated, and will be removed;
- bootstrap: randomly re-sample initial sample with replacement;
- contamination: % of outliers (if known), no effect on score;
- max_features: # of randomly selected features at each node;
- max_samples: # of samples to draw from the initial samples for each tree;
- n_estimators: # of trees in the forest;
- n_jobs: # of cores used for parallelization, -1 means max available;
- random_state: sets the seed for reproducibility;
- verbose: control the verbosity of the output;
- warm_start: reuse the solution from the previous call and add more trees to the old ensemble.

import numpy as np import pandas as pd

%matplotlib notebook
import matplotlib.pyplot as plt
import matplotlib.ticker as tck

from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import IsolationForest

df = pd.read_csv('calibration_table_cos.csv')
df = df.drop('Unnamed: 0', 1)
X = df.copy()

X['Serial_Scan'] = X['Serial'] + "_" + X['Scan']

cat_cols = ['Scan', 'Serial', 'Serial_Scan']

label_encoder = LabelEncoder()

```
for col in cat_cols:
    X[col] = label_encoder.fit_transform(X[col])
```

```
if_model.fit(X)
```

y_pred = if_model.predict(X)
y_scores = if_model.decision_function(X)

outliers_index = np.where(y_scores < 0.04)[0]</pre>

df_inliers = df[~df.index.isin(outliers_index)]
df_outliers = df[df.index.isin(outliers_index)]

Conclusion

- Decision trees/forests provide an intuitive and useful tool in machine learning that can be used both for data classification and regression.
- The isolation forest technique is useful to isolate outliers, i.e., samples that significantly differ from the rest of the data.
- As an example we isolated some outlier using the wire scanner calibrations dataset, and the corresponding code snippet was provided.
- A certain degree of arbitrariness remains in setting the threshold score for outliers. Plotting a histogram of the score can help in deciding the optimal value.

home.cern