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Outline
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• Fundamentals 

• Likelihood ratio  

• Statistical tests 

• Bayesian methods

- Measures 
- Probability 
- Random variables 
- Pdfs   
- Bayes

- Parameter estimation 
- Results combination

- p-values 
- Limits

- MCMC, systematic errors
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Disclaimer
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I am not an expert in statistics

Maybe a practitioner with a longstanding experience in experiments carried out 
underground

Material drawn from R.Barlow, G.D’Agostini, J.Orear, G.Cowan and F.James 
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Some books
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• R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in  the Physical Sciences, 
Wiley, 1989 

• G.D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Introduction, World Scientific 
Publishing 2003. 

• Luca Lista, Statistical Methods for Data Analysis in Particle  Physics, Springer, 2017. 
• F. James., Statistical and Computational Methods in Experimental  Physics, 2nd ed., World 

Scientific, 2006 
• G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998



Statistics
Why we need it
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From theory to experiment
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Experiment:

⃗F = − G
mM
r2

̂r

Theory (model, hypothesis):

F = kx

Data  selection
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From theory to experiment
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Experiment:Theory (model, hypothesis):

Data  selection
Simulation  of detector  and cuts



SOUP2021 - Statistics for Underground Physics - June 28, 2021

From theory to experiment
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Theory (model, hypothesis): Experiment:

Data  selection
Simulation  of detector  and cuts
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From theory to measurement
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x

Μ0

Experimental  
response

?

Given µ (exactly known) we are uncertain about x

x

Μ

Uncertain Μ

Experimental  
response

?

Uncertainty about µ makes us more uncertain about x

‣ First observation: resulting data are sparse

‣ Measurements are uncertain!
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Inference
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x

Μ

Which Μ?

Experimental  
observation

x0

?

• The observed data is certain: → ‘true value’ uncertain. 
• Where does the observed value of x comes from?

x

Μ

x0

Μ  given x

x given Μ

• Given x, µ is uncertain
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Measurements goal
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Our (physicists) task is to 
• Describe/understand the physical world ⇒ inference of 

laws and their parameters 
• Predict observations ⇒ forecasting

Uncertainty:
• All measurements are affected by uncertainty 
• Measurements outcome is unpredictable

Uncertainty and probability:
• Physicists consider absolutely natural and 

meaningful statements like 
 eV = 90% 

 y =90% 
… 

• however such statements are considered 
blaspheme to  statistics gurus

P(mνe
) < 1.1

P(τββ0ν
1/2 (76Ge)) < 1026

Inference:
• Given the past observations, in general we are 

not sure  about the theory parameter (and/or 
the theory itself) 

• Even if we were sure about theory and 
parameters, there  could be internal (e.g. Q.M.) 
or external effects  (initial/boundary conditions, 
‘errors’, etc) that make the  forecasting 
uncertain.

Indirect probability
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Inference
• Observe events and gather a set of physical quantities: temperatures, voltages, … 
➡ Extract particle properties: momenta, nature, …

Issues: small numbers, noise, backgrounds, uncertainties …

We need a clear definition of PROBABILITY and a coherent scheme

• Compare observed distributions to predictions of theory 

➡ Estimate the free parameters of the theory

• Quantify the uncertainty in the estimates 

➡ Assess level of agreement between observed data and a given theory
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Statistics
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“A branch of applied mathematics concerned with the  collection and interpretation of 
quantitative data and the use  of probability theory to estimate population parameters”  

Probability theory:
• Essentially OK when we only consider the  mathematical apparatus. 
• Inference: messy 
• Traditionally, a collection of ad hoc prescriptions  

. . .  accepted more by authority than by full awareness of  what they mean 
• We get often confused between good sense and  statistics education

Inference: learning about theoretical objects from  experimental observations

• Inferential aspect is enhanced … 
• Though we (physicists) are usually not interested in population parameters, but rather on 

physics quantities, theories, and so on.



Probability
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Probability basics
Consider a set S with subsets A, B, ...

Kolmogorov  axioms (1933)
valid in all schemes

Define conditional probability of A given B:

Set theory 
(Venn diagrams)

Define subsets A, B independent if: 

15
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Probability schemes (interpretations)
I. Relative frequency 

A, B, ... are outcomes of a repeatable experiment 

16

• Both interpretations consistent with Kolmogorov axioms. 
• Both have pro and cons: frequency interpretation largely diffused,  but subjective probability can 

provide more natural treatment of  non-repeatable phenomena (systematic uncertainties, 
unfolding,…)

II. Subjective probability 
A, B, ... are hypotheses (statements that are true or false)
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Frequentist Statistics
In frequentist statistics, probabilities are associated only with data, i.e., outcomes 
of repeatable observations  

Probability = limiting frequency   
Therefore expressions (probabilities) like 
➡ P (ββ0ν exists), 
➡ P (m(νₑ) < 1.1 eV) 
➡ P(…) 

etc. are either 0 or 1, but we don’t know which. 
Frequentist statistics tell us what to expect, under  the assumption of certain 
probabilities, about hypothetical repeated observations. 
A hypothesis is preferred if the data are found in a region of  high predicted 
probability

17
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Bayes’ theorem
From the definition of conditional probability we have:

but  soP(A ∩ B) = P(B ∩ A)

• First published (posthumously) by the  Reverend Thomas Bayes (1702−1761) 
• An essay towards solving a problem in the  doctrine of chances, Philos. Trans. R. Soc. 53 (1763) 370; reprinted in 

Biometrika, 45 (1958) 293.

P(A |B) =
P(A ∩ B)

P(B)
P(B |A) =

P(A ∩ B)
P(A)

P(A |B) =
P(B |A)P(A)

P(B)

18
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Total probability

Consider: 
• a subset B of  the sample space S 
• divided into disjoint subsets Ai  such that ∪i Ai = S

B ∩ Ai

Ai

B

S

19

Bayes’ theorem becomes P(A |B) =
P(B |A)P(A)

∑i P(B |Ai)P(Ai)

law of total probability

B = B ∩ S = B ∩ (∪iAi) = ∪i (B ∩ Ai)

P(B) = P( ∪i (B ∩ Ai)) = ∑
i

P(B ∩ Ai)

P(B) = ∑
i

P(B |Ai)P(Ai)

Then
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Bayesian approach

20

Bayes theorem is the ideal tool to manage measurement inversion problem: 
• from effect to cause

Cause

Data

M
od

el ?P(cause |data) =
P(data |cause)P(cause)

P(data)

Let’s avoid philosophical discussions here …

Inversion is straightforward but: 
• priors needed (credibility statements) 
• priors can be updated
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Bayesian Statistics − general approach
In Bayesian statistics, use subjective probability for hypotheses:

posterior probability, i.e.,  after 
seeing the data

prior probability, i.e.,  before 
seeing the data

probability of the data assuming  
hypothesis H (the likelihood)

normalization involves sum  over all 
possible hypotheses

• Bayes’ theorem has an “if-then” character:  
If your prior  probabilities is π(H), then you can get how probabilities change in the light of the 
data. 

• No general prescription for priors (subjective!)

P(H |x) ∝ P(x |H)P(H)

21
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A classical example
• Let’s consider the anti-terrorism tests carried out in the airports and let’s suppose terrorists are 

carrying explosives (T). 
• The test is very effective but not perfect:  

                                       
• Now suppose your test is positive. 
• What is the probability that you are (considered) a terrorist?

P( + |T) = 1 P( + | T̄) = 0.02 P( − | T̄) = 0.98

22

Just to avoid referring 
always to COVID-19

If we do not have any statement about  terrorists, no answer is possible (or better most 
probably you are arrested!)

However a credible guess is that:  and  

Then applying Bayes Theorem we get:  

P(T) = 0.001 P(T̄) = 0.999
P(T | + )
P(T̄ | + )

=
P( + |T)P(T)
P( + | T̄)P(T̄)

=
1 ⋅ 0.001

0.02 ⋅ 0.999
∼ 5 %
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Conclusion

23

The lesson is that if the alternative hypothesis has a very small confidence … 

… data found in a region of  high predicted probability can be irrelevant

P(T)

P(+|T)

However for this we need priors (subjective choice) 



Distributions
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Random variables and probability density functions

• A random variable is a numerical characteristic assigned to an  element of the sample space; can 
be discrete or continuous.

25

• Suppose outcome of experiment is a continuous value x 
 

f(x) is named probability density function (pdf) and 

P(x found in [x, x + dx]) = f(x)dx

∫
+∞

−∞
f(x)dx = 1

• For discrete outcome xi (e.g. i = 1, 2, …) we have 

•   - probability mass function 

•
 - x must take on one of its possible values

P(xi) = pi

∑
i

P(xi) = 1
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Types of probability densities
• Outcome of experiment characterized by several values, e.g. an n-component vector, (x1, ... xn) 

 joint pdf:    f(x1, . . . , xn)

26

• Sometimes we want only pdf of some (or one) of the components 

 marginal pdf:    

x1, x2 independent if    

f(x1) = ∫ . . . ∫ f(x1, . . . , xn)dx2 . . . dxn

f(x1, x2) = f(x1)f(x2)

• Sometimes we want to consider some components as constant 

 conditional pdf: g(x1 |x2) =
f(x1, x2)

f(x2)
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Expectation values
• Consider continuous random variable x with pdf f (x).   
• Define expectation (mean) value as  

     →      (pdf centre of gravity” of pdf) E[x] = ∫ xf(x)dx E[x] = μ

27

• Note: for a function y(x) with pdf g(y):  

E[y] = ∫ yg(y)dy = ∫ y(x)f(x)dx

• Variance:       →     

• Standard deviation:  .     σ ~ width of pdf, same units as x.

V[x] = E[x2] − μ2 = E[(x − μ)2] V[x] = σ2

σ = σ2
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Covariance and correlation
• Define covariance cov[x,y] (also use matrix notation Vxy) as

• Correlation coefficient (dimensionless) defined as

28

• If x, y, independent (i.e.  ) thenf(x, y) = fx(x)fy(y)

• Note: converse not always true.

→ x and y, ‘uncorrelated’
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Correlation (cont.)

29
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Properties summary

30

General:
• Random variable: integer (usually called r ) or real (usually called x) 
• Pr is probability of r . Dimensionless numbers.  

• P(x) is probability density for x.  

• Expectation values  

Position:
• Mean:    
• Mode:   

• Median:  

Scale:

•  
• FWHM=Full Width at Half Max 
• Inter-quartile range

∑ Pr = 1

[P(x)] = [x]−1or∫ P(x)dx = 1

⟨ f⟩ = ∑ f(r)Pror∫ f(x)P(x)dx

μ = ⟨x⟩
P(mode) = max(P(x))

∫
median

P(x)dx = 0.5

σ = ⟨(x − μ)2⟩ = ⟨x2⟩ − ⟨x⟩2

Other stuff:

• Skew:   

• Kurtosis:   

• Moments: 

γ =
⟨(x − μ)3⟩

σ3

γ2 =
⟨(x − μ)4⟩

σ4
− 3

MN = ⟨xN⟩μN = ⟨(x − μ)N⟩

Two variables:
• Covariance:   

• Correlation:   

Several variables:
• Covariance:   

• Correlation:  

Cov(x, y) = ⟨xy⟩ − ⟨x⟩⟨y⟩
ρ =

Cov(x, y)
σxσy

Cij = ⟨xixj⟩⟨xi⟩⟨xj⟩

ρij =
Cij

σiσj
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The Central Limit Theorem

31

Suppose a random variable x is the sum of  several independent identically (or similarly) distributed 
variables x1,x2,x3,…,xN.  Then 
(1) The Mean of the distribution for x is the sum of the means: μ=μ1+μ2+μ3+…+μN 

(2) The Variance of the distribution for x is the  sum of the Variances: V=V1+V2+V3 +…+VN 
(3) The distribution for x becomes Gaussian for  large N

Comments: 
- (1) Is obvious … but pay attention to terms: MEAN! 
- (2) Is simple and explains 'adding errors in  quadrature' 
- (1) and (2) do not depend on the form of  the distribution 
- (3) Explains why Gaussians are 'normal' 
- If you find a distribution which is not  Gaussian, there must be a reason: probably one contribution dominates 
- If a variable has a non-Gaussian pdf you can still apply parts (1) and (2): adding variances, using  

combination of errors, etc. 
- What you can't do is equate deviations  with confidence regions (68% within one sigma  etc) 
- However your variable is probably intermediate  and will be a contribution to some final result → Gaussian by 

(3)
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CLT proof

32

Show that if you convolute P(x) with itself N(→∞) times you get a Gaussian

Given P(x), Fourier Transform is    

Expand and separate:  

Take the logarithm and use    

Get series in k:    

where the κr are the expectation values of xr:    
If x is scaled by factor α,  then  
Fact: The FT of a convolution is the product of the individual FTs. 

So the log of the FT of a convolution is the sum of the logs and . 
To discuss shape, scale by standard deviation  

, vanishes as N → ∞ for r>2. 
So in the large N limit all Kr with r ≥ 3 vanish, and the log of the FT is quadratic 
The FT itself is the exponential of a quadratic, i.e. a Gaussian. 
Transforming, the (back) FT of a Gaussian is also a Gaussian.

P̃(k) = ∫ P(x)eikxdx = ⟨eikx⟩

1 + ik⟨x⟩ +
(ik)2

2!
⟨x2⟩ +

(ik)3

3!
⟨x3⟩ . . .

ln(1 + α) = α −
α2

2
+

α3

3
+ . . .

ln P̃(k) = (ik)κ1 +
(ik)2

2!
κ2 +

(ik)3

3!
κ3 + . . .

κr = ⟨xr⟩
κr → αrκr

Kr = Nκr
K2

K′ 2 = 1, K′ r = Kr / K2
r = Nκr /(Nκ2)r/2
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Some distributions

33

Distribution/pdf Example use in HEP
Binomial  Branching ratio  
Multinomial  Histogram with fixed N 
Poisson  Number of events found  
Uniform  Monte Carlo method  
Exponential  Decay time  
Gaussian  Measurement error  
Chi-square  Goodness-of-fit
Cauchy  Mass of resonance  
Landau  Ionization energy loss  
Beta  Prior pdf for efficiency
Gamma  Sum of exponential variables 
Student’s t Resolution function with adjustable tails
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Poisson

34

Memoryless random source. Mean number μ. Actual number r 

 

Classic examples: Geiger counter clicks. Photomultipliers. Rare 
decays. 
Counterexamples: Photons from lasers. Traffic

P(r, μ) =
e−μμr

r!

Important convolutions:
• Poisson * Poisson = Poisson 

Separate sources add and can be treated  as a single source 
• Poisson * Binomial = Poisson 

A poisson source modified by a binomial  detection efficiency gives a poisson  number of detected events

• Vital fact:   
• Small μ : mode is 0 
• μ > 1: peak develops 
• Distribution has positive skew - tail to high values 
• Large μ:  shape becomes Gaussian

σ = μ
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Gaussian

35

Also known as 'normal distribution' 

 

• (Inaccurately) called the 'Bell curve' 
• μ is mean and mode and median 
• σ is standard deviation 

- 68.27% of area within 1 σ 
       so 1/3 of error bars should miss! 

- 95.45% of area within 2 σ 
- 99.73% of area within 3 σ

P(x; μ, σ) =
1

2πσ
e

(x − μ)2

2σ2

• Describes: large μ Poisson, measurement errors, height, IQ, ... 
• Does not describe: Weight, wealth, ... 
• Vital fact: Thanks to Central Limit Theorem: convolution of N 

random variables P(x) tends to Gaussian for large N, irrespective 
of P(x).
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Binomial

36

Probability of r `successes' from n trials, each with probability p. 

     

with q=(1-p) 
;   

P(r; n, p) = (n
r) prqn−r =

n!
r!(n − r)!

prq1−r

μ = np σ = npq

Limit: n large, p small, np = μ fixed P(r) → Poisson 
Vital Fact: Basically just like tossing coins
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Uniform

37

Generally    

     between    and    

P(x) =
1
a

μ − a/2 μ + a/2

Vital fact: Standard Deviation  σ =
a

12
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Multinomial distribution
Like binomial but now m outcomes instead of two, probabilities are

For N trials we want the probability to obtain: 

n1 of outcome 1, 
n2 of outcome 2, 
⠇ 
nm of outcome m. 

This is the multinomial distribution for ⃗n = (n1, . . . . , nm)

38

Now consider outcome i as ‘success’, all others as ‘failure’ → all ni individually binomial with 
parameters N, pi, for all i 

One can also find the covariance to be
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Exponential distribution
The exponential pdf for the continuous r.v. x is defined by:

Example:  proper decay time t of an unstable particle 

(τ = mean lifetime) 

Lack of memory (unique to exponential):

39
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Multivariate Gaussian distribution

40

Multivariate Gaussian pdf for the vector x⃗ = (x1,…,xn):

x⃗, μ⃗ are column vectors, and x⃗T, μ⃗T are transpose (row) vectors,

For n = 2 this is

where ρ = cov[x1, x2]/(σ1σ2) is the correlation coefficient.
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Chi-square (χ2) distribution
The chi-square pdf for the continuous r.v. z  (z ≥ 0) is defined by

n = 1, 2, ... = number of ‘degrees of freedom’ (dof)

For independent Gaussian xi, i = 1, ..., n, means μi, variances σi2, 

follows χ2 pdf with n dof. 

Example: goodness-of-fit test variable especially in conjunction  with method of 
least squares.

41



SOUP2021 - Statistics for Underground Physics - June 28, 2021

Beta distribution

• Often used to represent pdf of continuous r.v. non-
zero only  between finite limits 

• In Bayesian inference is the conjugate prior 
probability distribution for the Bernoulli, binomial, 
negative binomial and geometric distributions

42

https://en.wikipedia.org/wiki/Bayesian_inference
https://en.wikipedia.org/wiki/Conjugate_prior_distribution
https://en.wikipedia.org/wiki/Conjugate_prior_distribution
https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Negative_binomial_distribution
https://en.wikipedia.org/wiki/Geometric_distribution
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Gamma distribution

• Often used to represent pdf of continuous r.v. nonzero 
only  in [0,∞]. 

• Also e.g. sum of n exponential r.v.s or time until nth 
event  in Poisson process ~ Gamma

43
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Student's t distribution

ν = number of degrees of freedom  (not 
necessarily integer) 

ν = 1 gives Cauchy (Lorentz), 

ν → ∞ gives Gaussian.

44



Estimators
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General properties (1/2)

46

Assume that: 
• We have a sample (x1,x2,,,xn)  from a given population 
• All parameters of the population are known except some parameter θ.  
• We want to determine the unknown parameter θ, from the given observations.  In other words 

we want to determine a number or range of numbers from the observations that can be taken 
as a value of θ.  

• Estimator: a  method of estimation. 
• Estimate: a result of an estimator 
• Point estimation: the estimation of the population parameter with one number

Problem of statistics is not to find estimates but to find estimators 
• Estimator is not rejected because it gives one bad result for one sample. It is rejected when 

it gives bad results in a long run 
• Estimator is accepted or rejected depending on its sampling properties 
• Estimator is judged by the properties of the distribution of estimates it gives rise.
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General properties (2/2)

47

• Since estimator t gives rise to an estimate that depends on sample points (x1,x2,,,xn), the estimate is a 
function of sample points. 

• Sample points are random variables, therefore estimate is random variable and has a probability 
distribution. 

limiting property: convergence to the a fixed value θ0: ∀ small ε,η ∃ n0 s.t. P(|tn-θ0|<ε)=1-η if n>n0

the bias Bθ =E(tn-θ)=E(tn)-θ (expectation value of the estimate error) → 0

V(tn) =E([tn-E(tn)]2) minimum variance unbiased estimator are not always possible.

• We want the estimator to have several desirable properties like: 
- Consistency 

- Unbiasedness 

- Minimum variance

• In general it is not possible for an estimator to have all these properties.
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Parameter estimation (frequentist)
Suppose we have a pdf characterized by one or more parameters (e.g.):

48

x = random variable
θ = parameterf(x, θ) =

1
θ

e−x/θ

• We indicate the estimator with a hat 
- ‘estimator’: function of x1, ..., xn  
- ‘estimate’: the value of the estimator with a particular data set.

Suppose we have a sample of observed values  

We want to find some function of the data to estimate the (most likely set) of parameter(s):      

⃗x = (x1, . . . , xn)

̂θ( ⃗x )
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Properties of estimators

In general they may have a nonzero bias:    

• Desiderata: small variance and small bias 
• In general: impossible to optimize with respect to both; trade-off necessary.

b = E[ ̂θ] − θ

Estimators are functions of the data and thus characterized by a  sampling distribution with a 
given (co)variance:

49

biasedlarge  
variance

best
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Likelihood function and estimator

50

• Common situation in physics: infinite set of hypotheses described by a continuous (set of) 
parameter θ 

 such that  

• Define the Likelihood function 
 

• The most probable value of  is called the maximum-likelihood estimator . 

f(x |θ) ∫ f(x |θ)dx = 1

ℒ(θ) = ∏
k

f(xk |θ)

ℒ(θ) ̂θ

• The rms (root-mean-square) spread of θ about  is a conventional measure of the accuracy 
of the determination 

 

̂θ

Δθ =
∫ (θ − ̂θ)2ℒdθ

∫ ℒdθ

1/2

• The procedure for obtaining the maximum likelihood solution is to solve the M simultaneous 
equations   

   where     
∂w
∂θk

= 0 w = ln ℒ(θ1, . . . , θM)
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Maximum Likelihood (ML) estimators

Possible ML estimators:
• closed-form function of the data 
• (more often) numerically.

51

The most used method for constructing estimators is to take the value of the parameter(s) that maximize 
the  likelihood (or equivalently the log-likelihod):

̂θ = max
θ

L(x |θ)
L or ln(L)

θ1

θ2

θ̂
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Example: exponential pdf (1/2)
• Consider exponential pdf:   ,   with a set of independent data:   f(t |τ) =

1
τ

e−t/τ t1, . . . , tn

52

→   Find ML maximum by setting:  
∂ ln L(τ)

∂τ
= 0

Then the likelihood function is:    L(τ) =
n

∏
i=1

1
τ

e−ti/τ

Define the log-likelihood function as the logarithm of L(τ): w≡ln L(τ) =
n

∑
i=1

ln f(ti |τ) =
n

∑
i=1

(ln
1
τ

−
ti
τ )

L(τ) and lnL(τ) get the maximum at the same τ value

∑
i

(−
1
τ

+
ti
τ2 ) = 0
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Example: exponential pdf (2/2)
Now for the mean and variance:

53

E[t] = ∫
∞

0
tf(t |τ)dt = ∫

∞

0
t
1
τ

e−t/τdt = − e−t/τ(τ + t)
∞

0
= τ

V[t] = ∫
∞

0
(t − E[t])2 f(t |τ)dt = ∫

∞

0
(t − τ)2 1

τ
e−t/τdt = − e−t/τ(τ2 + t2)

∞

0
= τ2

Considering then the ML estimator ̂τ =
1
n

n

∑
i=1

ti

E[ ̂τ] = E [ 1
n

n

∑
i=1

ti] =
1
n

n

∑
i=1

E[ti] = τ

V[ ̂τ] = V [ 1
n

n

∑
i=1

ti] =
1
n2

n

∑
i=1

V[ti] =
τ2

n

… a general result
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Example: binned exponential

54

• In the previous example we considered unbinned data: each occurrence time was available 
separately 

• In many cases data are collected in a histogram: n={n1,…,nN} where nk are the counts integrated over 
the bin width 

• In this case (mainly depending on the number of events) we can use  for  a multinomial or a 
Poisson 

f(t |τ)

Let’s consider a Poisson distribution:   with  

Then  

• Now we should equate to zero the derivative with respect to  and equate solve the corresponding equation. 
• This is a bit cumbersome but can be easily solved numerically (e.g. finding the minimum of -w)

f(nk |τ) = μnk
k e−μk /nk! μk = ∫

tk

tk−1

e−t/τ /τ = e−tk/τ−−tk−1/τ

w = ln L(τ) =
N

∑
i=1

ln f(ti |τ) = ∑
k

(nk ln μk − μk − ln nk!)

τ

Note: the term  does not depend on τ∑
k

ln nk!
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Example: Gaussian distribution

55

Let’s consider the measurement of a physical parameter θ0 , where x is known to have a measuring error σ: 

 

For a set of measurements{xk} each with an error σk: 

f(x |θ0) =
1

2πσ
exp[ − (x − θ0)2/2σ2]

ℒ(θ) = ∏
k

1

2πσk

exp[ − (xk − θ0)2/2σ2
k ]

χ2Then 

 

 or    

w = −
1
2 ∑

k

(xk − θ)2

σ2
k

+ C

∂w
∂θ

= ∑
k

xk − θ
σ2

k
∑

k

xk

σ2
k

− ∑
k

̂θ
σ2

k
= 0

Note: If σk=σ  ̂θ =
∑ xk

N

The maximum Likelihood (ML) solution is therefore  

   i.e. the weighted mean ̂θ =
∑

xk

σ2
k

∑ 1
σ2

k
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ML errors: one parameter

56

It can be shown that asymptotically (i.e. for large numbers) ℒ approaches a Gaussian: 
 

where  is the rms spread of θ about θ̂ 
ℒ(θ) ∝ exp[ − (h/2)(θ − ̂θ)2]

1/ h

In case ! is not Gaussian (constant second derivative) we can   

consider the average error:     
∂2w
∂θ2

=
∫ (∂2w/∂θ2)ℒdθ

∫ ℒdθ

ML Parabolic error

Therefore 

,      ,   and      

and thus 

w = −
h
2

(θ − ̂θ)2 + C
∂w
∂θ

= h(θ − ̂θ)
∂2w
∂θ2

= − h

Δθ = [−
∂2w
∂θ2 ]

−1/2

error combination law

When combining different results 

,     from which   

In many actual problems, even though neither θ̂ nor Δθ may be found analytically, a numerical evaluation of ℒ is 
always possible. 

∂2w
∂θ2

= ∑
−1
σ2

k
Δθ = [∑

1
σ2

k ]
−1/2



SOUP2021 - Statistics for Underground Physics - June 28, 2021

Variance of estimators
The previous result can be obtained also in a more general way

57

Generally b is small, and equality is a good approximation (e.g. large data sample limit):

V[ ̂θ] ≈ − 1/E [ ∂2 ln L
∂θ2 ]

Information inequality sets a lower bound on the variance of any estimator:

V[ ̂θ] ≥ (1 +
∂b
∂θ )

2

/E [−
∂2 ln L

∂θ2 ] b = E[ ̂θ] − θ (equality if b=0)
(Rao-Cramer-Frechet inequality) 

“Parabolic error”: 2nd derivative of ln L at its maximum:

V[ ̂θ] = − ( ∂2 ln L
∂θ2 )

−1

θ= ̂θ
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Variance of estimators (practical method)
Let’s expand ln L (θ) about its maximum:

First term is ln Lmax, second term is zero, for third term use information inequality (~equality):

i.e.,

58

Therefore to get  move  away from  until  decreases by 1/2̂σ ̂θ θ ̂θ ln L
ML example with exponential:

Not quite parabolic ln L since 
finite sample size (n = 50).
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ML: correlated errors (1/2)

59

Lets’ now consider the case of M parameters and a single experiment with N events 
The previous results are applicable only in the rare case in which the errors are uncorrelated (θi − ̂θi)(θj − ̂θj) = 0 ∀i, j

For the general case let’s Taylor-expand w(θ) about θ̂: 

  where      and w(θ) = w( ̂θ) + ∑
k=1

M ( ∂w
∂θk ̂θ ) βk −

1
2 ∑

i
∑

j

Hijβiβj + . . . βi ≡ θi − ̂θi Hij ≡ −
∂2w

∂θi∂θj ̂θ

Now the second term vanishes (  for all i) and 

 or       i.e. an M-dim G surface

∂w/∂θi | ̂θ = 0

ln ℒ(θ) = w( ̂θ) −
1
2 ∑

i
∑

j

Hijβiβj + . . . ℒ(θ) ∼ c exp[−
1
2 ∑

i
∑

j

Hijβiβj]

Then it can  be shown  (simple transformation) that 

   again with    

or equivalently 

cov(θi, θj) = (θi − ̂θi)(θj − ̂θj = (H−1)ij Hij = −
∂2w

∂θi∂θj

ℒ(θ) ∼ c exp[−
1
2

β ⋅ V−1 ⋅ β]
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Example: multidimensional errors (1/2)

60

Signals from N monoenergetic electrons are Gaussian-distributed with mean θ1 and standard deviation θ2.  
Find θ̂1, θ̂2, and their errors 

 

 

 

 

ℒ(θ1, θ2) =
N

∏
i=1

1

2πθ2

exp[ − (xi − θ1)2/2θ2
2]

w = −
1
2 ∑

i

(xi − θ1)2

θ2
2

− N ln θ2 −
N
2

ln(2π)

∂w
∂θ1

= ∑
i

(xi − θ1)
θ2

2
∂w
∂θ2

=
1
θ3

2
∑

i

(xi − θ1)2 −
N
θ2

θ2 =
∑ (xi − ̂θ1)2

N − 1

Someone could notice the 
difference with respect to the SD 
formula. Indeed mode (θ̂2) and 
mean (θ̅2) fall in different positions

We get therefore (equating derivatives to zero) 

  and    ̂θ1 =
1
N ∑

i

xi
̂θ2 =

∑ (xi − θ1)2

N
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Example: multidimensional errors (2/2)

61

The matrix H is now obtained by evaluating the w derivatives at  θ̂

 
∂2w
∂θ2

1
= −

N
θ2

2
∂2w
∂θ2

2
= −

3
θ4

2
∑ (xi − θ1)2 +

N
θ2

2
= −

2N
̂θ2
2

∂2w
∂θ1∂θ2

= −
2
θ2

2
∑ (xi − θ1) = 0 Therefore: 

   and       H =

N
̂θ2
2

0

0 2N
̂θ2
2

H−1 =

̂θ2
2

N 0

0
̂θ2
2

2N

The errors on θ1 and θ2 are the square roots of the diagonal elements of H-1 : 

   and     

The error on the mean θ₁ is   and on the standard deviation θ2 is 

Δθ1 =
̂θ2

N
Δθ2 =

̂θ2

2N
̂θ1/ N ̂θ2/ 2N
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Covariance or error matrix

62

The covariance matrix  can be computed through    and  

The diagonal elements of V̲ are the variances of the θ’s. 
If Vij=0 ∀i≠j, errors are uncorrelated (contour plots of w are ellipses whose major axes are the errors on θj): 

.

Vij ≡ (θi − ̂θi)(θj − ̂θj) V = H−1 Hij = −
∂2w

∂θi∂θj

Δθj = [Hjj]−1

Contours of constant w as a function of θ11 and θ2:
• Maximum likelihood solution is at w = ŵ.  
• Errors in θ11 and θ2 are obtained from ellipse where w 

= (ŵ - 1/2  
- (a) Uncorrelated errors 
- (b) Correlated error 

• In either case   and Δθ2
1 = V11 = (H−1)11 Δθ2

2 = V22 = (H−1)22

θ1

θ2

ŵŵ
ŵ −

1
2

θ1

θ2

ŵ −
1
2

Δθ1

Δθ2

Δθ1

Δθ2

̂θ1
̂θ1

̂θ2
̂θ2

• In In cases where H̲ cannot be evaluated analytically, the θ̂’s can be found numerically and the errors can be found by 
Plotting the ellipsoid where w is 1/2 unit less than ŵ.  

• The extremums of this ellipsoid are the rms error in the  ŵ’s. 
• One should allow all the θj to change freely and search for the maximum change in θj which makes w = (ŵ - 1/2).  
• This maximum change in θj, is the error in θj and is √Vjj.

➡ MINUIT: MINOS errors
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ML variances: >1 parameter

63

• For > 1 parameters:  

 

• Use the ΔlnL trick to get contours for 1σ, 
2σ, etc. I  

• Project ellipse onto each axis (i.e., 
marginalize) to get uncertainties in each 
parameter

cov(θi, θj) = −
∂2 ln ℒ
∂θi∂θj ̂θi

̂θj

−1
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Multiparametric case

64

• Usually we calculate a joint likelihood on several parameters but only produce confidence intervals 
for individual parameters.  

• However, if we want confidence ellipses in several parameters jointly, we need to change the Δlnℒ 
rule a bit

However usually we are interested in the marginal distributions of individual parameters

Range p n=1 n=2 n=3 n=4 n=5 n=6

1σ 68.3 0.50 1.11 1.76 2.36 2.95 3.52
2σ 95.4 2.00 3.09 4.01 4.85 5.65 6.40

3σ 99.7 4.50 5.90 7.10 8.15 9.10 10.05

Δlnℒ values as a function of probability 
for n joint parameters

joint parameters
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Propagation of errors

65

Suppose we have a single function of our parameters:  
y=y(θ). Then ŷ=y(θ̂).

To find the errors on y: 

 

 

 

Then, if the variables are uncorrelated: 

    

which is the well known formula of error propagation

y − ̂y = ∑
∂y
∂θk

(θk − ̂θk)

(y − ̂y)2 = ∑
j

∑
k

∂y
∂θj

∂y
∂θk

(θj − ̂θj)(θk − ̂θk)

(Δy)rms = ∑
j

∑
k

∂y
∂θj

∂y
∂θk

Vjk

(Δy)rms = ∑
j ( ∂y

∂θj )
2

(Δθj)2

If instead y(θ) is a one to one correspondence 
(basis change) and the θk error matrix is known, 
then 

(yi − ̂yi)(yj − ̂yj) = ∑
m

∑
n

∂yi

∂θm

∂yi

∂θn
H−1

mn

In practice is not always calculable but 

 is generally easy to compute and  

∂yi

∂θm
∂θi

∂ym
= Jij

∂yi

∂θm
= (J−1)im
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Example: correlated errors (scalar)

66

If f is a scalar function of the model parameters, the previous result can be rewritten as 

   with  

where f is some function f(x,y) of the data

σ2
f = ( ∂f

∂x )
2

σ2
x + ( ∂f

∂y )
2

σ2
y + 2ρ ( ∂f

∂x ) ( ∂f
∂y ) σxσy ρ =

xy − x y

(x2 − x2)(y2 − y2)

Example: 
• Collect NT events: NF forward, NB backward 
• Evaluate error on R=NF/NT

Assume: 
• Everything Poisson 
• F and B uncorrelated 
• F and T correlated

solution: 
•  

since   

•
Then  

•
 

    

cov(F, T ) = ⟨NFNT⟩ − ⟨NF⟩⟨NT⟩ = V(Nf ) = NF
⟨NFNB⟩ = ⟨NF⟩⟨NB⟩

ρ ≡
cov(NF, NT)

σFσT
=

NF

NFNT
=

NF

NT

σ2
R = ( 1

NT )
2

NF + ( −NF

N2
T )

2

NT + 2
NF

NT ( 1
NT ) ( −NF

N2
T ) NFNT

=
NFNT + N2

F − 2N2
F

N3
T

=
R(1 − R)

NTUsing R=NF/(NF+NB): 

•
σ2

R = ( 1
NT

−
NF

N2
T ) NF + ( −NF

N2
T )

2

NB = ( NB

N2
T )

2

NF + ( NF

N2
T )

2

NB =
NFNB

N3
T

=
R(1 − R)

NT

⟨NF(NF + NB)⟩ − ⟨NF⟩⟨NF + NB⟩ = ⟨N2
F⟩ + ⟨NFNB⟩ − ⟨NF⟩⟨NF⟩ − ⟨NF⟩⟨NB⟩
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Example: correlated errors (vector)

67

Suppose we want to use radius and acceleration to specify the circular orbit of an electron in a uniform magnetic 
field; i.e., y1 = r and y2 = a. Suppose the original measured quantities are θ1 = τ = (10  ± 1) μs and θ2 = v = (100 ± 
2) km/s. Also since the velocity measurement depended on the time measurement, there was a correlated error 

 = 1.5⋅10 m. Find r, a  and their errors.⟨ΔtΔv⟩

From the data: 
y1 = r = vτ/2π = 0.159 m  
y2 = a = v2/r = 2πv/τ = 6.28⋅1010 m/s2 The measurement errors specify the error matrix as 

 

We get therefore: 

 = 3.39⋅10-4 m2 

2.92⋅1019 m2/s4

V = ( 1012 s 1.5 ⋅ 10−3 m
1.5 ⋅ 10−3 m 4 ⋅ 106 m2/s2)

(Δy1)2 = [ θ2

2π ]
2

V11 + 2 [ θ2

2π ] [ θ1

2π ] V12 + [ θ1

2π ]
2

V22 =
v2

4π2
V11 +

vτ
2π2

V12
τ2

4π2
V22

(Δy2)2 = [−
2πθ2

θ2
1 ]

2

V11 + 2 [−
2πθ2

θ2
1 ] [ 2π

θ1 ] V12 + [ 2π
θ1 ]

2

V22 =

Therefore  
y1 = θ1θ2/2π 
y2 = 2πθ2/θ1 

and 
 

 

 

∂y1

∂θ1
=

θ2

2π
∂y1

∂θ2
=

θ1

2π
∂y2

∂θ1
= −

2πθ2

θ2
1

∂y2

∂θ2
=

2π
θ1

And the result is: 
• r=(0.159 ± 0.018) m 
• a = (6.28 ± 0.54)1010m/s2
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Errors from Likelihood: summary

68

Estimate a model  parameter θ̂ by maximizing the likelihood 
In the large N limit: 
i) This is unbiassed and  efficient 

ii) The error is given by  

iii) ln L is a parabola:  

iv) We can approximate  

v) Read off σ from  

vi) Get neats confidence intervals : 
-  → 68% CL (1σ, 1 parameter) 
-  → 95.4% CL (2σ, 1 parameter) 
- whatever you choose, 2-sided, 1-sided, ….

1
σ2

= − ⟨ d2 ln L
dθ2 ⟩

L = Lmax −
1
2

C(θ − ̂θ)2

C ≡ −
d2 ln L

dθ2 ̂θ
= − ⟨ d2 ln L

dθ2 ⟩
Δ ln L = −

1
2

Δ ln L = − 1/2
Δ ln L = − 2

1 2 3 4

-1

1

2

3

Small N:
• lnL is not a parabola (e.g. asymmetric) 
• None of the above is tue 
• However: 

- We can transform from θ → θ' parabolic, find the 
limits, and transform back  

- Would give ∆lnL=-1/2 for 68% CL etc as before  
- Hence asymmetric errors  
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Small N non-Gaussian  measurements
• No longer  ellipses/ellipsoids 
• Use ΔlnL to define  confidence regions,  mapping out contours 
• Probably not totally  accurate, but universal

69

Alternative: toy Monte Carlo:
• Have dataset  

• Take point θ in parameter space 
• Test if it is in or out of the 68% (or ...) contour 

- Find   (clearly small T is 'good' )  

- Generate many MC sets of R, using  θ 

- How often is T
MC

> T
data

?  

- If more than 68%, M is in the contour  
We are ordering the points by their value of T (the Likelihood Ratio) – almost contours but not quite  

T = ln L(R | ̂θ) − ln(R |θ)



Hypothesis test
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Interval estimation

71

• Estimation of the parameter is not sufficient.  
• It is necessary to analyse and see how confident we can be about this particular estimation.  
• One way of doing it is defining confidence intervals.  
• If we have estimated θ we want to know if the “true” parameter is close to our estimate.  
• In other words we want to find an interval that satisfies the following relation: 

the probability that the “true” value of parameter θ is in the interval (GL,GU) is greater than 1-α  

• The actual realisation of the interval (GL , GU) is called a (1 - α) confidence interval (usually expressed in %) 
- bounds of the interval are called lower and upper confidence limits 
- (1 - α) is called confidence level

Example:  

If population variance is known (σ2) and we estimate population mean x ̅, then we expect  to be normally 
distributed about the “true” value: N(0,1) 

We can find from the table that the probability of  Z is more than 1 (less than -1) is equal to 0.1587 
Therefore    and we conclude 

 

Conclusion: the confidence level that “true” value is within 1 standard error (standard deviation of sampling distribution) from 
the sample mean is 0.6826.

Z =
x − μ

σ/ N

P(−1 < Z < 1) = P(Z < 1) − P(Z < − 1) = 1 − 2 ⋅ 0.1587 = 0.6826
P(−1 <

x − μ

σ/ N
< 1) = P(x − σ/ N < μ < x + σ/ N) = 0.6826
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Frequentist vs Bayesian

72

• In the previous example we have transformed a statement about the probability of x ̅ (data) 
x ̅ is normally distributed around μ 

which simply tells you that if you repeat the measurement many times you can predict how outcomes will be distributed … 

• into a statement about μ:  confidence level (probability) that μ lies in the interval  is 68%x ± σ/ N

Correct interpretation (personal view) 
Bayesian: given a measurement, we have some 
confidence that our best estimate of a parameter 
lies within some range of the data 
Frequentist: given the true value of the parameters, 
we have some confidence that our measurement 
lies within some range of the true value 

Difference: p(θ|D,I ) versus p(D|θ,I )
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Confidence intervals arbitrariness

73

Some of the possibile choices: 
• Upper limit 
• Lower limit 
• 2-sided limit 

- central 
- shortest 
- …

For a given Confidence Level …
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Inverse probability: confidence belts

74

Construct Horizontally
Read Vertically

Measured X

Tr
ue

 X

Likelihood

Counting experiment:
• For complicated distributions it isn’t quite so easy 
• But the principle is the same frequentist approach

Discrete distributions:
• May be unable to select (say) 5% region 
• Play safe.  
• Gives overcoverage

Bayes (standard Gaussian measurement) 

• No prior knowledge of true value (theory)
• No prior knowledge of measurement result (data)
• P(data|theory) is Gaussian
• P(theory|data) is Gaussian
• Gives same limits as Frequentist method for simple 

Gaussian
• Interpret this with Probability statements as you prefer

P(theory |data) =
P(data | theory)P(theory)

P(data)
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Confidence belts: Feldman-Cousins

75

Feldman & Cousins
• For any given S 
• For each N find  

- P(N;S+B) 
- Pbest=P(N;N) if (N>B) else  P(N;B)

• Rank on P/Pbest
• Accept N into band until S P(N;S+B) 90% 
•

Method (90% CL):
• For every S, select N-values in belt  
• Total probability must sum to 90%  
• Many possible strategies

S

N Crow & Gardner:
• Select N-values with highest probability 
→ shortest interval

S

N

Allowed

1 sided

S

N

Allowed
2 sided

S

N

This is not a true confidence 
belt! Coverage varies.

PRO:
• Makes us more honest (a bit) 
• Avoids forbidden regions in a Frequentist way

CON:
• Not easy to calculate 
• Has to be done separately for each value of B 
• Can lead to 2-tailed limits where you don’t want to claim a 

discovery 
• Weird effects for N=0; larger B gives lower (=better) upper limit
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Frequentist statistical tests
Suppose a measurement produces data x 
Consider a hypothesis H0 ; we want to test an alternative H1 

H0, H1 specify probability for x:  P(x|H0), P(x|H1) 

A test of H0 is defined by specifying a critical region w of the data space such that there is no more 
than some (small) probability α, assuming H0 is correct, to observe the data there

data space Ω

critical region w

76

In general: infinite number of possible choices for critical regions with the same significance α. 

So the choice of the critical region for a test of H0 needs to take  into account the alternative 
hypothesis H1

Place the critical region 
where there is a low  
probability for H0 true, but 
high for H1 true

2 4 6 8 10

0.1

0.2

0.3

0.4 f(x |H0)

f(x |H1)

critical region bound
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ML: confidence intervals arbitrariness

77

• While the ML solution does not depend on the choice of the variables (given two different variables λ and τ, then

) the same is not true for confidence intervals.
∂w
∂λ

=
∂w
∂τ

∂τ
∂λ

= 0

• Confidence intervals are defined by  

 

and if we consider the confidence limit:  

 

then if we switch to λ: 

 

P(θ′ < θ < θ′ ′ ) = ∫
θ′ ′ 

θ′ 

ℒdθ/ ∫
+∞

−∞
ℒdθ

P(θ > θ′ ) = ∫
∞

θ′ 

ℒdθ/ ∫
+∞

−∞
ℒdθ

P(λ > λ′ ) = ∫
∞

λ′ 

ℒdθ/ ∫
+∞

−∞
ℒdθ =

= ∫
∞

θ′ 

ℒ
∂λ
∂θ

dθ/ ∫
+∞

−∞
ℒdθ ≠ P(θ > θ′ 
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p-values

78

• Why should the observation of θmis diminish 
our confidence on H0? 

• Because often we give some chance to a 
possible alternative hypothesis H1 

But if the alternative hypothesis H1 is unconceivable, or hardly believable, the ‘smallness’ of the 
area is irrelevant
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Confidence and significance

79

For historical reasons  
• Confidence: CL = 1-α 
• Significance: α. 

Language of Hypothesis Testing: 
Suppose that the pdf is known. Then if H0 is true, the probability to get a measurement 
this far (or further!) is α.

Example:
Improvement among patients taking the treatment was significant at the 5% level' 
means that if the treatment does nothing, the probability of getting an effect this large 
(or larger) is 5% (or less).

Given a measurement, the corresponding p-value is the probability to get a larger value 

→  The null hypothesis is rejected if the p-value is smaller than the significance
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Bayesian point of view
• H0 = b (event is background)  
• H1 = s (event is signal) 

For each event test b. If b rejected, “accept” as candidate signal  
- background efficiency  
- signal efficiency = power 

= ϵb = P(x ∈ W |b) ≡ α
= ϵs = P(x ∈ W |s) ≡ 1 − β

80

posterior probability = signal purity

prior probability
signal region W

To find purity of candidate signal sample, use Bayes’ theorem:
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Falsification

81

Largely considered the key to scientific  progress (Popper) 

if  , then  

Causes that cannot produce observed effects are ruled out (‘falsified’)

Ci ↛ E Eobs ↛ Ci

• What to do of all hypotheses that cannot be falsified? 
• i.e. if nothing of what can be observed is  incompatible with the hypothesis?

Example: Hi  is a Gaussian f (x | µi, σi)  
- Given any pair or parameters {µi, σi}, all values of x between −∞ and +∞ are possible 
- Having observed any value of x, none of Hi  can be,  strictly speaking, falsified.

Analogous with method  of the proof by contradiction of classical, deductive logic. 
• Assume that a hypothesis is true 
• Derive ‘all’ logical consequence 
• If (at least) one of the consequences is known to be  false, then the hypothesis is declared false
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Falsification: the frequentist solution

82

• Way out: replace impossible with improbable! 
• Mechanism deeply rooted in most people but not supported by logic 
• Basically responsible of number of fake claims of discoveries  

‣ health 
‣ status of the planet

The falsification is now weakened 

if  , then 

➡ most likely false 

Ci
small probability E Eobs

small probability Ci
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf   for a set of observations f( ⃗x |H) ⃗x = {x1, . . . , xn}

If we observe a single point  in this space, what can we say about the validity of H in light of 
the data?

⃗x obs

83

Decide what part of the  data space 
represents less  compatibility with H 
than  does the point  

This region therefore  has greater 
compatibility with some alternative Hʹ

⃗x obs

 more  
compatible  
with H

⃗x

 less  
compatible  
with H

⃗x
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Test statistic and p-values
• Consider a parameter µ proportional to rate of signal process (μs+b). 
• Define a function of the data (test statistic) qµ that reflects the level of agreement between the data 

and the hypothesized value µ. 
• Define qµ so that higher values are increasingly incompatible  with the data (more compatible with 

a relevant alternative). 
• We can define critical region of test of µ by qµ ≥ const.

84

Equivalent formulation of test:  reject µ if pµ  < α.

observed value of qµ pdf of qµ assuming µ

• Equivalently define the p-value of µ as:
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Approximate confidence regions: LH function
Suppose we test parameter value(s) θ = (θ1, ..., θn) using the ratio

Equivalently define 

 

so higher tθ means worse agreement between θ and the data.

tθ = − 2 ln λ(θ)

85

Lower λ(θ) means worse agreement between data and  hypothesized θ. 

Then p-value of θ:

need pdf
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Confidence regions & Wilks’ theorem
Wilks’ theorem says (assuming proper conditions …) 

f(tθ |θ) ∼ χ2
n

86

chi-square distribution for n d.o.f.  
(n ≡ # of components in θ = (θ1, ..., θn))

Then p-value is 

 

where 

 

pθ = 1 − Fχ2
n
(tθ)

Fχ2
n
(tθ) ≡ ∫

tθ

0
fχ2

n
(t′ θ)dt′ θ

To find boundary of confidence region set pθ = α and solve for tθ: 

tθ = F−1
χ2

n
(1 − α) = − 2 ln

L(θ)
L( ̂θ)

Δ1σ
n=1χ2 = 1

Δ1σ
n=1L = 1/2

https://en.wikipedia.org/wiki/Wilks'_theorem
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Confidence regions & Wilks’ theorem (cont.)

87

Exponential example with 5 events: 
• n = 1 parameter, 
• CL = 0.683

Parameter estimate and  
approximate 68.3% CL  confidence 
interval:   ̂τ = 0.85+0.52

−0.30

Boundary of confidence region in θ space is where 

 

For example, for 1 – α = 68.3% and n = 1 parameter 

 

and so the 68.3% confidence level interval is determined by 

 

ln L(θ) − ln L( ̂θ) =
1
2

F−1
χ2

n
(1 − α)

F−1χ2
1(0.683) = 1

ln L(θ) = ln L( ̂θ) −
1
2

Same as recipe for finding the estimator’s 
standard deviation, i.e.  is 
a 68.3% CL confidence interval.

[ ̂θ − σ ̂θ, ̂θ + σ ̂θ]



Nuisance parameters
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Nuisance parameters

In general the models of the data, besides the parameter θ we are interested in, depends 
on a number of additional adjustable parameters ν:   p(x |θ, ν)

89

Frequentist language: nuisance parameters  

Bayes language: systematic uncertainties

Presence of nuisance parameter decreases sensitivity of analysis  to the parameter of 

interest (e.g., increases variance of estimate)
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Profile  likelihood ratio

90

“profiled” values of νDefine profile likelihood ratio: 

     where           

and define qθ = -2 ln λ(θ)

λ(θ) =
L(θ, ̂ ̂ν(θ))

L( ̂θ, ̂ν)
̂ ̂ν(θ) = argmax

ν
L(θ, ν)

parameters of interest
nuisance parameters

Let’s now consider a problem with likelihood L(θ, ν), where 

 
 

Want to test point in θ-space 

θ = (θ1, . . . , θN)
ν = (ν1, . . . , νM)

Then Wilks’ theorem says that distribution f(qθ|θ,ν) approaches the  chi-square pdf for N 
degrees of freedom for large sample (and regularity conditions), independent of the 
nuisance parameters ν

θ

ν

p(x |θ, ν)

̂ ̂ν(θ)
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Example: counting experiment
Let’s consider a spectrum  and assume the ni are Poisson distributed with 
expectation values            

where    (signal) and      (background).

n(E) = {n1 . . . . , nN}
E[ni] = μsi + bi

si = stot ∫bin i
fs(E; θs)dE bi = btot ∫bin i

fb(E; θb)dE

91

And the profile likelihood ratio

defines the critical region of test of μ by the region of 
data space that gives the lowest values of λ(μ)

λ(θ) =
L(θ, ̂ ̂ν(θ))

L( ̂θ, ̂ν)

parameter of interest

Important advantage of λ: its distribution 
becomes independent of nuisance 
parameters in large sample limit.

Suppose to have also some subsidiary measurement  such that  
(e.g. additional constraint on background).

Then the Likelihood function is

m(E) = {m1 . . . . , mN} E[mi] = ui(θ)



Markov Chain Monte Carlo

(MCMC)
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MCMC: the problem

93

▶ Markov Chain Monte Carlo (MCMC) algorithms exploit a pure Bayesian approach 
▶ Goal: draw samples from the PDF 

 

where Z = p(D|I ) is the marginal evidence

p(θ, ν |D, I) =
1
Z

p(D |θ, ν, I) p(θ, ν | I)

▶ Imagine that we have a probability distribution for a set of parameters θ: p(θ|D, I ) 
▶ Then we need to marginalize over nuisance parameters ν: 

  

▶ If the set {ν} is large this integral can become very expensive

p(θ |D, I) = ∫ dν p(θ, ν |D, I)
We can integrate numerically using Monte Carlo 
sampling, but  we waste time in regions of low 
probability

D=data, I=model

▶ Once the samples produced by MCMC are available, the expectation  value of a function of the model parameters f 
(x ) is 

 

▶ In MCMC, we randomly walk over positions x in the parameter space  and draw samples x (ti ) = [θi , νi ] from the 
distribution

⟨ f(θ)⟩ = ∫ p(θ |D, I)f(θ)dθ ≈
1
N

N

∑
i

f(xi)

▶ Since Z is independent of θ	and ν	we usually don’t have to calculate  it... which is good because it’s expensive
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Metropolis-Hastings algorhytm

94

• At each point in a Markov chain, x(ti) depends only on the previous step x(ti-1) according to the transition 
probability q(x(t + 1)|x(t))  (proposal distribution) 

•

• The simplest MCMC algorithm is the Metropolis-Hastings method, which proceeds in two steps:  

1. Given x(t) sample a proposal position y from q(y|x(t))  

2. Accept this proposal with probability α = min (1,
p(y)
p(x)

q(x |y)
q(y |x) )

• In practice: 
1. Initialize x(0), set t = 0 
2. Sample y from q(y|x(t)) and u ∼ Uniform(0,1) 

3. Evaluate r (the MH ratio in α); if u≤r then x(t+1)→y; otherwise,x(t+1)→x(t)  
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Reversible Markov Chains

95

• Let’s consider the Markov chain (xt)t≥0 with the transition kernel (y|x) and the stationarity condition

π(y) = ∫ p(y |x)π(x)dx

• The chain is reversible (i.e. it satisfies the balance condition) if it exists a distribution π(x) s.t.

p(x |y)π(y) = p(y |x)π(x)

• Then π(x) is stationary

∫ p(y |x)π(x)dx = ∫ p(x |y)π(y)dx = π(y)∫ p(x |y)dx = π(y)

since ∫ p(x |y)dx = 1
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Balance condition and reversibility

96

• Now we can demonstrate that the balance condition is satisfied (the chain is reversible and 
admits a stationary distribution). 

• To this end we have to write the transition kernel p(y|x) which will depend on q(y|x) and the MH 
criterion (p(x|y) → α(y|x)q(y|x)) 

p(y |x)p(x) = α(y |x) q(y |x) p(x)

= min (1,
p(y)
p(x)

q(x |y)
q(y |x) ) q(y |x) p(x)

= min (q(y |x) p(x), q(x |y) p(y))
= min ( q(y |x)

q(x |y)
p(x)
p(y)

,1) q(x |y) p(y) = α(x |y) q(x |y) p(y)

= p(x |y) p(y)

• If y≠x
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Example: sampling from Poisson distribution 
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• (left) sequence of the first 1000 
samples {xt}  

• (rightt) histogram of xt for t > 100 
• “burn in”: first 100 samples (to be 

discarded)

• We want to sample from the 1D PDF p(x|D,I) = e-λλx/x!. 

• Let’s choose q(y|xt) to be a simple random walk defined by the uniform distribution  
1. Given xt, pick a random number u1 ∼ Uniform(0, 1)  

- if u1 > 0.5: propose y = xt + 1  
- otherwise, y = xt − 1  

2. Compute the ratio r = p(y|D,I)/p(xt|D,I) = λy-xx!/y!  
3. Generate a second random number u2 ∼ Uniform(0, 1)  

- If u2 ≤ r accept xt+1 = y  
- otherwise xt+1 = x

proposal distribution q(y|x)
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Autocorrelation function (ACF)

98

• If the transition probability is independent of t then the ACF should fluctuate around zero. This is 
what happens after the burn-in  

• During the burn-in, the ACF is roughly exponential in shape 

 

where τ is called the time constant 

ρxx(h) ∼ exp (−
h
τ )

Tips for shopping:
- When implementing a calculation, it is always better to use logarithms rather than actual values to avoid hitting 

numeric limits. If the actual PDF is needed we exponentiate at the end of the calculation.  
- Better using the definition n! = Γ(n + 1) instead of using Stirling’s approximation ln n! ≈ n ln n − n

• Autocorrelation tells you how much each step in the time series depends on the value of previous steps

• Larger τ means that the MCMC takes longer to converge, so the goal is to choose a proposal 
distribution that minimizes τ  

• Empirically, you can estimate τ from the data, and start using the data when t is several multiples of τ  

• For our Poisson example, τ ≈ 23 samples, so to be safe we’ve started using the data at t = 4τ ≈ 100  
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MCMC efficiency
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The Metropolis-Hastings algorithm works because it reaches an equilibrium state after the burn-in.  
In particular, the transition probabilities obey the detailed balance equation, which characterizes a Markov Chain

• A number of issues have to be decided when running an MCMC:  
- What is the length of the burn-in period? i.e., when can we start trusting the data?  
- When do we stop the Markov Chain? i.e., how do we know if we’ve sufficiently sampled the 

parameter space?  
- How do we choose a suitable proposal distribution that gives a reasonable acceptance rate for 

transitions xt → xt+1?  
• There is a large literature about optimizing Markov Chain Monte Carlo 
• An MCMC that takes forever to burn-in or which accepts few transitions isn’t worth much  
• Current state of the art: affine-invariant samplers

• There are various tricks to speed up MCMC and ensure that it explores as much of the parameter space 
as possible: 

- One common approach is to define multiple chains (or “walkers”) that have different starting points 
and proceed independently 

- If the sampled PDF is very peaked or multimodal, this might still not be enough to push explore all 
parts of the parameter space
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Another example: sampling from joint posterior
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• Assume a 2D Gaussian for the pdf (double peaked structure): 

  

with μ1=(0,0), μ2=(4,3), and , 

p(x1, x2 |D, I) =
1
2

[G(μ1, Σ1) + G(μ2, Σ2)]

Σ1 = (1 0
0 1) Σ2 = ( 2 0.8

0.8 2 )

• x0 = (-4.5,8) 
• σ = 0.1 
• Very long autocorrelation time 
• Acceptance probability ~ 95%

• Use a unimodal 2D Gaussian for the proposal 
density function (proposal distribution) 

,     q(y |x) = G(μ = x, Σq)
Σq = (σ2 0

0 σ2)

• Let’s consider a joint distribution p(x1,x2|D,I) in two parameters x1 and x2. 
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• x0 = (-4.5,8) 
• σ = 1 
• Faster convergence 
• Acceptance probability ~ 60%

• x0 = (-4.5,8) 
• σ = 10 
• Fast convergence 
• Acceptance probability ~ 5%
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MCMC paths
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A simple illustration using Metropolis algorithm to sample from a Gaussian 
distribution whose one standard-deviation contour is shown by the ellipse. The 
proposal distribution is an isotropic Gaussian distribution whose standard 
deviation is 0:2. Steps that are accepted are shown as green lines, and rejected 
steps are shown in red. A total of 150 candidate samples are generated, of which 
43 are rejected (from Bishop's Pattern Recognition and Machine Learning).

Metropolis-Hastings samples from a bi-variate distribution p(x1; x2) using a 
proposal ~q(x0jx) = N (x0 x; I).
We also plot the iso-probability contours of p. Althoug p(x) is multi-modal, the 
dimensionality is low enough and the modes sfficiently close such that a simple 
Gaussian proposal distribution is able to bridge the two modes. In higher 
dimensions, such multi-modality is more problematic (from Barber’s Bayesian 
reasoning and machine learning)
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MCMC: Gibbs sampling
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Let’s consider: ,       
assumption: we can sample from 1-DIM conditionals (priors) 

  

p(x) = p(x1, . . . . , xn) x = (x1, . . . . , xn)

p(xi |x¬i) x¬i = (x1, . . . , xi−1, xi+1, . . . , xn)

• Expensive 
• A number of known issues but often 

is the only choice: 
- ergodicity (connect all points) 
- slow convergence in case of 

correlations

This implies  for the acceptance probability:αk(y |x) = 1

α(MH)
k =

p(y)qk(x |y)
p(x)qk(y |x)

=
p(yk |y¬k)p(y¬k)
p(xk |x¬k)p(x¬k)

⋅
p(xk |y¬k))
p(yk |x¬k)

= 1

probability decomposition of 
p(yk) and p(xk)

• Pick  (round-robin, uniform random, …) 
• Set  for j≠k 

• Sample  
with  when  and 0 otherwise

k ∈ {1,...,n}
x(t+1)

j = x(t)
j

x(t+1)
k ∼ p(xk |x(t)

¬k)
qk(y |x) = p(yk |x¬k) y¬k = x¬k

no jumps allowed between different indexes
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Gibbs issues

104

A two dimensional distribution for which Gibbs sampling fails. The 
distribution has mass only in the shaded quadrants. Gibbs sampling 
proceeds from the lth sample state  and then sampling from 

, which we write  where . One then 
continues with a sample from , etc. If we start in the 
lower left quadrant and proceed this way, the upper right region is never 
explored

(xl
1, xl

2)
p(x2 |xl

1) (xl+1
1 , xl+1

2 ) xl+1
1 = xl

1
p(x1 |x2 = xl+1

2 )

Two hundred Gibbs samples for a two dimensional Gaussian. At each stage only a single
component is updated. (a): For a Gaussian with low correlation, Gibbs sampling can move 
through the likely regions e ectively. (b): For a strongly correlated Gaussian, Gibbs sampling is 
less e ective and does  not rapidly explore the likely regions

from Barber’s Bayesian reasoning and machine learning
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“Local minima”

105

• The situation when MCMC become stuck in a local mode is similar to the situation in parameter estimation 
when a minimizer gets stuck in a local minimum 

Algorithm:
1. Propose a swap every ns iterations, and proceed with the swap if u1 ~ Uniform(0,1) ≤ 1/ns 
2. Randomly pick simulation i to swap its state with simulation i+1  
3. Accept the swap if u2 ~ Uniform(0,1) ≤ r  
4.

• Solution: 
- Create a series of progressively “flatter” distributions using a temperature parameter T (or β = 1/T ) 
- As T → ∞ and β → 0, the distribution will flatten and more of the paramter space can be explored  
- Given a posterior  we can construct a flattened distribution using β ∈ [0, 1]:  

 
• With π(x|D,β,I) we can use a set of discrete values β = {1,β2,...,βm} in parallel 

p(x |D, I) ∝ p(x | I)p(D |x, I)
π(x |D, β, I) = p(x | I)p(D |x, I)β = p(x | I)exp(β ln[p(D |x, I)])

• Parallel Tempering:  
- multiple copies of the MCMC are run in parallel, each with a different temperature βi  
- As the simulations run, pairs of adjacent simulations on the temperature ladder are allowed to swap their 

parameter states with probability r = min (1,
π(xt,i+1 |D, βi, I)π(xt,i |D, βi+1, I)
π(xt,i |D, βi, I)π(xt,i+1 |D, βi+1, I) )
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A final example with tampering

106

• Draw random samples from p(A,ν0|D,I)  
• Simulation parameters: 

1. 2 free parameters: A, ν0 with independent σ’s 
2. 20 MCMC “walkers” 
3. 1000 samples  

• The posterior PDF is shown at left with the marginal distributions of A and ν0  
• Note: the first 100 samples from each walker were treated as burn-in data 

and ignored 
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CUORE: background model with JAGS

107

• Reconstruction of all possible sources of background that affect CUORE data  

• Identify the combinations of source volume, isotope and contaminant distribution that can impact 
our background  

• Model the contribution of each possible contaminant with MC simulations 
• Combine all contributions with a Bayesian fit  

• Can include a priori information on contaminants 
• No maximization algorithm (numerical approach - MCMC)  
• Easily includes all uncertainties and correlations  
•

Stefano Pozzi - Milano Bicocca

Bayes:  
• data is the experimental spectrum while θ is normalisation vector of the MC simulated spectra 

• priors (when non flat) come from previous measurements  

• contaminations must be > 0 and their contribution cannot exceed the observed spectrum 
• ni is the number of experimental counts in bin i  
• mi,M is the number of MC counts in bin i from source M  

•
Likelihood: ,  where   

p̃(θ |data) = p(data |θ) p(θ)

∏
i

P(ni |θ) =
e−λiλni

i

ni!
λi = ∑

M

λi,M = θM ∑
M

mi,M

Pro Con
Marginalised distributions SLOW

Correlations
Systematic errors (nuisance parameters)

Priors
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Gibbs sampling: JAGS

108

• JAGS (Just Another Gibbs Sampler) is Just Another Bayesian Tool which can be used to sample 
a multivariate likelihood  

• Allows the definition and the solution of our problem 
• Not ROOT-compatible natively, it operates with text files only (→ BAT) 
• Binned fits to improve speed 
• Data preparation: need to prepare data and MC histograms with the required binning in JAGS-

compatible text files.  
• Need to inform JAGS about statistical model and MCMC parameters  

• Finally extracts useful numbers from the JAGS output (correlated posterior pdf) and creates plots  
•
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Priors (when no measurement is available)

109

1. Find the maximum MC normalization factor allowed by the data  
2. Multiply it by a safe factor  
3. Uniform (flat) prior between 0 and this value  
4.
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Results (1/3)
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Marginalized distributions

Normalized spectra 
Exp in reality is MC for this test exercise
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Results (2/3)
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Correlation plots
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Results (3/3)
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From marginalised distributions: 

• Credibility intervals: from gaussian parameters  

• Limits (1-α C.I. q(α)): ∫
qα)

0
p(θk)dθk



Systematic uncertainties
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Systematic errors

114

“Systematic errors arise from neglected  effects such as incorrectly calibrated  equipment.”

• NOOOO: FALSE! 
• A neglected effect is a MISTAKE!  A MISTAKE is not an ERROR
• So what are systematic errors?

• Analysis of your results involves a whole set of numerical factors: efficiencies, magnetic fields, 
dimensions, calibrations... 

• Occasionally these are implicit: these are especially dangerous 
• All these numbers have an associated uncertainty. 
• These uncertainties are the systematic errors.  
• They obey all the usual error laws, but they affect all measurement

Systematic Error: reproducible inaccuracy 
introduced by faulty equipment, 
calibration, or technique

Bevington  

Systematic effects is a general category which includes effects 
such as background, scanning efficiency, energy resolution, angle 
resolution, variation of couner efficiency with beam position and 
energy, dead time, etc. The uncertainty in the estimation of such 
as systematic effect is called a systematic error

Orear
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Systematic errors: examples

115

• The magnetic field in p = 0.3 B R  
- Calorimeter energy calibration  'Jet energy scale' 
- Detector efficiency 
- ...

• If you can't think of them for your  
experiment, ask a colleague … 

• … possibly with a talent for criticism. 
(not difficult to find one …)

Most common: 
• Instrument(s) parameters: 

- Zero setting 
- Linearity 
- Response  

• Constants 
• …

• Effect of uncertainty in B on the error matrix for two momentum 
measurements: 

 

• Errors on p1 and p2 as given by simple combination of errors. 
• Also covariance/correlation term.  
• Errors in B affect both momenta measurements the same way

V = [0.32B2σ2
1 + 0.32R2

1σ2
B 0.32R1R2σ2

B

0.32R1R2σ2
B 0.32B2σ2

2 + 0.32R2
2σ2

B]

However … not an easy task! 
• Many properties of the reconstruction don't work through simple algebra. 

Standard (?) procedure:
• Example: background to your signal simulated by Monte Carlo containing several (?) adjustable parameters... 
• Work numerically. Run standard MC, then adjust parameter by +σ and repeat, -σ and repeat. Read off error from shift in result 
• If you can convince yourself that the 3 points are a straight line then do so
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Systematic errors: Bayesian viewpoint

116

In the Bayesian framework, since uncertainties reflect the degree of belief rather than just the spread 
of repeated measurements, it’s straightforward to incorporate a “parameter uncertainty” through its 
prior.

Example: compute the distance to a galaxy given its recession velocity v taking into account  
uncertainties in H0.  
➡ Bayes solution: select a prior on H0 (Uniform, Gaussian, )
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Systematic uncertainty and bias

117

• The bias is the difference between the “true” and measured value

• However there are other possibilities: 
- Bias is known, with known size; so we correct for it → not a systematic (known knowns) 
- Bias is known, but exact size is unknown → systematic uncertainty (known unknowns) 
- Bias is unknown and unsuspected → nothing to be done (unknown unknowns)

• If you are unaware of a systematic effect in your data, you can get internally consistent results with an 
impressive goodness-of-fit and still be completely wrong  

• Unfortunately no magic recipe …

• Usual suggestions: 
- Split the data into subsets and analyze them separately  
- Vary cuts, bin sizes, etc. and explore the effect on the results 

- Change parameterizations or fit techniques 

- Perform independent analyses and check differences in outcomes

• “Bias is equivalent to systematic uncertainty”  
➡ True when we know there is a bias but its exact size is unknown. 
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Systematic errors: some advice

118

• Check your result by altering features which should make no (significant) difference. This adds to its 
credibility 

• Run on subsets of the data (time etc) 
• Change cuts on quality and kinematic quantities 
• Check that a full blown analysis on simulated data returns the physics you put in 
• Repeat until you (and your colleagues or review committee) really believe 
• Challenge  data using Known Inputs (create a simulated dataset with known inputs and see if the inputs 

are recovered
• If repeating with some difference in technique gives a different result … 

- You have to decide whether this is significant. 
- “Within Errors” may be overgenerous since results share the same data (or some of it) 
- Subtraction in quadrature is one way: 

- Basic result: 12.3 ± 0.4. Check: 11.7 ± 0.5 Compare difference 0.6 against 0.52 − 0.42 = 0.3

• If the analysis passes the check with a small difference 
- Tick the box and move on 
- Do not fold that small difference into the systematic error 

• If the analysis fails the check 
- Check the check 
- Check the analysis and find the problem 
- Maybe convince yourself that this 'harmless' change could cause a 

systematic shift and devise an appropriate error 
- Do not fold the difference into the systematic error

A very last remark: there is no correct 
procedure for incorporating a check that fails, 
but folding it into the systematics is probably 
wrong and should be avoided unless there is 
no alternative
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• Systematic uncertainties are a frequentist concept; for a Bayesian, there is no distinction and all such 
uncertainties can be dealt with using marginalization I  

• Still, it’s useful to break out uncertainties into statistical and systematic components, as this (usually) 
makes clear which part of the error bar depends on how much data we took I 

• When conducting an experiment, one tries to identify systematic effects before, during, and after 
data-taking. I  

• There is no recipe for doing this right but there are some “best practices” that good researchers try to 
follow I  

• After all efforts have been made to eliminate systematic effects, the remaining uncertainties become 
systematic uncertainties. I 

• It is important not to inflate systematics, but in the real world, sometimes you do have to cut your 
losses and go with a reasonable uncertainty



SOUP2021 - Statistics for Underground Physics - June 28, 2021

The 6 Barlow commandments

120

Thou shalt never say ‘systematic error’ when thou meanest ‘systematic effect’ or 
‘systematic mistake’ 

Thou shalt not add uncertainties on uncertainties in quadrature. If they are larger than 
chickenfeed, get more Monte Carlo data 

Thou shalt know at all times whether thou art performing a check for a mistake or an 
evaluation of an uncertainty 

Thou shalt not not incorporate successful check results into thy total systematic error 
and make thereby a shield behind which to hide thy dodgy result 

Thou shalt not incorporate failed check results unless thou art truly at thy wits’ end 
Thou shalt say what thou doest, and thou shalt be able to justify it out of thine own 

mouth, not the mouth of thy supervisor, nor thy colleague who did the analysis last 
time, nor thy mate down the pub. 

Do these, and thou shalt prosper, and thine analysis likewise

Roger Barlow


