
INFN Soup 20 21

The 1st INFN School on Underground Physics: Theory & Experiments

INFN

Semiconductor detectors

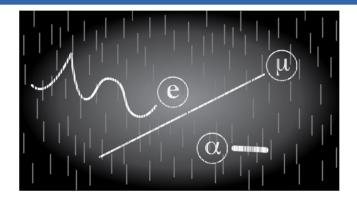
Alessandro Razeto Laboratori Nazionali del Gran Sasso

References

- Radiation Detection & Measurement G. Knoll
- Solid State Physics A. Mermin
 - Chapter 8-9 & 28
- http://ecee.colorado.edu/~bart/book/book/contents.htm
 - Chapter 2 & 4
- https://www-physics.lbl.gov/~spieler/
 - Semiconductor Detector Systems H. Spieler
- Semiconductor Radiation Detectors G. Lutz
- Passage of Particles Through Matter

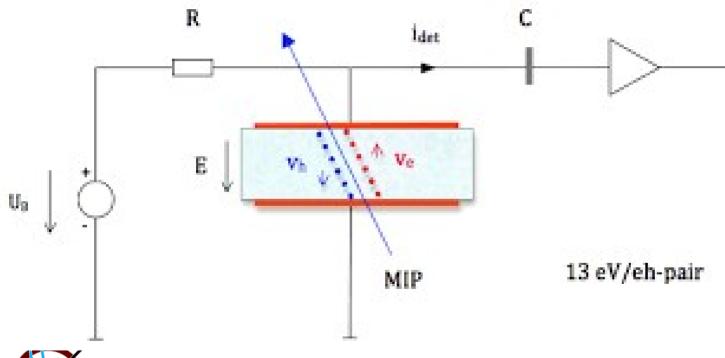
Detection of physical quantities

- Light
- Particles
- Sound
- Humidity
- Accelerations
- Temperature

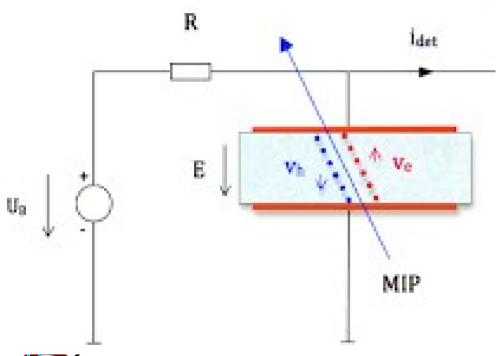


Detection of physical quantities

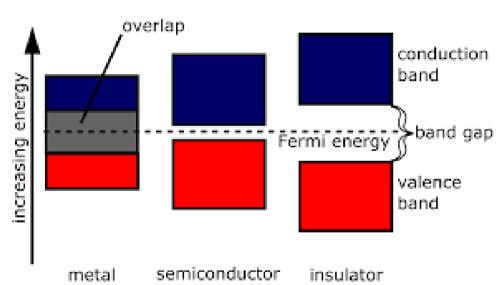
- Light
- Particles
- Sound
- Humidity
- Accelerations
- Temperature

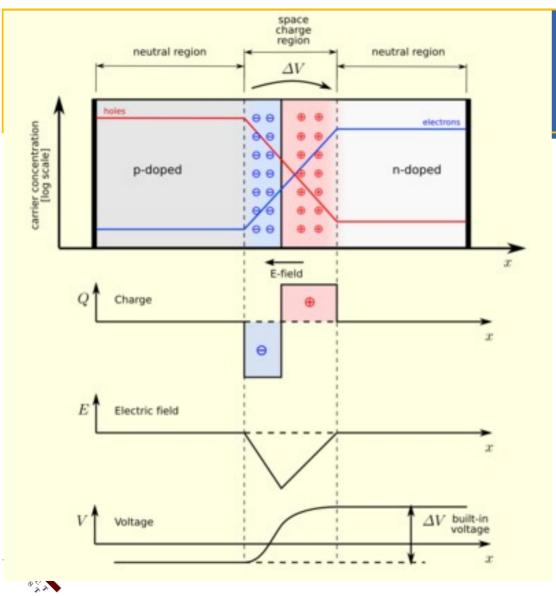


Base design

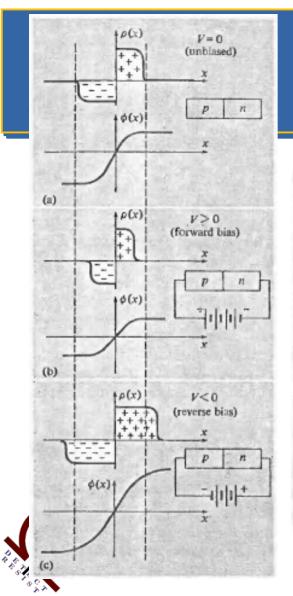


Base design


- Non conductive target + field
- A particle releases charge
- The charge is drifted
 - Amplified and acquired
- Leakage is the current with no particle
 - Leakage << signal


Semiconductors

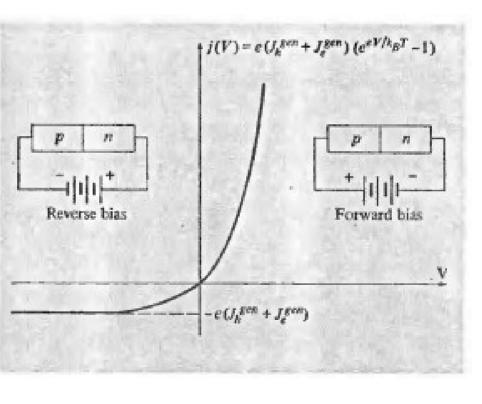
- The band gap has to be compared with the $k_{\rm B} T$
 - 1/40 eV at 300 K
 - Si 1.1 eV
 - Ge 0.6 eV
 - Diamond 5.5 eV
- Typ. the band-gap \propto -T
 - Increasing lattice spacing

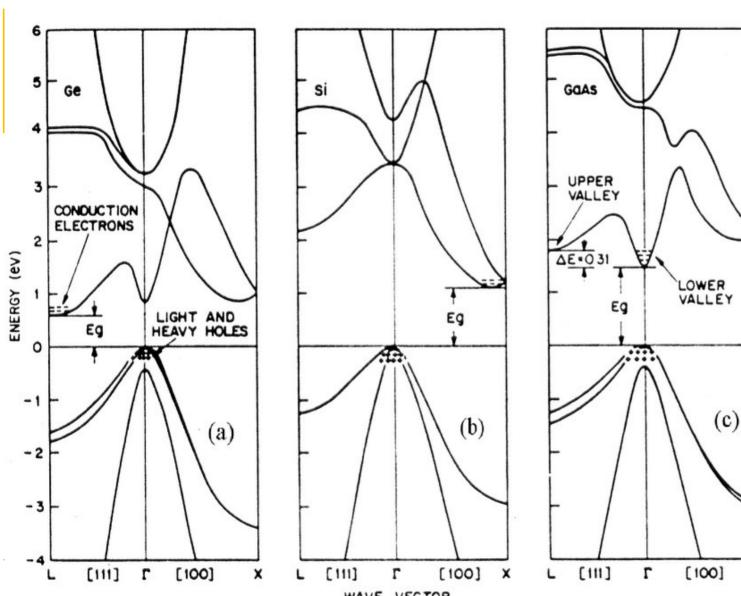


- Majority carriers diffusing on the other side of the junction recombine
 - Depletion layer
 - Capacitance

$$C_j = \epsilon A \left[\frac{q}{2\epsilon(V_0 - V)} \frac{N_d N_a}{N_d + N_a} \right]^{1/2} = \frac{\epsilon A}{W}$$

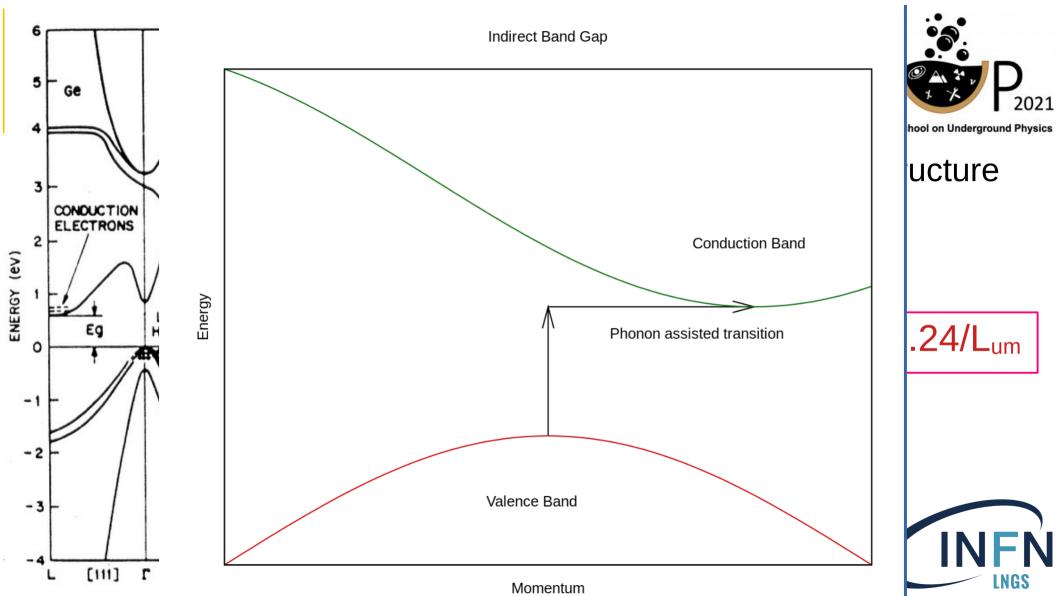
$$- V = k_B T / e^- \ln\left(\frac{n_a n_d}{n_i^2}\right)$$


Shockley equation

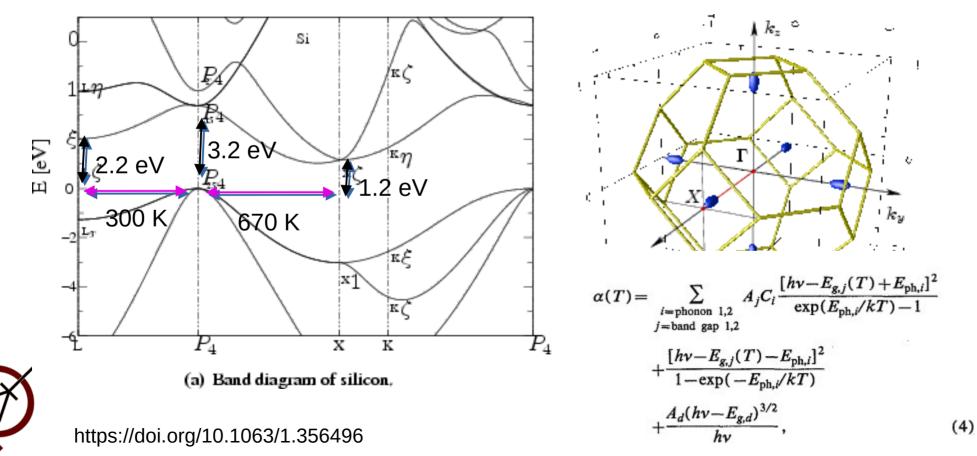


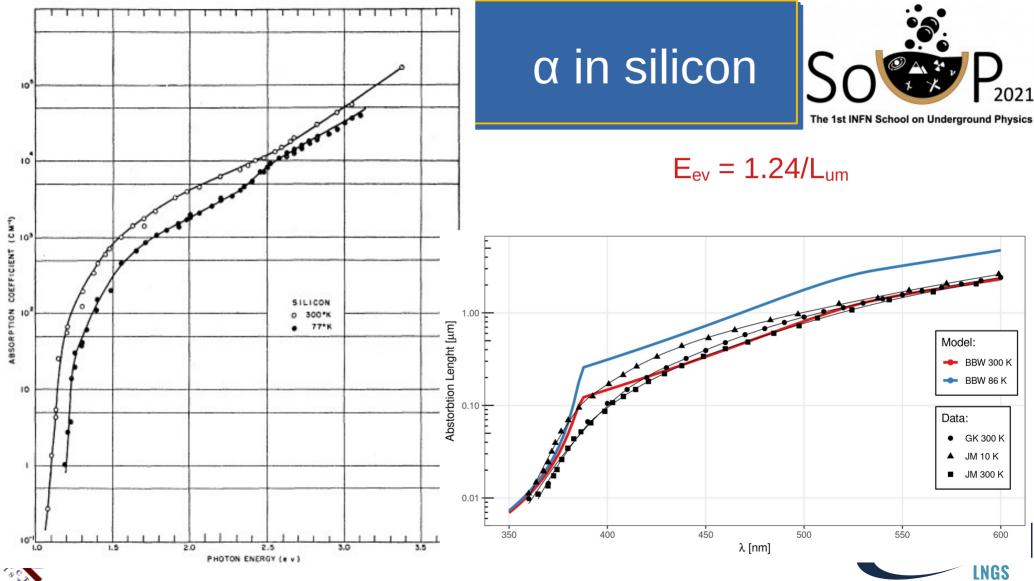
 $I=I_{
m S}\left(e^{rac{V_{
m D}}{nV_{
m T}}}-1
ight)$

 $I_s \propto \#$ minority carriers $\propto \exp(-1/T) * 1/doping$



$$E_{ev} = 1.24/L_{um}$$

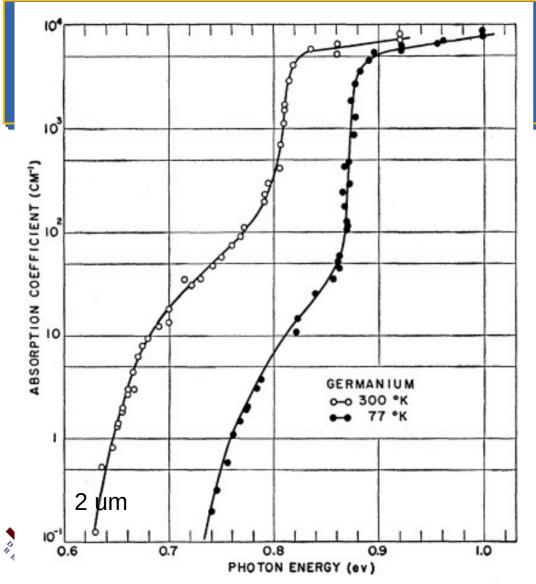

x



Si structure

	 	_									 				
- 1				-	-	-			1	1 1			1		1
- 1										1					
- 1			 			1.11	1	 	100		 	1000	1	-	_

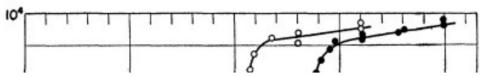
Si Photodiodes - VIS Wavelengths


Click Image for Details				-	\bigcirc		100	
Item #	FDS010	FD11A	FDS10X10	FDS100	FDS1010	FDS015	FDS02	FDS025
Key Feature	High Speed, UV Grade Fused Silica Window to Provide Sensitivity Down to 200 nm	Lowest Dark Current in TO-18 Can with a Window	Low Dark Current in 10 mm x 10 mm Ceramic Package	High Speed, Largest Sensor in a TO-5 Can	High Speed, Large Active Area and Mounted on an Insulating Ceramic Substrate	Highest Speed and Lowest Capacitance in a TO-46 Can with an AR-Coated Window	High Speed and Low Capacitance in a Direct Fiber- Coupled FC/PC Package	High Speed and Low Capacitance in a TO-46 Can with a Ball Lens
Info	0	0	0	0	0	0	0	0
Wavelength Range	200 - 1100 nm ^a	320 - 1100 nm	340 - 1100 nm	350 - 1100 nm	350 - 1100 nm	400 - 1100 nm	400 - 1100 nm	400 - 1100 nm
Active Area	0.8 mm ² (Ø1.0 mm)	1.21 mm ² (1.1 mm x 1.1 mm)	100 mm ² (10 mm x 10 mm)	13 mm ² (3.6 mm x 3.6 mm)	100 mm ² (10 mm x 10 mm)	0.018 mm ² (Ø150 μm)	0.049 mm ² (Ø0.25 mm)	0.049 mm ² (Ø0.25 mm)
Rise/Fall Time ^b	1 ns / 1 ns @ 830 nm, 10 V	400 nsc ^{c,d} @ 650 nm, 0 V	150 ns / 150 ns ^d @ 5 V	10 ns / 10 ns ^d @ 632 nm, 20 V	65 ns / 65 ns ^d @ 632 nm, 5 V	35 ps / 200 ps @ 850 nm, 5 V	47 ps / 246 ps @ 850 nm, 5 V	47 ps / 246 ps @ 850 nm, 5 V
NEP (W/Hz ^{1/2})	5.0 x 10 ⁻¹⁴ @ 830 nm, 10 V	6.8 x 10 ⁻¹⁶ @ 960 nm, 0 V	1.50 x 10 ⁻¹⁴ @ 960 nm	1.2 x 10 ⁻¹⁴ @ 900 nm, 20 V	2.07 x 10 ⁻¹³ @ 970 nm, 5 V	8.60 x 10 ⁻¹⁵ @ 850 nm, 5 V	9.29 x 10 ⁻¹⁵ @ 850 nm, 5 V	9.29 x 10 ⁻¹⁵ @ 850 nm, 5 V
Dark Current	0.3 nA (Typ.) @ 10 V	2.0 pA (Max) @ 10 mV	200 pA @ 5 V	1.0 nA (Typ.) @ 20 V	600 nA (Max) @ 5 V	0.03 nA (Typ.) @ 5 V	35 pA (Typ.) @ 5 V	35 pA (Typ.) @ 5 V
Junction Capacitance	6 pF (Typ.) @ 10 V	140 pF (Typ.) @ 0 V	380 pF @ 5 V	24 pF (Typ.) @ 20 V	375 pF (Typ.) @ 5 V	0.65 pF (Typ.) @ 5 V	0.94 pF (Typ.) @ 5 V	0.94 pF (Typ.) @ 5 V
Package	TO-5	TO-18	Ceramic	TO-5	Ceramic	TO-46	TO-46, FC/PC Bulkhead	TO-46
Compatible Sockets	STO5S STO5P	<u>STO46S</u> <u>STO46P</u>	Not Available	STO5S STO5P	Not Available	<u>STO46S</u> <u>STO46P</u>	<u>STO46S</u> <u>STO46P</u>	<u>STO46S</u> <u>STO46P</u>
	1.9 E.M	E.U				v [mm]		

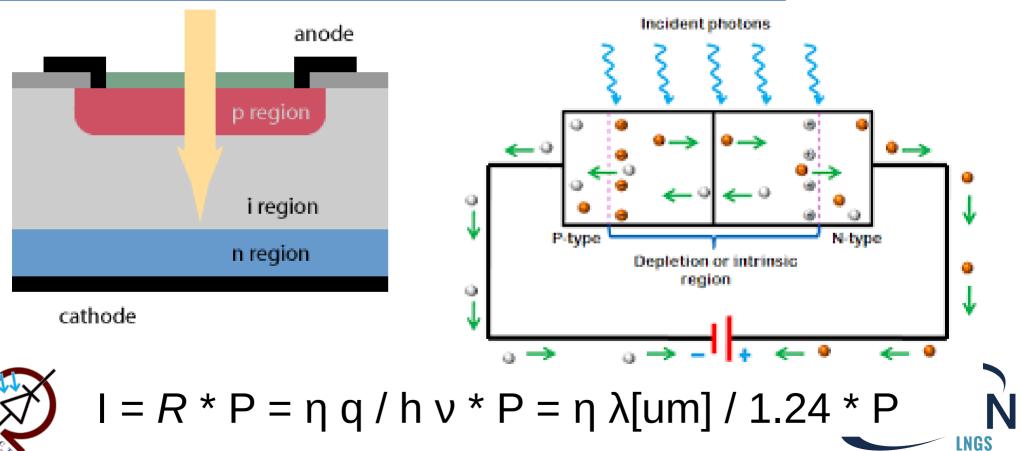
4

4

6.07 10.00 PHOTON ENERGY (+ v)



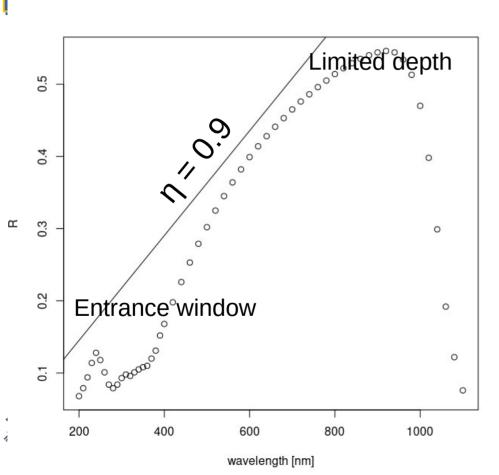
& Ge?


Ge Photodiodes - NIR Wavelengths

			1	
Click Image for Details			Ø	
Item #	FDG03	FDG05 ^a	FDG50	FDG10X10
Key Feature	Large Active Area in a TO-5 Can	High Speed on a Ceramic Substrate	Large Active Area in a TO-8 Can	Largest Active Area
Info	0	0	0	0
Wavelength Range	800 - 1800 nm			
Active Area	7.1 mm ² (Ø3 mm)	19.6 mm ² (Ø5 mm)	19.6 mm ² (Ø5 mm)	100 mm ² (10 mm x 10 mm)
Rise/Fall Time ^b	600 ns / 600 ns @ 3 V	220 ns / 220 ns @ 3 V	220 ns / 220 ns (Typ.) @ 10 V	10 µs (Typ.) @ 1 V
NEP	2.6 x 10 ⁻¹² W/Hz ^{1/2} @ 1550 nm	4.0 x 10 ⁻¹² W/Hz ^{1/2} @ 1550 nm	4.0 x 10 ⁻¹² W/Hz ^{1/2} @ 1550 nm	4.0 x 10 ⁻¹² W/Hz ^{1/2} @ 1550 nm ^c
Dark Current	4.0 μA (Max) @ 1 V	40 μA (Max) @ 3 V	60 μA (Max) @ 5 V	50 μA (Max) @ 0.3 V
Junction Capacitance	6 nF (Typ.) @ 1 V 4.5 nF (Typ.) @ 3 V	3000 pF (Typ.) @ 3 V	1800 pF (Max) @ 5 V 16000 pF (Max) @ 0 V	80 nF (Typ.) @ 1 V 135 nF (Typ.) @ 0 V
Shunt Resistance	25 kΩ (Min)	-	4 kΩ (Typ.)	2 kΩ (Min)
Package	TO-5	Ceramic	TO-8	Ceramic
Compatible Sockets	STO5S STO5P	Not Available	STO8S STO8P	Not Available
10 ⁻¹ 0.6 0.7 PH	0.8 0.9 OTON ENERGY (ev)	1.0		

10 A

Photodiode structure



Responsivity

The 1st INFN School on Underground Physics

Click Image for Details	0	0	
Item #	FDS010	FD11A	
Key Feature	High Speed, UV Grade Fused Silica Window to Provide Sensitivity Down to 200 nm	Lowest Dark Current in TO-18 Can with a Window	
Info	0	0	
Wavelength Range	200 - 1100 nm ^a	320 - 1100 nm	
Active Area	0.8 mm ² (Ø1.0 mm)	1.21 mm ² (1.1 mm x 1.1 mm)	
Rise/Fall Time ^b	1 ns / 1 ns @ 830 nm, 10 V	400 nsc ^{c,d} @ 650 nm, 0 V	
NEP (W/Hz ^{1/2})	5.0 x 10 ⁻¹⁴ @ 830 nm, 10 V	6.8 x 10 ⁻¹⁶ @ 960 nm, 0 V	
Dark Current	0.3 nA (Typ.) @ 10 V	2.0 pA (Max) @ 10 mV	
Junction Capacitance	6 pF (Typ.) @ 10 V	140 pF (Typ.) @ 0 V	
Package	TO-5	TO-18	
Compatible Sockets	STO5S STO5P	STO46S STO46P	

Responsivity

4

à

 $C = \epsilon_0 e_R A/d$ 0 0.5 = 140 pF 0.5 A = 1.2 mm2 0 \rightarrow d = 9 um 0.4 000 0 0.4 0 0 0 0 0 0.3 £ 0 Щ 0.3 0 0 0 0 0 0 0 0 0 0.2 0.2 0 0 0 0 00 0 0 80000000 °°°°° े १. ७ 0 0 0 0.1 0.1 0 0 200 400 600 800 1000 1e-02 1e-01 1e+00 1e+01 1e+02 1e+03 wavelength [nm]

Attenuation lenght [um]

ysics

Dark Current & NEP

- Couples are generated spontaneously
 - Igen in PN junction
- Then there is the leakage current
 - Surface effects
 - Bulk effects
- NEP = noise power density
 - Minimum power that can be detected
 - NEP > shot noise of the dark current —
 - ~ $\sqrt{(2 e^{-1} BW)} / R$

If you want to see a signal at 10 kHz \rightarrow P_n = 70 aW

= 0.2 Mph/s

	So	
Click Image for Details		
Item #	FDS010	FD11A
Key Feature	High Speed, UV Grade Fused Silica Window to Provide Sensitivity Down to 200 nm	Lowest Dark Current in TO-18 Can with a Window
Info	0	0
Wavelength Range	200 - 1100 nm ^a	320 - 1100 nm
Active Area	0.8 mm ² (Ø1.0 mm)	1.21 mm ² (1.1 mm x 1.1 mm)
Rise/Fall Time ^b	1 ns / 1 ns @ 830 nm, 10 V	400 nsc ^{c,d}
NEP (W/Hz ^{1/2})	5.0 x 10 ⁻¹⁴ @ 830 nm, 10 V	6.8 x 10 ⁻¹⁶ @ 960 nm, 0 V
Dark Current	0.3 nA (Typ.) @ 10 V	2.0 pA (Max) @ 10 mV
Junction Capacitance	6 pF (Typ.) @ 10 V	140 pF (Typ.) @ 0 V
Package	TO-5	TO-18
Compatible Sockets	STO5S STO5P	STO46S STO46P

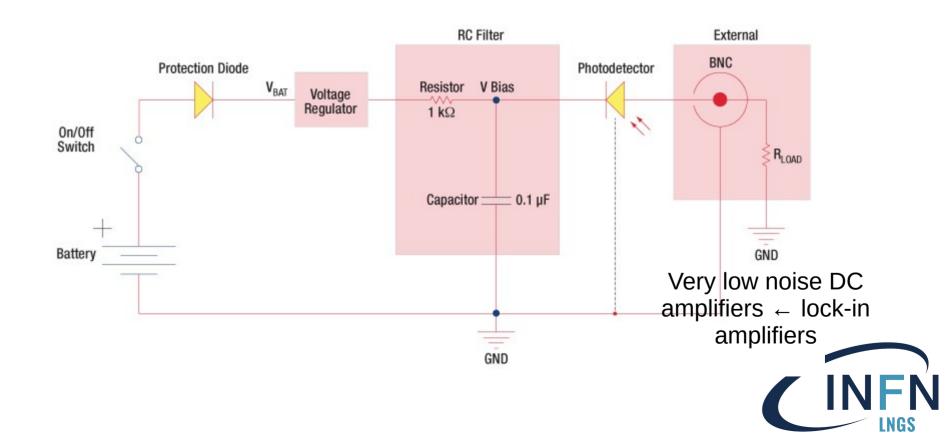
Dark Currer

- Couples are genera
 - I_{gen} in PN junction
- Then there is the lea
 - Surface effects
 - Bulk effects
- NEP = noise power
 - Minimum power th
 - NEP > shot noise
 - ~ $\sqrt{(2 e^{-} I BW)} / R$
 - If you want to see

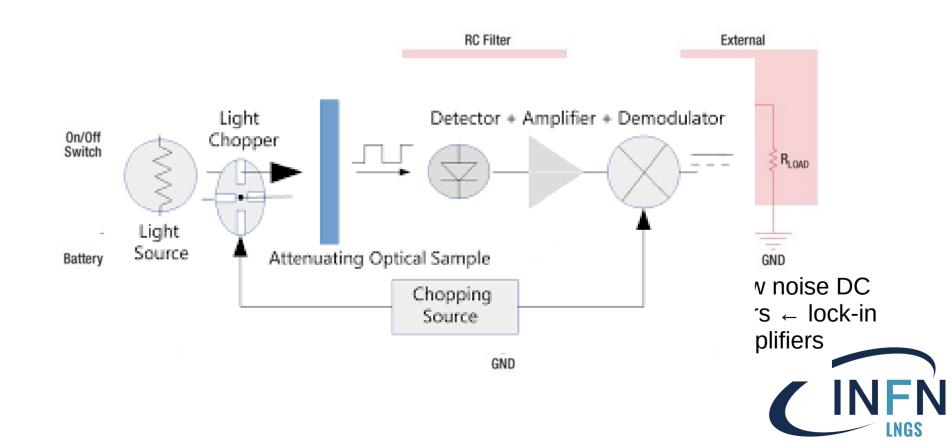
N	\mathbf{T}
R. S.	

Click Image for Details					So				
	19	~~		k Image					
tem #	FDS010	FD11A	FDS10X10	Details	10				
Key Feature	High Speed, UV Grade Fused Silica Window to Provide	Lowest Dark Current in TO-18	Low Dark Current 10 mm x 10 mm	in n #	FDS010	FD11A			
	Sensitivity Down to 200 nm	Can with a Window	Ceramic Package		High Speed, UV Grade Fused Silica	Lowest Dark	D-18 ndow nm 2 .mm) d 0 V 6 0 V (x) (p.)		
nfo	0	0	0	/ Feature	Window to Provide Sensitivity Down to	Current in TO-18 Can with a Window			
Wavelength Range	200 - 11 <mark>00 nm^a</mark>	320 - 1100 nm	340 - 1100 nm	–	200 nm		_		
Active Area	0.8 mm ² (Ø1.0 mm)	1.21 mm ² (1.1 mm x 1.1 mm)	100 mm ² (10 mm x 10 mm)	velength	200 - 1100 nm ^a	320 - 1100 nm			
Rise/Fall Time ^b	1 ns / 1 ns @ 830 nm, 10 V	400 nsc ^{c,d} @ 650 nm 0 V	150 ns / 150 ns ^d @ 5 V	ive Area	0.8 mm ²	1.21 mm ²			
NEP (W/Hz ^{1/2})	5.0 x 10 ⁻¹⁴ @ 830 nm, 10 V	6.8 x 10 ⁻¹⁶ @ 960 nm, 0 V	1.50 x 10 ⁻¹⁴ @ 960 nm	e/Fall	(Ø1.0 mm) 1 ns / 1 ns	(1.1 mm x 1.1 mm) 400 nsc ^{c,d}	-		
Dark Current	0.3 nA (Typ.) @ 10 V	2.0 pA (Max) @ 10 mV	200 pA @ 5 V	P Hz ^{1/2})	@ 830 nm, 10 V 5.0 x 10 ⁻¹⁴ @ 830 nm, 10 V	@ 650 nm, 0 V 6.8 x 10 ⁻¹⁶ @ 960 nm, 0 V			
Junction Capacitance	6 pF (Typ.) @ 10 V	140 pF (Typ.) @ 0 V	380 pF @ 5 V	k rrent	0.3 nA (Typ.) @ 10 V	2.0 pA (Max) @ 10 mV	-		
Package	TO-5	TO-18	Ceramic	iction	6 pF (Typ.) @ 10 V	140 pF (Typ.) @ 0 V	-		
Compatible Sockets	STO5S STO5P	<u>STO46S</u> <u>STO46P</u>	Not Available	kage	TO-5	TO-18			
		U 1 -		Compatible Sockets	STO5S STO5P	STO46S STO46P	-		

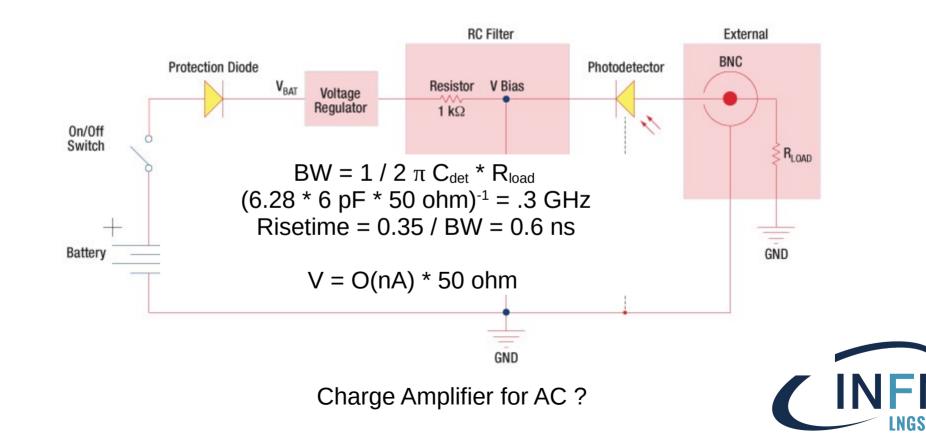
Linearity & Speed

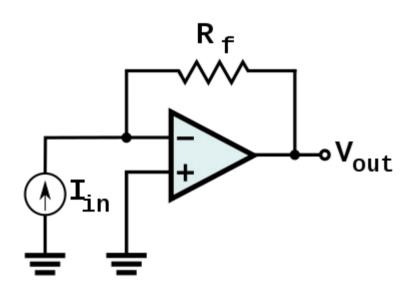

- PN/PIN photo-diodes are the most linear device we know
 - From pW to W
 - Just remember to keep the temperature constant
- In telecommunication and for many particle detector speed is important
 - Up to sub-ps

Read-out – DC circuit



Read-out – DC circuit




Read-out – DC circuit

Trans-impedance amplifier

- The standard for telecommunication
- Can be very very fast
 - Used for > 100 gbit/s optical transmissions
- Simpler idea than charge amp
 - At first view the design is the same
 - But the implications and the problems are very different
 - Except for detector capacitance

OPA855

SBOS622A - JULY 2018 - REVISED OCTOBER 2018

OPA855 8-GHz Gain Bandwidth Product, Gain of 7-V/V Stable, Bipolar Input Amplifier

Technical Documents

- Order

Now

Product

Folder

1 Features

- · High Gain Bandwidth Product: 8 GHz
- Decompensated, Gain ≥ 7 V/V (Stable)
- Low Input Voltage Noise: 0.98 nV/vHz
- Slew Rate: 2750 V/µs
- · Low Input Capacitance:
 - Common-Mode: 0.6 pF
 - Differential: 0.2 pF
- · Wide Input Common-Mode Range:
 - 0.4 V from Positive Supply
 - 1.1 V from Negative Supply
- 3 V_{PP} Total Output Swing
- Supply Voltage Range: 3.3 V to 5.25 V
- Quiescent Current: 17.8 mA
- Package: 8-Pin WSON
- Temperature Range: -40 to +125°C

2 Applications

- High-Speed Transimpedance Amplifier
- Laser Distance Measurement
- CCD Output Buffer
- High-Speed Buffer
- Optical Time Domain Reflectometry (OTDR)
- High-Speed Active Filter
- 3D Scanner
- Silicon Photomultiplier (SiPM) Buffer Amplifier
- Photomultiplier Tube Post Amplifier

3 Description

A Tools &

Software

The OPA855 is a wideband, low-noise operational amplifier with bipolar inputs for wideband transimpedance and voltage amplifier applications. When the device is configured as a transimpedance amplifier (TIA), the 8-GHz gain bandwidth product (GBWP) enables high closed-loop bandwidths at transimpedance gains of up to tens of k Ω s.

Support & Community

The graph below shows the bandwidth and noise performance of the OPA855 as a function of the photodiode capacitance when the amplifier is configured as a TIA. The total noise is calculated along a bandwidth range extending from dc to the calculated frequency, f, on the left-hand scale. The OPA855 package has a feedback pin (FB) that simplifies the feedback network connection between the input and the output.

The OPA855 is optimized to operate in optical timeof-flight (ToF) systems where the OPA855 is used with time-to-digital converters, such as the TDC7201. Use the OPA855 to drive a high-speed analog-todigital converter (ADC) in high-resolution LIDAR systems with a differential output amplifier, such as the THS4541 or LMH5401.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
OPA855	WSON (8)	2.00 mm × 2.00 mm

 For all available packages, see the package option addendum at the end of the data sheet.

OPA855 SBOS622A - JULY 2018 - REVISED OCTOBER 2018

160

140

120

100

80

60

40

20

IRN (NARMS)

Noise,

Integrated Input Referred

LNGS

OPA855 8-GHz Gain Bandwidth Product, Gain of 7-V/V Stable, Bipolar Input Amplifier

Technical

Documents

Order

Now

Product

Folder

Features

- High Gain Bandwidth Product: 8 GHz
- Decompensated, Gain ≥ 7 V/V (Stable)
- Low Input Voltage Noise: 0.98 nV/vHz
- Slew Rate: 2750 V/us
- Low Input Capacitance: ٠
 - Common-Mode: 0.6 pF
 - Differential: 0.2 pF _
- Wide Input Common-Mode Range:
 - 0.4 V from Positive Supply
 - 1.1 V from Negative Supply
- 3 VPP Total Output Swing
- Supply Voltage Range: 3.3 V to 5.25 V
- **Ouiescent Current: 17.8 mA**
- Package: 8-Pin WSON
- Temperature Range: -40 to +125°C

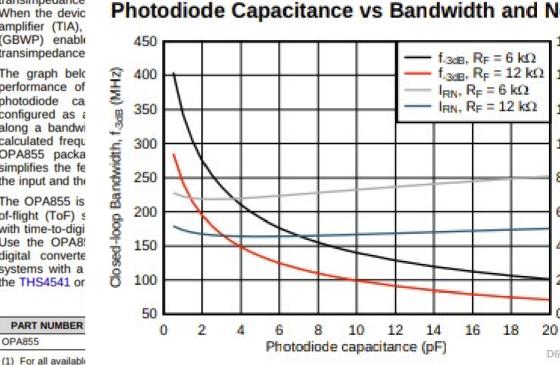
2 Applications

- High-Speed Transimpedance Amplifier
- Laser Distance Measurement
- CCD Output Buffer
- High-Speed Buffer
- Optical Time Domain Reflectometry (OTDR)
- High-Speed Active Filter
- **3D Scanner**
- Silicon Photomultiplier (SiPM) Buffer Amplifier
- Photomultiplier Tube Post Amplifier ٠

3 Description

A Tools &

Software


The OPA855 is a wideband, low-noise operational

Community Support &

amplifier with transimpedance When the devic amplifier (TIA), (GBWP) enable transimpedance The graph belo performance of photodiode ca configured as a along a bandwi calculated frequ OPA855 packa simplifies the fe the input and the The OPA855 is of-flight (ToF) s with time-to-digi Use the OPA8 digital converte systems with a the THS4541 or

OPA855

at the end of th

Photodiode Capacitance vs Bandwidth and Noise

- 1143	STRUMENTS			SB	OS622A – JU	Y 2018-RE	VISED OCT	OBER 2018				51			
Click Image for Details	10			tion is a th				lifier erational				The 1st I	NFN School	on Unde	erground
Item #	FDS010	FD11A	FDS10X10	ce vic	Pho	todic	de C	apaci	itance	vs B	and	widtl	h and	Nois	se
Key Feature	High Speed, UV Grade Fused Silica Window to Provide Sensitivity Down to 200 nm	Lowest Dark Current in TO-18 Can with a Window	Low Dark Current in 10 mm x 10 mm Ceramic Package), ble ce elc of	45 (2 HM	2					f	-3dB, R	= = 6 kΩ = = 12 kΩ = 6 kΩ	160 140	IRN (NARMS)
Info	0	0	0	ca ; a	g 35	Þ		_	_				= 12 kΩ	120	
Wavelength Range	200 - 11 <mark>00 nm^a</mark>	320 - 1100 nm	340 - 1100 nm	qu	(ZHM) as 1, 30 25 25 25 25 25 25 25 25 25 25 25 25 25	Ъ			_			2		100	Noise,
Active Area	0.8 mm ² (Ø1.0 mm)	1.21 mm ² (1.1 mm x 1.1 mm)	100 mm ² (10 mm x 10 mm)	fe the	tpivo 25	4	\mathbb{N}		_				_	80	
Rise/Fall Time ^b	1 ns / 1 ns @ 830 nm, 10 V	400 nsc ^{c,d} @ 650 nm, 0 V	150 ns / 150 ns ^d @ 5 V	is									_	60	Rele
NEP (W/Hz ^{1/2})	5.0 x 10 ⁻¹⁴ @ 830 nm, 10 V	6.8 x 10 ⁻¹⁶ @ 960 nm, 0 V	1.50 x 10 ⁻¹⁴ @ 960 nm	igi \8!	doo-pesop 10			\rightarrow	-		_			40	Integrated Input Referred
Dark Current	0.3 nA (Typ.)	2.0 pA (Max)	200 pA @ 5 V	a	8 10				_		-	_	_	20	ated
Junction Capacitance	6 pF (Typ.) @ 10 V	140 pF (Typ.) @ 0 V	380 pF @ 5 V		5									0	Integr
Package	TO-5	TO-18	Ceramic	R		0	2 4	6		10 12		16	18	20	
Compatible Sockets	STO5S STO5P	STO46S STO46P	Not Available	able f th				PHOD	o <mark>diode</mark> c	араснал	ce (p⊢	,		D609	

· SIICON PROTONULUPILET (SIPM) BUTTET AMPIITET

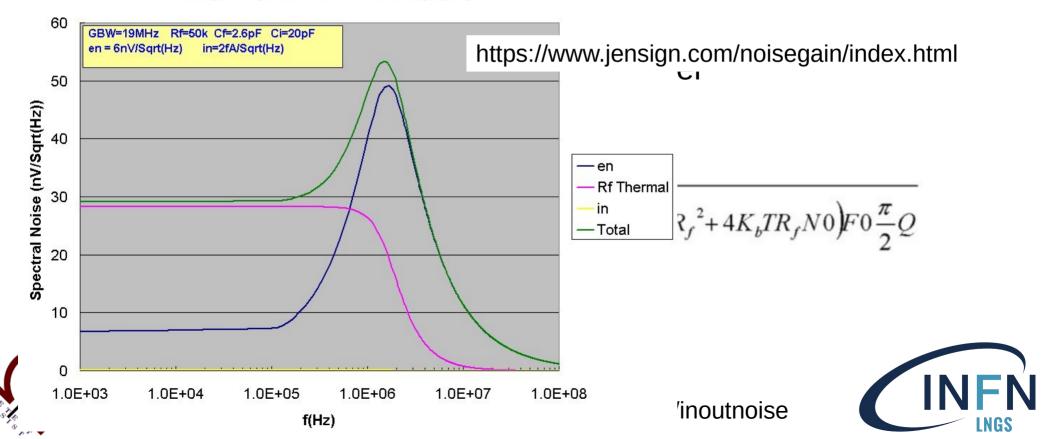
Photomultiplier Tube Post Amplifier

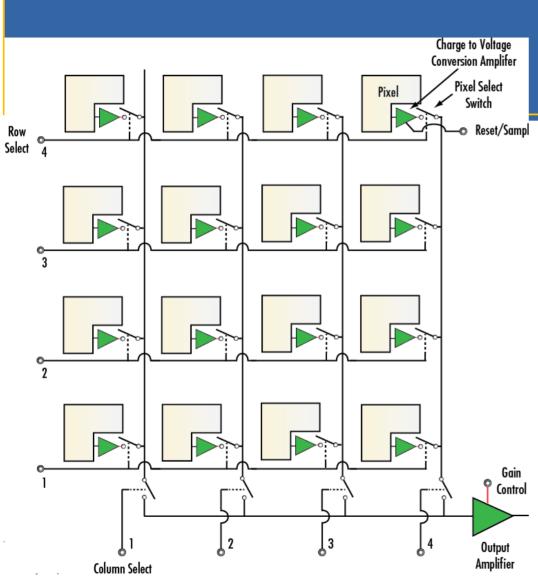
TIA equations

- BW = $\sqrt{GBP}/(4 \pi R_f C_d)$
 - GBP is the BW at gain 1 for the amplifier
 - can be 10 GHz
- The noise:

$$V_n^{out} = \sqrt{\left(e_n^2 + i_n^2 R_p^2 + 4K_b T R_p\right)} N0^2 F 0 \frac{\pi}{2} Q \left(1 + \frac{BW}{F_z}\right) + \left(i_n^2 R_f^2 + 4K_b T R_f N 0\right) F 0 \frac{\pi}{2} Q$$

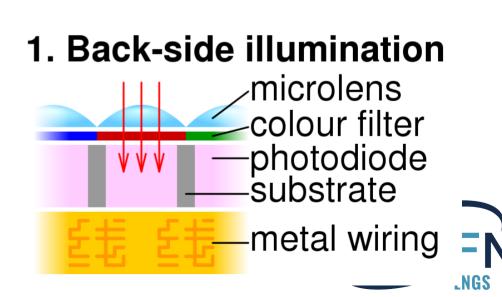
 $\propto \sqrt{C_d}$


https://www.jensign.com/inoutnoise

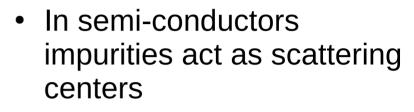


TIA equations

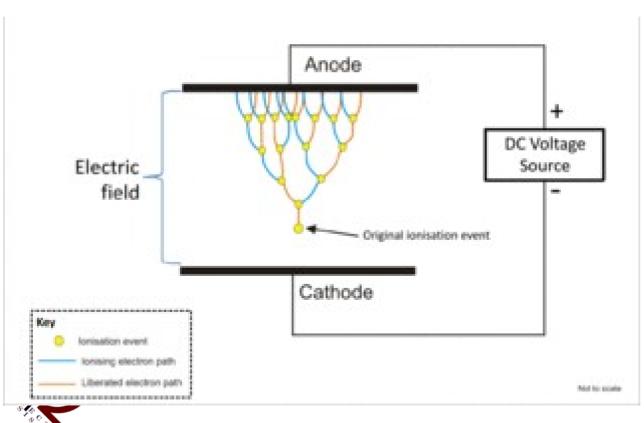
Output Spectral Noise nV/Sqrt(Hz)



CMOS sensors

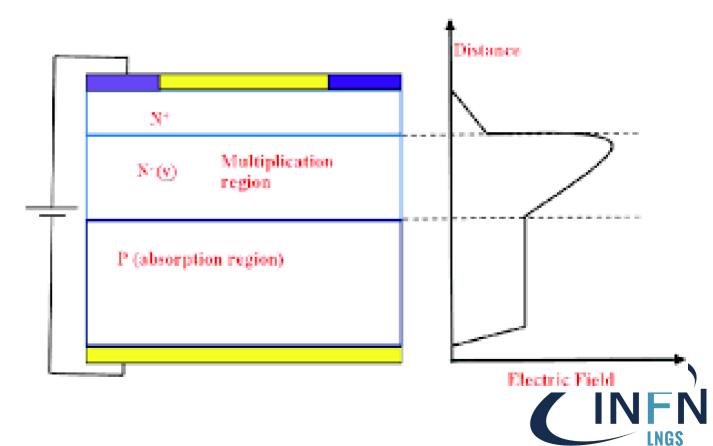


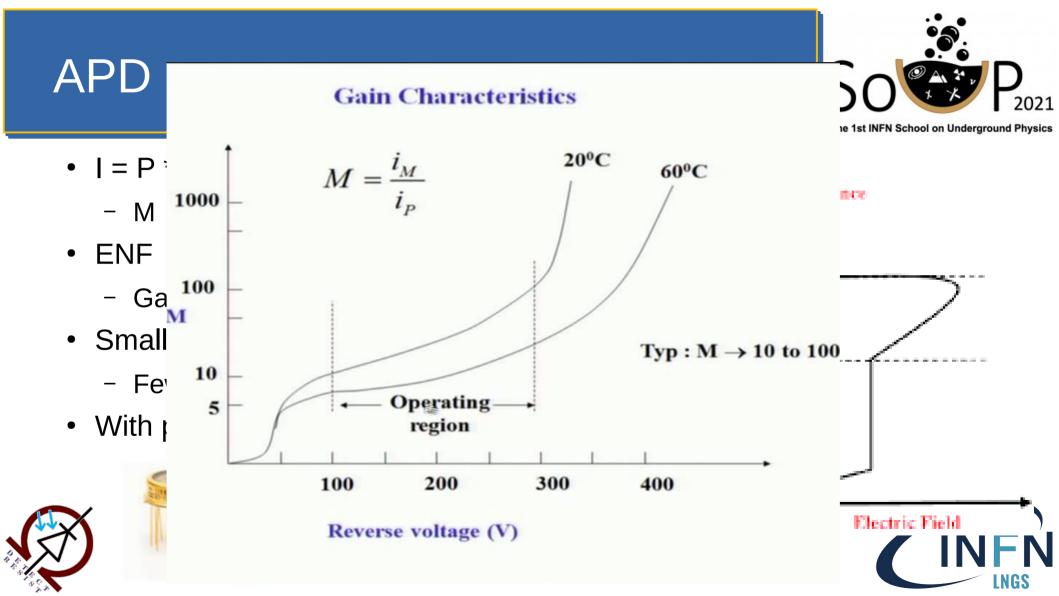
- Each pixel is few um
 - Capacitance ~ fF
 - Resolution ~ sub-e-
- Modern sensors are back-illuminated


Avalanches

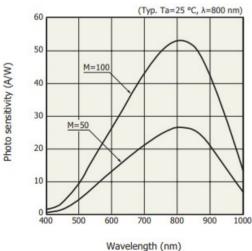
- If a carrier is hot enough it ionizes further the impurity
- New carriers drift until a new scattering center is hit
- Exponential progression



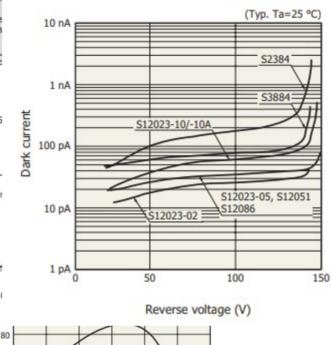



APD

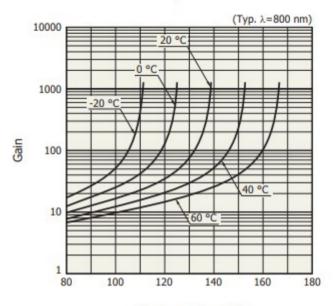
- I = P * M * R
 - M \rightarrow 10 100
- ENF
 - Gain noise
- Small size
 - Few mm²
- With pre-amplifier



Electrical and optical characteristics (Typ. Ta=25 °C, unle


Type no.	Spectral response range λ	Peak* ⁵ sensitivity wavelength λ.p (nm)	Photo- sensitivity S M=1 λ=800 nm (A/W)	Quantum efficiency QE M=1 λ=800 nm (%)	Breakdown voltage VBR ID=100 µA		Temp co- efficie of VB
	(nm)				Typ. (V)	Max. (V)	(v/°C
S12023-02		800	0.5	75	150	200	0.65
S12023-05	400 to 1000						
S12051							
S12086							
S12023-10							
S12023-10A*3							
S3884							
S2384							
S2385							

*5: Values measured at a gain listed in the characteristics table Note: Breakdown voltage can be specified by using the suffix of type number as S12023-02-01: 80 to 120 V S12023-02-02: 120 to 160 V S12023-02-03: 160 to 200 V


Spectral response

Dark current vs. reverse voltage

Gain vs. reverse voltage

Reverse voltage (V)

- Quar

Quantum efficiency (%)

1(

60

40

20

0

400

500

600

700

Wavelength (nm)

800

900

1000

20 -

DR B S

Electrical and optical characteristics (Typ. Ta=25 °C, unle

Type no.	Spectral response range λ	Peak*5 sensitivity wavelength λ.p (nm)	Photo- sensitivity S M=1 λ=800 nm (A/W)	Quantum efficiency QE M=1 λ=800 nm (%)	Breakdown voltage VBR ID=100 µA		Temp co- efficie of VB
	(nm)				Typ. (V)	Max. (V)	(v/°C
S12023-02		800	0.5	75	150	200	0.65
S12023-05	400 to 1000						
S12051							
S12086							
S12023-10							
S12023-10A*3							
S3884							
S2384							
S2385							

*5: Values measured at a gain listed in the characteristics table Note: Breakdown voltage can be specified by using the suffix of type number a: S12023-02-01: 80 to 120 V S12023-02-02: 120 to 160 V S12023-02-03: 160 to 200 V

- Quar

Quantum efficiency (%)

1(

80

60

40

20

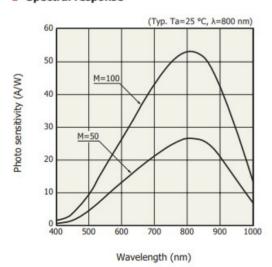
0

400

500

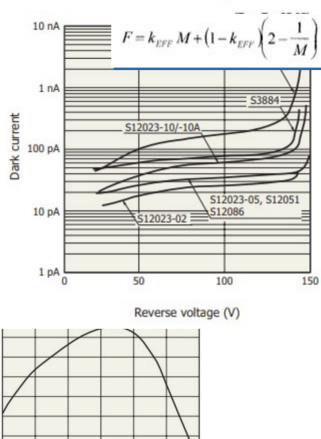
600

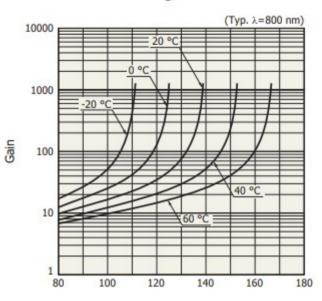
700


Wavelength (nm)

800

900

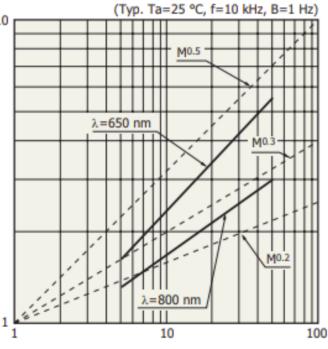

1000


- Spectral response

Dark current vs. reverse voltage

Gain vs. reverse voltage

Reverse voltage (V)


20 🔻

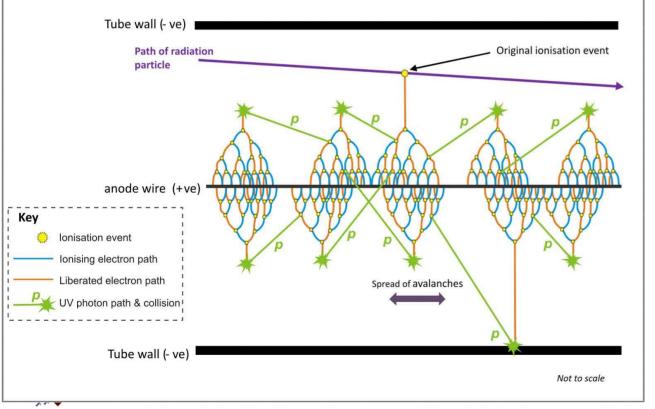
D R R R

Excess noise factor

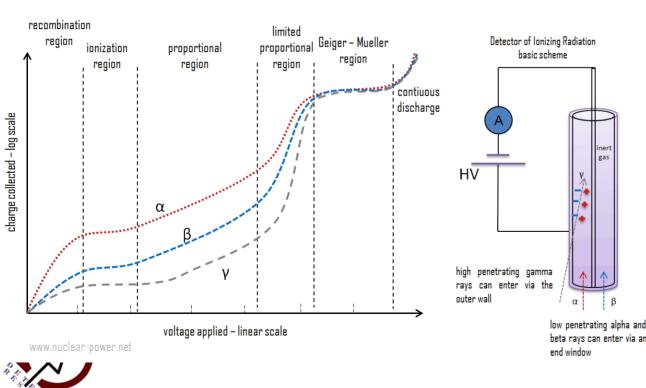
ENF Excess noise factor vs. gain (Typ. Ta=25 °C

Gain

$$F = k_{EFF} M + \left(1 - k_{EFF} \left(2 - \frac{1}{M}\right)\right)$$

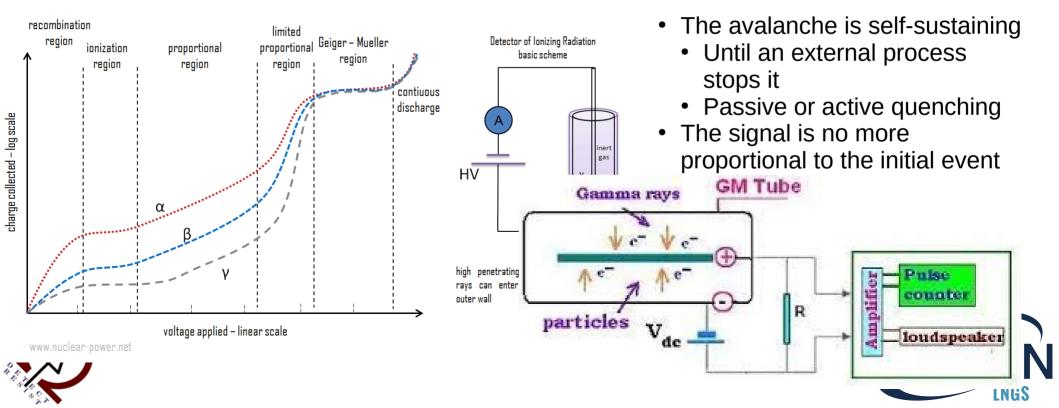

$$K = P_h/P_e$$

Spread of avalanches in a Geiger-Muller tube

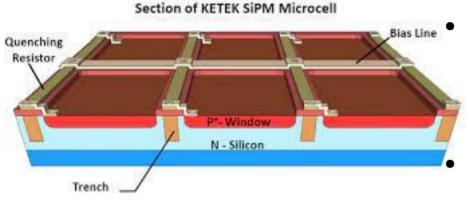


- The avalanche is self-sustaining
 - Until an external process stops it
 - Passive or active quenching
- The signal is no more proportional to the initial event

Regions of Gaseous Ionization Detectors



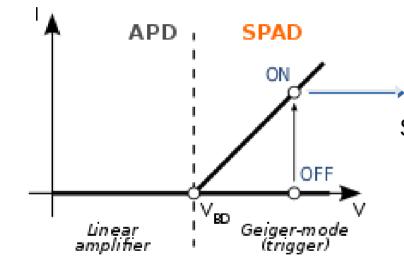
- The avalanche is self-sustaining
 - Until an external process stops it
 - Passive or active quenching
- The signal is no more proportional to the initial event



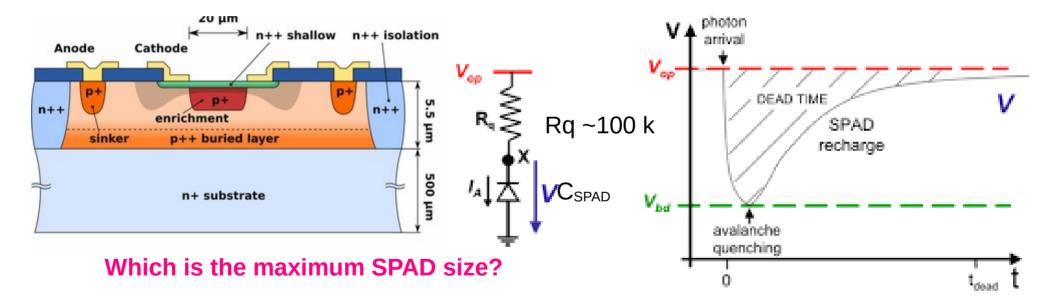
Regions of Gaseous Ionization Detectors

SiPM

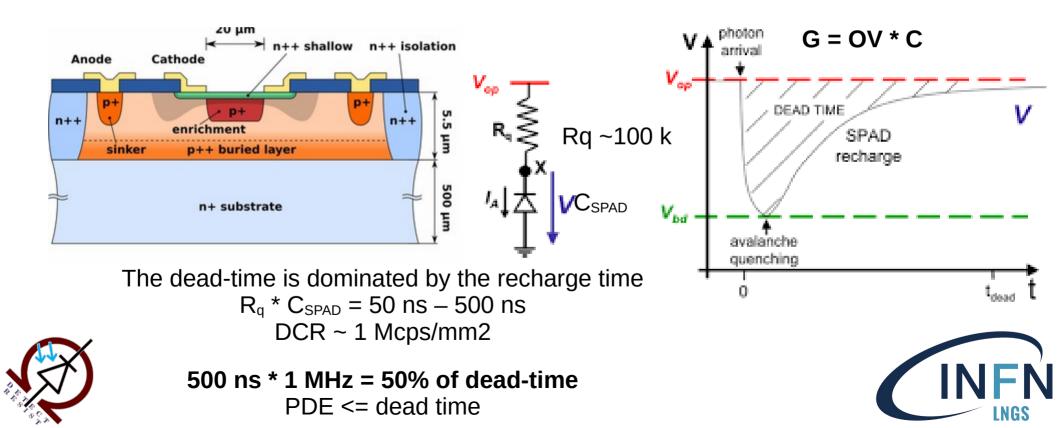
- Silicon PM are a collection of SPADs
- SPAD 5-50 μm

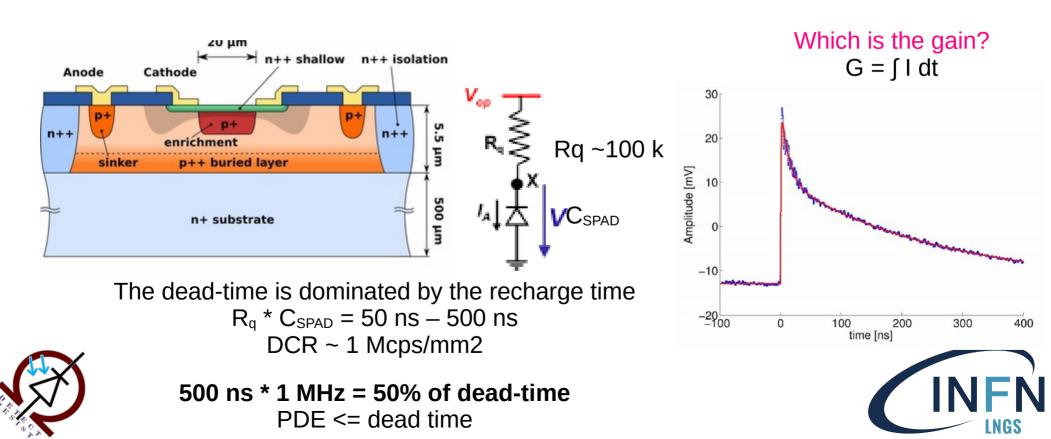

Single-Photon Avalanche Diode

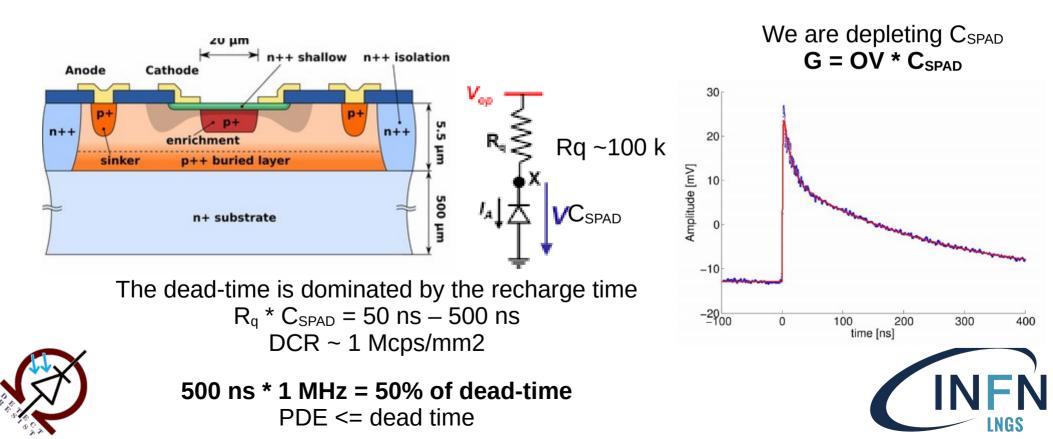
- Operating in geiger mode
- Include a quenching resistor
- SiPMs can be found between 1x1 mm² to 10x10 mm²
- The PDE of SiPMs \sim 30-60 %
- A set of noises is present

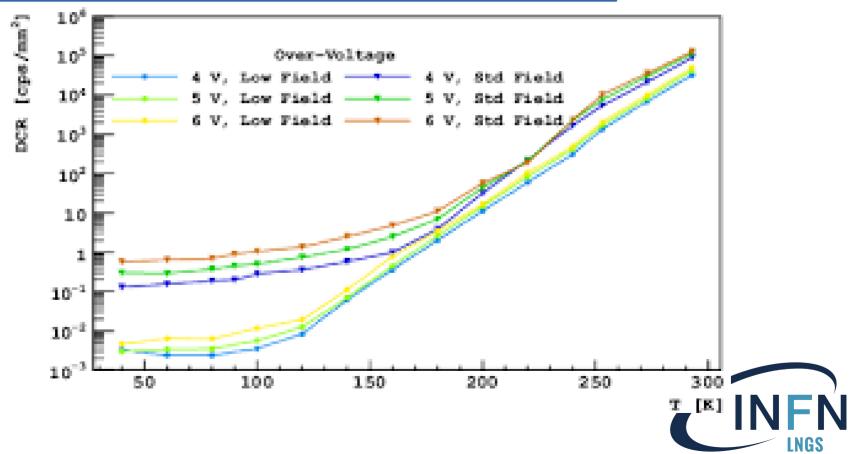


Current defined by the (thermally) generated couples Amplified by G ~ 10⁶ Since SPAD are sensitive to single carriers we speak of dark rate

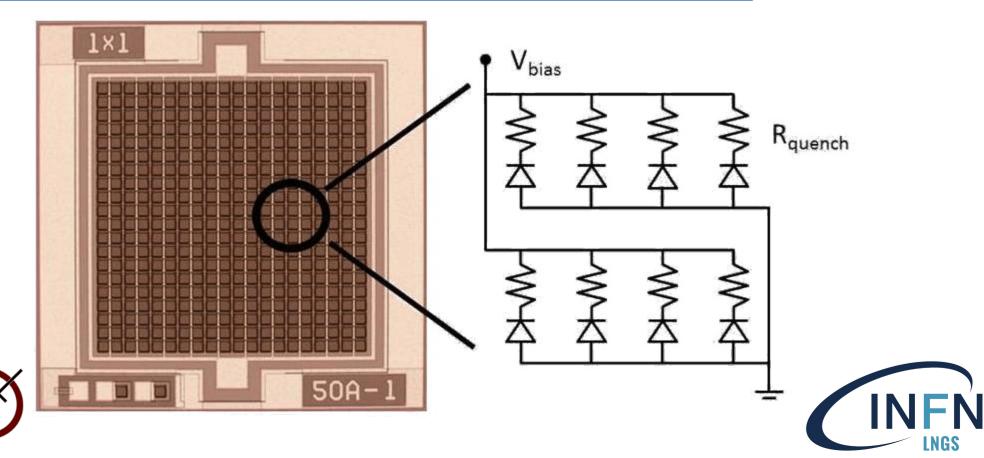


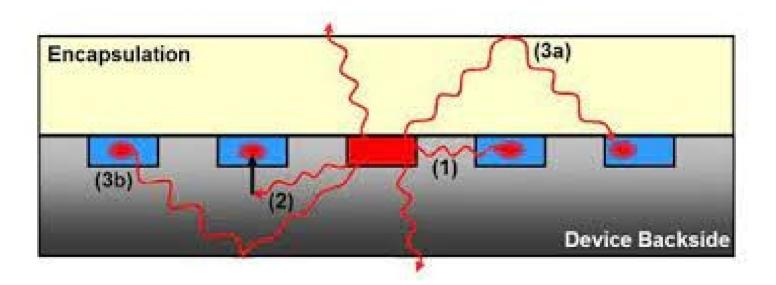




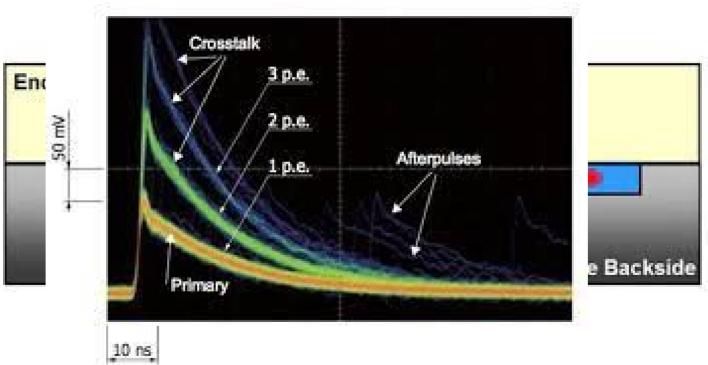


DCR

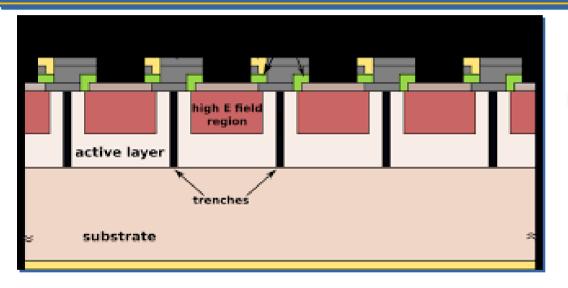


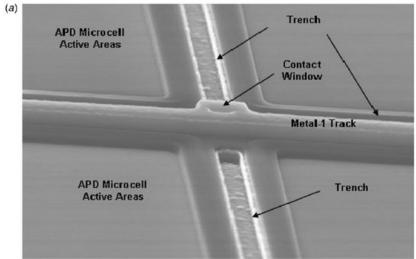

Building SiPMs

Cross-talk

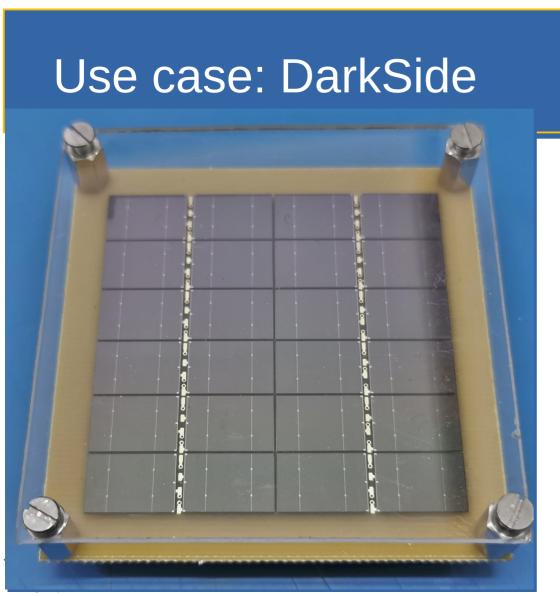


Cross-talk

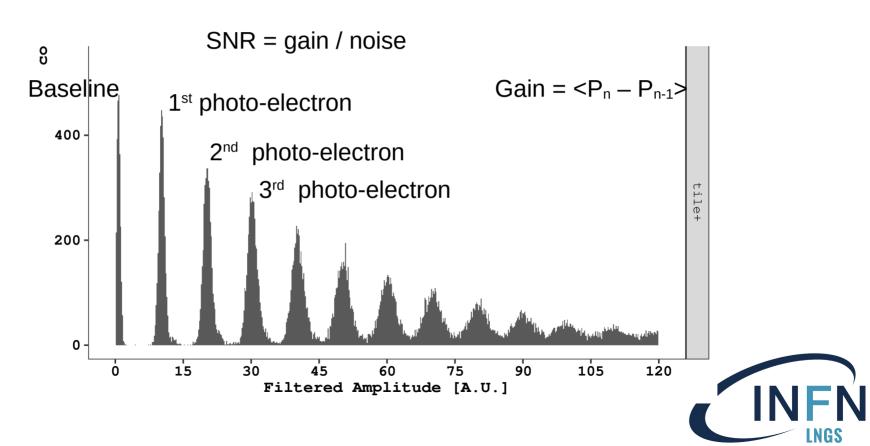




Trenches



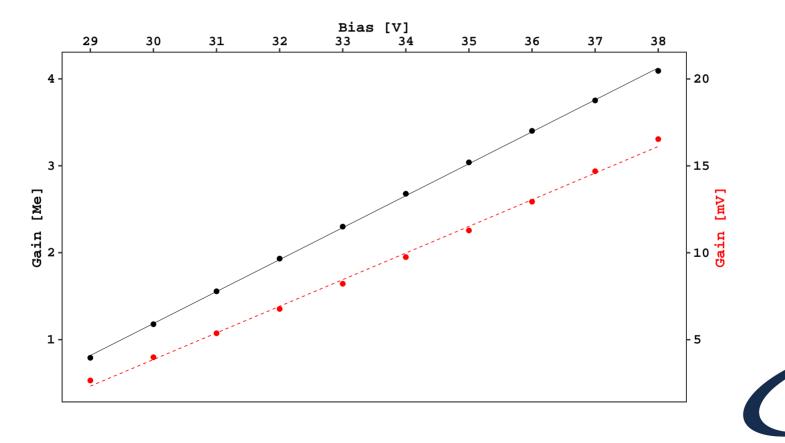



$\begin{array}{l} 24x \ 1 \ cm2 \ SiPMs \ \rightarrow \ 2.4 \ 10^6 \ SPAD \\ On \ a \ radio-pure \ PCB \\ With \ electronics \ on \ the \ back \\ (40 \ mW) \\ DCR \ \sim \ 10 \ cps/tile \end{array}$

VFN

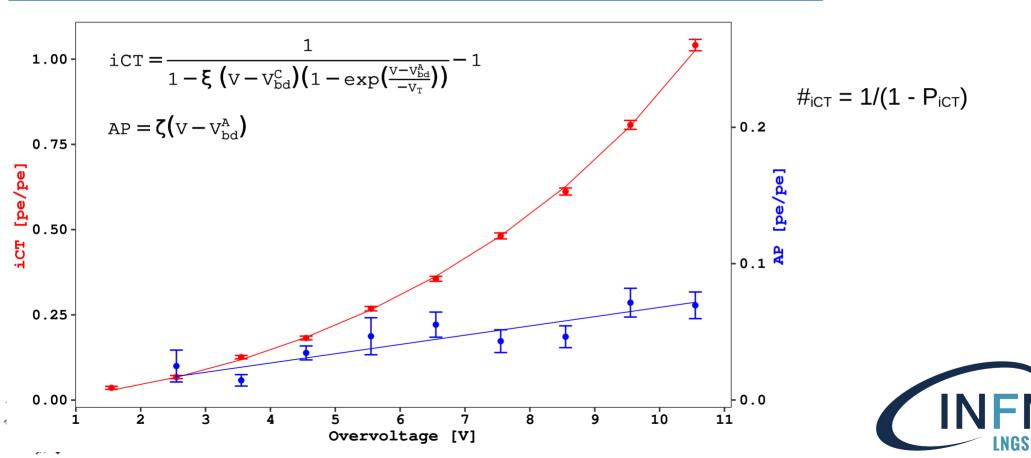
LNGS

Finger plot

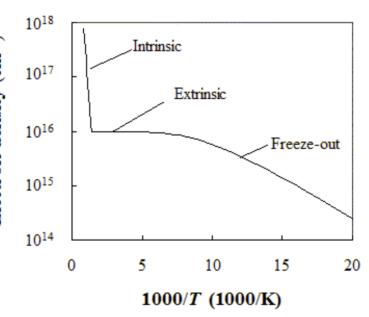


Gain

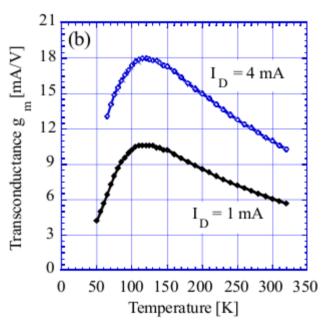
INFŃ


LNGS



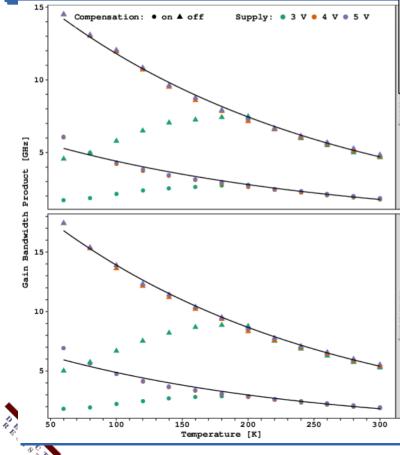

iCT & AP factor

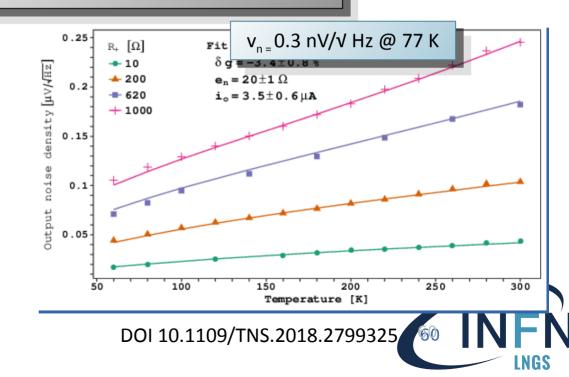
Going cold

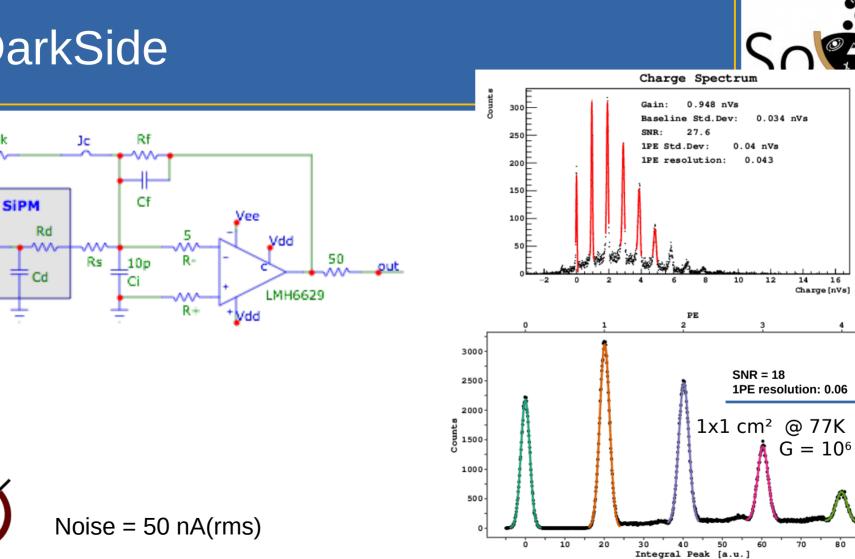


 $R = 1/(e - \mu N_i) \rightarrow \frac{1}{2} M\Omega/cm$

$$g_m|_{V_G=0}^{JFET} \simeq \frac{W}{L} \,\mu(T) \,N_{\rm ch}(T) \,dt$$






DarkSide pre-amplifier

LMH6629 from Texas Instruments GBP reach 18 GHz at 60 K <u>v_n behaves like a 20 Ω resistor</u>

2021

0

nderground Physics

14

70

90

LNGS

80

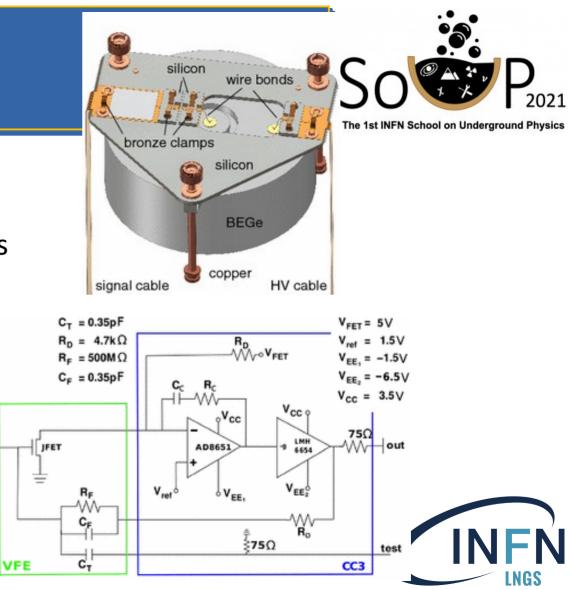
16

Charge [nVs]

DarkSide

10k

cal

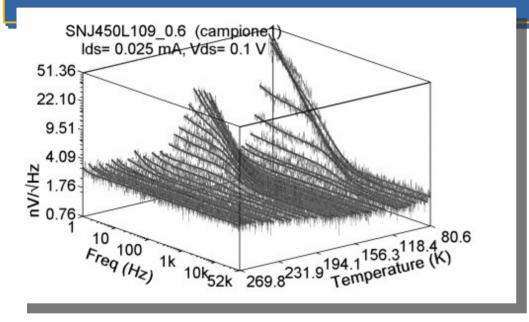

50

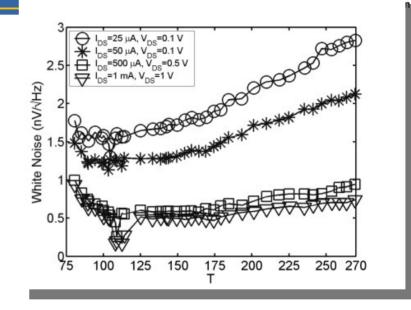
HV

GERDA

- ~ 300 e- resolution
- 60 mW
- Using radio-clean components

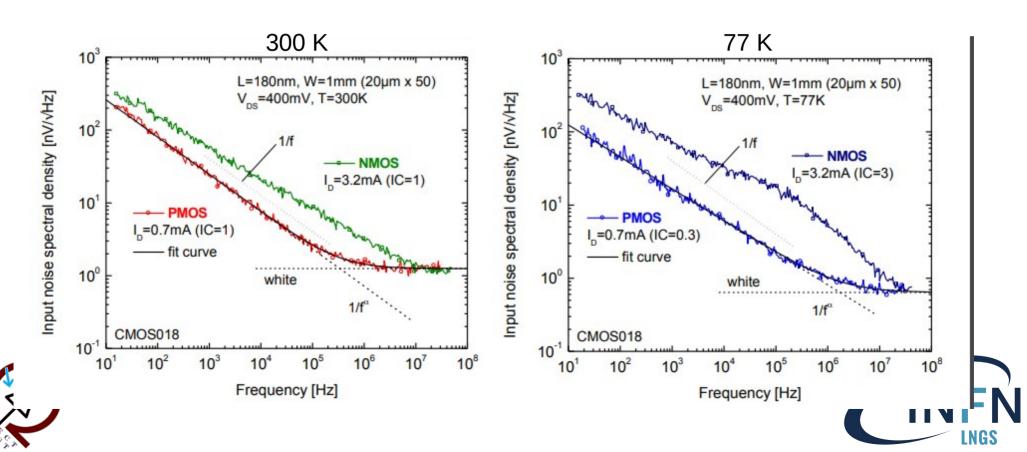
in

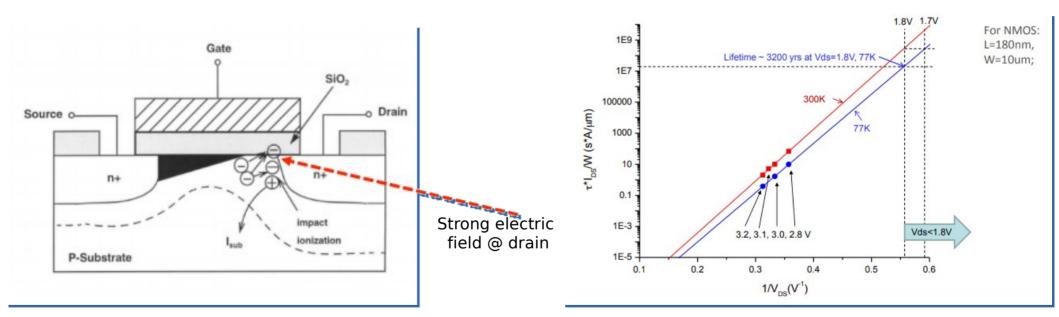




Noise in jFET

n Underground Physics




CMOS electronics

Lifetime

