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Base design

● Non conductive target + field
● A particle releases charge
● The charge is drifted

– Amplified and acquired

● Leakage is the current with no particle
– Leakage << signal



 

Semiconductors

● The band gap has to be 
compared with the kBT
– 1/40 eV at 300 K
– Si 1.1 eV
– Ge 0.6 eV
– Diamond 5.5 eV

● Typ. the band-gap  -T∝
– Increasing lattice spacing



 

PN junction

● Majority carriers diffusing 
on the other side of the 
junction recombine
– Depletion layer

● Capacitance

 

–



 

Shockley equation

Is # minority carriers∝
∝exp(-1/T) * 1/doping 



 

Band structure

Eev = 1.24/Lum
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Si structure

1.2 eV

3.2 eV
2.2 eV

670 K300 K

https://doi.org/10.1063/1.356496



 

α in silicon

Eev = 1.24/Lum



 

α in silicon

Eev = 1.24/Lum



 

& Ge?

2 um 



 

& Ge?

2 um 



 

Photodiode structure

I = R * P = η q / h ν * P = η λ[um] / 1.24 * P 



 

Responsivity

η 
= 

0.
9

Entrance window

Limited depth



 

Responsivity

C = ε0 eR A/d
= 140 pF

A = 1.2 mm2
→ d = 9 um



 

Dark Current & NEP

● Couples are generated spontaneously
– Igen in PN junction

● Then there is the leakage current
– Surface effects
– Bulk effects

● NEP = noise power density
– Minimum power that can be detected
– NEP > shot noise of the dark current

● ~ √(2 e- I BW) / R

– If you want to see a signal at 10 kHz →Pn = 70 aW  
                  = 0.2 Mph/s
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Linearity & Speed

● PN/PIN photo-diodes are the most linear device we know
– From pW to W

● Just remember to keep the temperature constant

● In telecommunication and for many particle detector 
speed is important
– Up to sub-ps



 

Read-out – DC circuit

Very low noise DC 
amplifiers ← lock-in 
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Read-out – DC circuit

Charge Amplifier for AC ?

BW = 1 / 2 π Cdet * Rload 

(6.28 * 6 pF * 50 ohm)-1 = .3 GHz
Risetime = 0.35 / BW = 0.6 ns

V = O(nA) * 50 ohm 



 

Trans-impedance amplifier

● The standard for telecommunication
● Can be very very fast

– Used for > 100 gbit/s optical 
transmissions

● Simpler idea than charge amp
– At first view the design is the same
– But the implications and the problems 

are very different
● Except for detector capacitance



 



 



 



 

TIA equations

● BW = √GBP/(4 π Rf Cd)
– GBP is the BW at gain 1 for the amplifier 

● can be 10 GHz

● The noise:

     ∝√Cd

●

https://www.jensign.com/inoutnoise



 

TIA equations

● BW = √GBP/(4 π Rf Cd)
– GBP is the BW at gain 1 for the amplifier 

● can be 10 GHz

● The noise:

●

https://www.jensign.com/inoutnoise

https://www.jensign.com/noisegain/index.html



 

CMOS 
sensors

● Each pixel is few um
– Capacitance ~ fF

● Resolution ~ sub-e-

● Modern sensors are back-illuminated



 

Avalanches

● In semi-conductors 
impurities act as scattering 
centers
– If a carrier is hot enough it 

ionizes further the impurity
– New carriers drift until a 

new scattering center is 
hit

● Exponential progression 



 

APD

● I = P * M * R
– M → 10 – 100

● ENF
– Gain noise

● Small size
– Few mm2

● With pre-amplifier
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ENF

K = Ph/Pe



 

Geiger mode

● The avalanche is self-sustaining
● Until an external process 

stops it
● Passive or active quenching

● The signal is no more 
proportional to the initial event
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SiPM

● Silicon PM are a collection of SPADs
● SPAD 5-50 µm

– Operating in geiger mode
– Include a quenching resistor

● SiPMs can be found between 1x1 mm2 
to 10x10 mm2

● The PDE of SiPMs ~ 30-60 %
● A set of noises is present

Single-Photon 
Avalanche Diode



 

Geiger mode

Current defined by the (thermally) 
generated couples

Amplified by G ~ 106

Since SPAD are sensitive to single 
carriers we speak of dark rate



 

SPAD

Which is the maximum SPAD size?

Rq ~100 k

CSPAD



 

SPAD

The dead-time is dominated by the recharge time
Rq * CSPAD = 50 ns – 500 ns

DCR ~ 1 Mcps/mm2

500 ns * 1 MHz = 50% of dead-time
PDE <= dead time

Rq ~100 k

G = OV * C

CSPAD
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SPAD

The dead-time is dominated by the recharge time
Rq * CSPAD = 50 ns – 500 ns

DCR ~ 1 Mcps/mm2

500 ns * 1 MHz = 50% of dead-time
PDE <= dead time

Rq ~100 k

CSPAD

We are depleting CSPAD

G = OV * CSPAD



 

DCR



 

Building SiPMs



 

Cross-talk



 

Cross-talk



 

Trenches



 

Use case: DarkSide

24x 1 cm2 SiPMs → 2.4 106 SPAD
On a radio-pure PCB

With electronics on the back
(40 mW)

DCR ~ 10 cps/tile



 

Finger plot

1st photo-electron

2nd  photo-electron

3rd  photo-electron

Baseline

SNR = gain / noise

Gain = <Pn – Pn-1>
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iCT & AP factor

#iCT = 1/(1 - PiCT)



 

Going cold

R = 1/(e- µ Ni)→ ½ MΩ/cm



 

DarkSide pre-amplifier

6060

LMH6629 from Texas Instruments
GBP reach 18 GHz at 60 K
vn behaves like a 20 Ω resistor

LMH6629 from Texas Instruments
GBP reach 18 GHz at 60 K
vn behaves like a 20 Ω resistor

vn = 0.3 nV/√ Hz @ 77 Kvn = 0.3 nV/√ Hz @ 77 K

DOI 10.1109/TNS.2018.2799325



 

DarkSide

1x1 cm²  @ 77K
              G = 106

SNR = 18
1PE resolution: 0.06

Noise = 50 nA(rms)



 

GERDA

● ~ 300 e- resolution 
● 60 mW
● Using radio-clean components



 

Noise in jFET



 

CMOS electronics

300 K 77 K



 

Lifetime

Strong electric
 field @ drain
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