Colour Flow between Jets

- Jets carry colour, and are thus **colour connected** to other colour-charged objects
 - Pairing of connection depends on nature of decaying particles

![Singlet](image1)
Singlet

![Octet](image2)
Octet

- Particles created during hadronization should be concentrated along angular region spanned by the colour connected partons
 - Transverse jet profiles should not be round
 - Shape influenced by direction of colour flow!
Colour Flow between Jets

- Jets carry colour, and are thus **colour connected** to other colour-charged objects
 - Pairing of connection depends on nature of decaying particles

 ![Singlet](example-singlet.png)
 Example: $t\bar{t}H$

 ![Octet](example-octet.png)
 Example: $t\bar{t}g$

- Particles created during hadronization should be concentrated along angular region spanned by the colour connected partons
 - Transverse jet profiles should not be round
 - Shape influenced by direction of colour flow!
Colour Flow Observable

- Construct a local observable, constructed from particles within a chosen jet: **Jet pull**
- Pick a pair of jets in the event
- Build vectorial sum of jet components:

\[\vec{p} = \sum_i \frac{E_T^i |r_i|}{E_T^{jet}} \vec{r}_i \]

- \(\vec{r}_i \): position of jet component i relative to center of jet
- \(E_T^i \): transverse energy of component i
- \(E_T^{jet} \): transverse energy of jet

Gallicchio, Schwartz, PRL 105, 022001 (2010)
Colour Flow Observable

- Construct a local observable, constructed from particles within a chosen jet: **Jet pull**
- Pick a pair of jets in the event
- Build vectorial sum of jet components:

\[
\vec{p} = \sum_i \frac{E_T^i | r_i |}{E_T^{jet}} \vec{r}_i
\]

- \(\vec{r}_i \): position of jet component i relative to center of jet
- \(E_T^i \): transverse energy of component i
- \(E_T^{jet} \): transverse energy of jet

Gallicchio, Schwartz, PRL 105, 022001 (2010)
Colour Flow Observable

- Chosen particles can be constructed from:
 - Clusters of calorimeter cells
 - Gives energy components
 - Or tracks ("charged-particles pull")
 - Momentum instead of energy sum

\[\vec{p} = \sum_i \left(p_T^i \frac{r_i}{p_T^{jet}} \right) \]

- \(r_i \): position of jet component \(i \) relative to center of jet
- \(p_T^i \): transverse momentum of component \(i \)
- \(p_T^{jet} \): transverse momentum of jet

- Earlier ATLAS analysis showed: charged-particle pull has better sensitivity due to better track resolution

Gallicchio, Schwartz, PRL 105, 022001 (2010)

PLB 750, 475-493 (2015)
Colour Flow in Top

- Use top events as laboratory to test new tools

Gallichio, Schwartz, PRL 105, 022001 (2010)

Jet pull: vectorial sum of components within each jet → **jet pull angle**: angle wrt. connection line of pair of jets
Event Selection

- Select semileptonic $t\bar{t}$ events
 - Clean sample for colour flow studies
 - 2 jets from W boson: jets from colour singlet
Event Selection

- Select semileptonic $t\bar{t}$ events
 - Clean sample for colour flow studies
 - 2 jets from W boson: jets from colour singlet

Exact 1 charged electron or muon

Missing transverse energy from neutrino

At least 4 jets
Event Selection

- Select semileptonic $t\bar{t}$ events
 - Clean sample for colour flow studies
 - 2 jets from W boson: jets from colour singlet

- Exact 1 charged electron or muon
- Missing transverse energy from neutrino
- At least 4 jets
- At least 2 of the jets b-tagged
 (jets identified as coming from hadronisation of b quark)
Consider 4 observables in latest ATLAS 13 TeV analysis

- Two non-b-tagged jets:
 - Relative jet pull angles
 - From highest-p_T jet to 2^{nd} highest and vice versa
 - Jet pull magnitude

- Two b-tagged jets
 - Relative jet pull angle
Signal and Background

- Event selection results in sample rich in $t\bar{t}$ events
- Background-modeling:
 - Most backgrounds modeled with MC and theory prediction
 - Fake leptons modeled with data-driven method

Yvonne Peters
Particle-level and Corrections

- Correcting observables to particle-level
 - Using stable particles with lifetimes >30 ps
- Background subtracted from data
- Iterative Bayesian unfolding
 - Migration matrix derived from t\bar{t} MC

\[\begin{tabular}{cccc}
9.13 & 11.47 & 20.95 & 58.45 \\
\pm 0.06 & \pm 0.06 & \pm 0.08 & \pm 0.14 \\
9.76 & 17.29 & 57.94 & 15.02 \\
\pm 0.05 & \pm 0.06 & \pm 0.12 & \pm 0.06 \\
17.04 & 57.35 & 17.56 & 8.06 \\
\pm 0.06 & \pm 0.11 & \pm 0.06 & \pm 0.04 \\
61.84 & 19.63 & 11.15 & 7.37 \\
\pm 0.12 & \pm 0.07 & \pm 0.05 & \pm 0.04 \\
\end{tabular}\]
Analysis Strategy

- Experimental **systematic uncertainties**, signal modeling uncertainties, background modeling uncertainties and unfolding procedure uncertainties are taken into account.

- **Normalised distributions** extracted
 - Reduced uncertainty from normalization.

- Comparison of **unfolded distributions** for two scenarios:
 - 1. Various different MC generators
 - 2. SM $t\bar{t}$ with a colour-flipped MC
 - **Colour-flipped**: replace colour-singlet W boson with ad-hoc colour-octet “W” by flipping colour-string.

- Colour-flip diagram:
 - Original diagram:
 - $t \rightarrow W^+ b \rightarrow \bar{q}' q'
 - $q \rightarrow \bar{q}' q', \bar{q} \rightarrow q, q' \rightarrow b$
 - Colour-flip:
 - Replace the original colour-singlet W boson with a colour-octet “W” by flipping the colour-string.
Systematics: Example

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta \theta_P (j_1^W, j_2^W)$ [%]</th>
<th>$\theta_P (j_1^W, j_2^W)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0 – 0.21</td>
<td>0.21 – 0.48</td>
</tr>
<tr>
<td>Hadronisation</td>
<td>0.55</td>
<td>0.13</td>
</tr>
<tr>
<td>Generator</td>
<td>0.32</td>
<td>0.25</td>
</tr>
<tr>
<td>b-tagging</td>
<td>0.35</td>
<td>0.13</td>
</tr>
<tr>
<td>Background model</td>
<td>0.30</td>
<td>0.16</td>
</tr>
<tr>
<td>Colour reconnection</td>
<td>0.22</td>
<td>0.16</td>
</tr>
<tr>
<td>JER</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>Pile-up</td>
<td>0.19</td>
<td>0.16</td>
</tr>
<tr>
<td>Non-closure</td>
<td>0.14</td>
<td>0.07</td>
</tr>
<tr>
<td>JES</td>
<td>0.12</td>
<td>0.06</td>
</tr>
<tr>
<td>ISR / FSR</td>
<td>0.15</td>
<td>0.02</td>
</tr>
<tr>
<td>Tracks</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Other</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Syst.</td>
<td>0.88</td>
<td>0.44</td>
</tr>
<tr>
<td>Stat.</td>
<td>0.23</td>
<td>0.19</td>
</tr>
<tr>
<td>Total</td>
<td>0.91</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Results: Comparison to MCs

- MC modeling has room for improvement
- Different MC model different distributions more or less well
- Within uncertainties, a single generator cannot describe all observables
Results: Comparison to Colour-Flip Model

- Colour-flipped model disfavoured more by the data than SM
 (for this distribution χ^2/NDF: 45.3/3; SM Powheg+Pythia8: 17.1/3)

Two measurements performed in ATLAS
- 8 TeV: using calorimeter jets and charged particles from track-info
- 13 TeV: only charged objects with track only

Using $t\bar{t}$ events as laboratory to test QCD colour connections

Comprehensive analysis performed on 13 TeV ATLAS data
- Considering 4 different observables related to jet pull

Could do measurement with more data
- Or other observables?
- Using particle flow?
- Jet pull in boosted objects?!
Backup
Colour coherence: QCD predicts increase of radiation where colour connection exists

Hadronization: Particles building up between colour-connected partons

Gluon: color octet

Quark: color triplet
Chi2

<table>
<thead>
<tr>
<th>Sample</th>
<th>$W_{\text{Had Pull}}$</th>
<th>$W_{\text{All Pull Angles}}$</th>
<th>$W_{\text{Had Pull Angles}}$</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>χ^2/NDF p-value</td>
<td>χ^2/NDF p-value</td>
<td>χ^2/NDF p-value</td>
<td>χ^2/NDF p-value</td>
</tr>
<tr>
<td>Powheg+Pythia8</td>
<td>92.4/10 < 0.001</td>
<td>78.6/9 < 0.001</td>
<td>64.0/6 < 0.001</td>
<td>119.4/13 < 0.001</td>
</tr>
<tr>
<td>Powheg+Pythia6</td>
<td>51.2/10 < 0.001</td>
<td>42.3/9 < 0.001</td>
<td>28.6/6 < 0.001</td>
<td>54.6/13 < 0.001</td>
</tr>
<tr>
<td>MG5_aMC+Pythia8</td>
<td>34.1/10 < 0.001</td>
<td>14.5/9 0.104</td>
<td>12.0/6 0.062</td>
<td>54.7/13 < 0.001</td>
</tr>
<tr>
<td>Powheg+Herwig7</td>
<td>36.8/10 < 0.001</td>
<td>40.9/9 < 0.001</td>
<td>6.3/6 0.396</td>
<td>95.2/13 < 0.001</td>
</tr>
<tr>
<td>Sherpa</td>
<td>60.0/10 < 0.001</td>
<td>27.5/9 0.001</td>
<td>26.6/6 < 0.001</td>
<td>62.8/13 < 0.001</td>
</tr>
<tr>
<td>Powheg+Pythia8*</td>
<td>90.5/10 < 0.001</td>
<td>77.9/9 < 0.001</td>
<td>62.3/6 < 0.001</td>
<td>119.4/13 < 0.001</td>
</tr>
<tr>
<td>Flipped Powheg+Pythia8*</td>
<td>660.1/10 < 0.001</td>
<td>171.6/9 < 0.001</td>
<td>164.3/6 < 0.001</td>
<td>714.7/13 < 0.001</td>
</tr>
</tbody>
</table>
Systematics Example

<table>
<thead>
<tr>
<th></th>
<th>$\Delta \theta_P \left(j_1^W, j_2^W \right) \text{ [%]}$</th>
<th>$\theta_P \left(j_1^W, j_2^W \right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0 - 0.21</td>
<td>0.21 - 0.48</td>
</tr>
<tr>
<td>Hadronisation</td>
<td>0.55</td>
<td>0.13</td>
</tr>
<tr>
<td>Generator</td>
<td>0.32</td>
<td>0.25</td>
</tr>
<tr>
<td>b-tagging</td>
<td>0.35</td>
<td>0.13</td>
</tr>
<tr>
<td>Background model</td>
<td>0.30</td>
<td>0.16</td>
</tr>
<tr>
<td>Colour reconnection</td>
<td>0.22</td>
<td>0.16</td>
</tr>
<tr>
<td>JER</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>Pile-up</td>
<td>0.19</td>
<td>0.16</td>
</tr>
<tr>
<td>Non-closure</td>
<td>0.14</td>
<td>0.07</td>
</tr>
<tr>
<td>JES</td>
<td>0.12</td>
<td>0.06</td>
</tr>
<tr>
<td>ISR / FSR</td>
<td>0.15</td>
<td>0.02</td>
</tr>
<tr>
<td>Tracks</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Other</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Syst.</td>
<td>0.88</td>
<td>0.44</td>
</tr>
<tr>
<td>Stat.</td>
<td>0.23</td>
<td>0.19</td>
</tr>
<tr>
<td>Total</td>
<td>0.91</td>
<td>0.48</td>
</tr>
</tbody>
</table>