

Reinhild Yvonne Peters

The University of Manchester

European Research Council Established by the European Commission

Colour Flow between Jets

- Jets carry colour, and are thus colour connected to other colourcharged objects
 - Pairing of connection depends on nature of decaying particles

- Particles created during hadronization should be concentrated along angular region spanned by the colour connected partons
 - Transverse jet profiles should not be round
 - Shape influenced by direction of colour flow!

Colour Flow between Jets

- Jets carry colour, and are thus colour connected to other colourcharged objects
 - Pairing of connection depends on nature of decaying particles

- Particles created during hadronization should be concentrated along angular region spanned by the colour connected partons
 - Transverse jet profiles should not be round
 - Shape influenced by direction of colour flow!

MANCHESTER 1824

Colour Flow Observable

- Construct a local observable, constructed from particles within a chosen jet: Jet pull $\Delta \phi = \phi \phi_{J_1}$
- Pick a pair of jets in the event
- Build vectorial sum of jet components:

$$\vec{p} = \sum_{i} \frac{E_T^i |r_i|}{E_T^{jet}} \vec{r_i}$$

- *r*_i: position of jet component
 i relative to center of jet
- E_Tⁱ: transverse energy of component i
- E_T^{Jet}: transverse energy of jet

Gallicchio, Schwartz, PRL 105, 022001 (2010)

MANCHESTER 1824

Colour Flow Observable

- Construct a local observable, constructed from particles within a chosen jet: Jet pull
- Pick a pair of jets in the event
- Build vectorial sum of jet components:

$$\vec{p} = \sum_{i} \frac{E_T^i |r_i|}{E_T^{jet}} \vec{r_i}$$

- r_i: position of jet component
 i relative to center of jet
- E_Tⁱ: transverse energy of component i
- E_T^{Jet}: transverse energy of jet

Gallicchio, Schwartz, PRL 105, 022001 (2010)

Colour Flow Observable

- Chosen particles can be constructed from:
 - Clusters of calorimeter cells
 - Gives energy components
 - Or tracks ("charged-particles pull")
 - Momentum instead of energy sum

$$\vec{p} = \sum_{i} \frac{p_T^i |r_i|}{p_T^{jet}} \vec{r_i}$$

- r_i: position of jet component
 i relative to center of jet
- p_Tⁱ: transverse momentum of component i
- p_T^{Jet}: transverse momentum of jet
- Earlier ATLAS analysis showed: J₁
 charged-particle pull has better sensitivity due to better track resolution PLB 750, 475-493 (2015)

Gallicchio, Schwartz, PRL 105, 022001 (2010)

MANCHESTER

Colour Flow in Top

Use top events as laboratory to test new tools

Gallichio, Schwartz, PRL 105, 022001 (2010)

Jet pull: vectorial sum of components within each jet \rightarrow jet pull angle: angle wrt. connection line of pair of jets

Event Selection

- Select semileptonic tt events
 - Clean sample for colour flow studies
 - 2 jets from W boson: jets from colour singlet

Event Selection

- Select semileptonic tt events
 - Clean sample for colour flow studies
 - 2 jets from W boson: jets from colour singlet

Exact 1 charged electron or muon

Missing transverse energy from neutrino

At least 4 jets

Event Selection

- Select semileptonic tt events
 - Clean sample for colour flow studies
 - 2 jets from W boson: jets from colour singlet

Exact 1 charged electron or muon

Missing transverse energy from neutrino

At least 4 jets

At least 2 of the jets b-tagged (jets identified as coming from hadonisation of b quark)

Colour Flow in Top

Consider 4 observables in latest ATLAS 13 TeV analysis

- Two non-b-tagged jets:
 - Relative jet pull angles
 - From highest-p_T jet to 2nd highest and vice versa
 - Jet pull magnitude

- Two b-tagged jets
 - Relative jet pull angle

MANCHESTER 1824

Signal and Background

- Event selection results in sample rich in tt events
- Background-modeling:
 - Most backgrounds modeled with MC and theory prediction
 - Fake leptons modeled with data-driven method

Particle-level and Corrections

- Correcting observables to particle-level
 - Using stable particles with lifetimes >30 ps
- Background subtracted from data
- Iterative Bayesian unfolding
 - Migration matrix derived from tt MC

	1.	ATLAS	Simulation $\sqrt{s} = 13 \text{ TeV}$			
$W, j_2^W)/\pi$	0.79	9.13 ±0.06	11.47 ±0.06	20.95 ±0.08	58.45 ±0.14	
d-Particle $ heta_P$ $(j$	0.78	9.76 ±0.05	17.29 ±0.06	57.94 ±0.12	15.02 ±0.06	
evel Chargeo	0.46	17.04 ±0.06	57.35 ±0.11	17.56 ±0.06	8.06 ±0.04	
Particle-L	0.21	61.84 ±0.12	19.63 ±0.07	11.15 ±0.05	7.37 ±0.04	
	C F) 0.: Reconstru	21 0.4 cted Chargeo	48 0. d-Particle θ_P (78 1 $j_1^W, j_2^W) / \pi$	

MANCHESTER

Analysis Strategy

- Experimental systematic uncertainties, signal modeling uncertainties, background modeling uncertainties and unfolding procedure uncertainties are taken into account
- Normalised distributions extracted
 - Reduced uncertainty from normalization
- Comparison of unfolded distributions for two scenarios:
 - 1. Various different MC generators
 - 2. SM tt with a colour-flipped MC
 - Colour-flipped: replace colour-singlet W boson with ad-hoc colour-octet "W" by flipping colour-string

Systematics: Example

$\Delta \theta_P \left(i_1^W, i_2^W \right) \left[\% \right]$	$ heta_P\left(j_1^W, j_2^W ight)$				
	0.0 - 0.21	0.21 - 0.48	0.48 - 0.78	0.78 - 1.0	
Hadronisation	0.55	0.13	0.24	0.14	
Generator	0.32	0.25	0.50	0.01	
b-tagging	0.35	0.13	0.20	0.31	
Background model	0.30	0.16	0.16	0.27	
Colour reconnection	0.22	0.16	0.16	0.18	
JER	0.11	0.12	0.23	0.02	
Pile-up	0.19	0.16	0.00	0.01	
Non-closure	0.14	0.07	0.07	0.18	
JES	0.12	0.06	0.14	0.06	
ISR / FSR	0.15	0.02	0.12	0.02	
Tracks	0.05	0.04	0.03	0.06	
Other	0.02	0.01	0.01	0.02	
Syst.	0.88	0.44	0.71	0.51	
Stat.	0.23	0.19	0.19	0.25	
Total	0.91	0.48	0.73	0.57	

Results: Comparison to MCs

- MC modeling has room for improvement
- Different MC model different distributions more or less well
- Within uncertainties, a single generator can not describe all observables
 Eur. Phys. J. C 78 (2018) 847

MANCHESTER

Results: Comparison to Colour-Flip Model

 Colour-flipped model disfavoured more by the data than SM (for this distribution χ²/NDF: 45.3/3; SM Powheg+Pythia8: 17.1/3)

Eur. Phys. J. C 78 (2018) 847

Summary

- Two measurements performed in ATLAS
 - 8 TeV: using calorimeter jets and charged particles from track-info
 - 13 TeV: only charged objects with track only
- Comprehensive analysis performed on 13 TeV ATLAS data
 - Considering 4 different observables related to jet pull
- Could do measurement with more data
 - Or other observables?
 - Using particle flow?
 - Jet pull in boosted objects?!

Backup

Colour coherence: QCD predicts Intro increase of radiation where colour connection exists

Hadronization: Particles building up between colour-connected partons

Chi2

Sample	W_{Had} Pull		All Pull Angles		$W_{\rm Had}$ Pull Angles		Global	
Sample	χ^2/NDF	<i>p</i> -value	χ^2/NDF	<i>p</i> -value	$\chi^2/{ m NDF}$	<i>p</i> -value	$\chi^2/{ m NDF}$	<i>p</i> -value
Powheg+Pythia8	92.4/10	< 0.001	78.6 / 9	< 0.001	64.0 / 6	< 0.001	119.4/13	< 0.001
Powheg+Pythia6	51.2/10	< 0.001	42.3 / 9	< 0.001	28.6 / 6	< 0.001	54.6/13	< 0.001
$MG5_aMC+Pythia8$	$34.1/\ 10$	< 0.001	14.5 / 9	0.104	12.0 / 6	0.062	54.7/ 13	< 0.001
Powheg+Herwig7	$36.8/\ 10$	< 0.001	40.9 / 9	< 0.001	6.3 / 6	0.396	95.2/13	< 0.001
Sherpa	$60.0/\ 10$	< 0.001	27.5 / 9	0.001	$26.6 \ / \ 6$	< 0.001	$62.8/\ 13$	< 0.001
Powheg+Pythia8*	90.5/10	< 0.001	77.9 / 9	< 0.001	62.3 / 6	< 0.001	119.4/13	< 0.001
Flipped Powheg+Pythia8*	$660.1/\ 10$	< 0.001	171.6 / 9	< 0.001	$164.3 \ / \ 6$	< 0.001	714.7/ 13	< 0.001

Systematics Example

$\Delta \theta_{P} \left(i_{1}^{W}, i_{2}^{W} \right) \left[\% \right]$	$ heta_P\left(j_1^W, j_2^W ight)$				
(J1 ,J2) [/]	0.0 - 0.21	0.21 - 0.48	0.48 - 0.78	0.78 - 1.0	
Hadronisation	0.55	0.13	0.24	0.14	
Generator	0.32	0.25	0.50	0.01	
b-tagging	0.35	0.13	0.20	0.31	
Background model	0.30	0.16	0.16	0.27	
Colour reconnection	0.22	0.16	0.16	0.18	
JER	0.11	0.12	0.23	0.02	
Pile-up	0.19	0.16	0.00	0.01	
Non-closure	0.14	0.07	0.07	0.18	
JES	0.12	0.06	0.14	0.06	
ISR / FSR	0.15	0.02	0.12	0.02	
Tracks	0.05	0.04	0.03	0.06	
Other	0.02	0.01	0.01	0.02	
Syst.	0.88	0.44	0.71	0.51	
Stat.	0.23	0.19	0.19	0.25	
Total	0.91	0.48	0.73	0.57	