Simulation R&D PoW 2020

Witek Pokorski for the Simulation R&D team
03.02.2020

Motivation

- Forecast Simulation Needs

Many physics and performance studies require large datasets of

simulated events
* Geant4 is highly CPU-intensive

* Already lacking statistics -- increasing luminosity poses greater challenges

. . . . Resources use in 2018
* 2/3 of the computing resources are dedicated to MC simulation,

all full sim
* fast sim not used in production yet

User 3.8%

ATLAS

Analyses

W

Annual CPU Consumption [MHSO06]

L N L B B LB
[ATLAS Preliminary -]
100_ CPU resource needs i
- = 2017 Computing model - T
80— 2018 estimates: I
I ¥ MC fast calo sim + standard reco : B

| ® MC fast calo sim + fast reco)R S]

L - ; o i
60—+ Generators speed up x2 v —
- R o o |
I-— Flat budget model ;e e s
40—_ (+20%/year) ,V' o 0/,' &

o

[Ru2 Run 3 /@ Run4 Runs |
20— —
o== N N R I B A

2018 2020 2022 2024 2026 2028 2030 2032

Year

» fully parametrised fast simulation approach for upgrade studies ALICE

* expected 10-100 times more data in Runs 3 and 4
* cannot cover that with current usage of full sim

Ra
AATLAS Preliminary. 2028 CPU resource needs bt

MC fast calo sim + fast reco, generators speed up x2
MC-Full(Sim)

Data Proc ALICE Week, 12/12/2018, Latchezar Bete:

Analysis
MC-Full (Rec)

Pledgeable

HI ====Sim at 100% of data

MC-Fast (Sim)

MC-Fast (Rec) EvGen

CPU seconds by Type

1600

. Analysis

. HL-LHC MC
LHC MC

= Non-Prompt Data
Prompt Data

.| CMS

brnrnasl

1400

1200

1000

800

THSO06 * s

600

Simulate more events to keep up with
HL-LHC data volumes: 10%(Phasel)

» Need more events, more accuracy, in more

CPU resources [HS06.seconds|

May also need to improve accuracy of

physics lists to simulate HGCal 2022

Year
Reconstruction will take longer due to high

pileup and granular detectors

Already includes projected optimizations of the software!

Already today: very long waiting-times for samples!

2019 4}
2024 {li
2025
2026
2027
2028
2029
2030

2017
2018
2020
2021
2022
2023

Year

complicated geometry... w/ relatively
smaller fraction of total CPU usage

Approach - Three Main Axes of Development

o Improve, optimise and modernise the existing Geant4 code to gain in
performance and precision for the detailed simulation

o Trade precision for performance using fast simulation techniques both
with parameterisations and with ML methods, and integrate them

seamlessly in Geant4

o Investigate the use of ‘accelerators’ such as GPUs for performance gain

Performance: main directions

Heterogenous

> computing

& GPU friendly kernels
O . .
& Concurrency model review - fine
Q’b@ grain parallelism
o0
.\,@’&\o Faster physics/geometry algorithms _
N - low level code optimizations E.xpenm(.ents
oR i integration
.\(\% 0 More compact code & data - simplified
0(;0)(calling sequence - stateless - pipelines for
Qgﬁ’d heavy computation kernels

Fast sim revisiting
Parameterizations - ML

(CERN) Team

e Andrei e« Mihaly
e John o Alberto
e Guilherme e Gabriele
e Anna

e loana

° Wlt@k

(+ 2 summer ‘19 students)

Activities in 20195

o« GeantV Vector prototype

o to assess the achievable speedup using a novel, vectorized approach to particle
transport

s demonstrator of full EM shower in realistic (CMS) geometry and comparison to Geant4

e Fast simulation
o revisiting classical parameterization

o novel Machine-Learning based fast simulation R&D

GeantV in 2019

Outcome of GeantV prototype

e HSF GeantV dedicated meeting (15 Oct 2019)

e paper reporting all the results in preparation and will be sent for
publication soon

e« new tools delivered to the community

o VecCore, VecGeom, VecMath

o successfully integrated into Geant4, ROOT, etc

o better understanding of possibility of 'vectorization’ of the simulation
code

https://indico.cern.ch/event/818702/

Main lessons

* Main factors in the speedup seem to include
* Better cache use (single track mode shows performance decrease for small caches)
* Tighter code (e.g., less classes, indirections and branching)

e Vectorization’s impact (much) smaller than hoped for
* Small fraction of the code has been vectorized or is run in vector mode effectively
e Overhead of basketization cost similar to vector gain for “small” modules
e Basketization can bring benefits for FP hotspots (e.g. magnetic field, multiple
scattering)
* Basketization cost in
e Either extra memory copy (using collection of tracks)
* Or lower memory access coherency (using collection of pointers)

Fast Simulation in 2019

‘Classical” EM shower parametrisation

F [a1 z A
- Based on GFlash model (arxiv:hep-
1:’ ex/0001020)
- Basic implementation in Geant4:
¢ Only for homogeneous
media
S e |z<x> ¢ Hard-coded parameters
_ | from paper (and GEANT3)
dE () = Ef(t)drf(¢)dodtf(r)
a—1 o ta—l 6—(a—l)t/T
piy= o= r
TT ()
1
(o) = .
2r R (t)? 2r Ry (t)*
f(r) =p(?) 5 + (1 —p(t))

(r? + Ro(t)?) (r? + Rr(1)?)°

https://arxiv.org/abs/hep-ex/0001020

‘Classical” EM shower parametrisation

What has been done in 2019:

- Review of existing code

- Bug fixes (parallel world & processes in G4)
- Addition of new examples & validation tests

- Work on tuning procedure for parameters
¢ longitudinal profile ready

¢ transverse profile on-going

1.8

1.6

(In av) ~

(CY _ 1)04 pa—1 e—(a—l)t/T
_ I (o),

4
10 Y=E,./ Eqea

0.08-

L

- G4 full sim
- Tuned parameters

GFlash parameters

10°

ML-based FastSim in 2019

- Investigated generative models capabilities and
limitations for calorimeter shower simulation

- GAN, VAE, Auto-regressive and customized Auto-

generated distribution

true data distribution

A

P(x)

input energy

generative
model

(neural net)

depositions space

depositions space

End—To—End Deep Learning Fast

regressive network based on a ResNet architecture

CERN Simulation Framework
\ loana Ifrim - Witold Pokorski - Anna Zaborowska 7 >
SZ EP-SFT, CERN, Geneva, Switzerland; ioana.ifrim®@cern.ch
O t' H d .t H H d th h ” |' t' Deep Learning aided FastSim Inference Module Integration General Validation Benchmark
- ptimised training procedures through parallelization e Mot ncsreion | Genert Vldoion Do
different DL models to be assessed

against a common benchmark procedure
(also used for parametrisation)

toolkit (Geant4 [2]) is agnostic to
generative model architecture

on GPUs
- Investigated different Loss Functions from deterministic
to probabilistic

- Worked the ‘full cycle’ example/framework
implementation

- Geant4 full simulation -> data processing ->
network training -> inference integration (C++
wrapper using Tensorflow C API) -> Geant4 fast
simulation

HEP Generative Deep Neural Network (DNN) [1]

Streamlined DNN Fast Simulation Workflow
In the context of Fast Simulation (FastSim) we present the
ongoing work on the i ion o d
framework which integrates Deep Learning (DL) simulation
methods with an existing simulation toolkit (Geant4 [2])

Step 1: Data Production

— Creating matrices of
energy deposits using

__Geant4

Step 2: DNN Training

— Generative models HEP
customised and trained

Step 3: Physics Validation

Step 4: DNN Inference

— Sequence chain of HEP — Geant4 hooks for
performance FastSim with DNN
measurements. i

General Components Integration Overview

The overall goal is to facilitate the usage of generative DNNs
by integrating the inference module with Geant4 and offering a
general validati i . An ple Geant4
application can be employed to produce simulation data to be
used for DNN training

Geant4 Application With External DNN Training

Data Production

Dataset production of calorime-
- ter showers (Geant4) in a simple
., but configurable detector setup:
- 3 ~ adjustable granularity and
° 3 size of detector
~ PbWOa,Pb/LAr,W/Si,
» ~ data is stored as a matrix of
energy deposits
~ initial particle properties
B Sversae shower for 300 CaV stored as labels for training
electrons

- ‘ within the (full and fast) simulation

DNN Training
Customised generative models are trained with the produced

g in a graph used later for inference
— values of the variables and the graph to be kept in a single file
~ training only operations to be removed (checkpoint saving)
— parts of the graph that are never reached to be stripped out
— debug operations like CheckNumerics to be removed

Physics Validation

A standardised set of validation procedures were developed,

amongst which:

- total deposited energy

~ energy distribution layer-wise

~ longitudinal and transverse profiles (and first/second
moments)

The depicted validation is used in the context of GFlash [3]

parametrisation to underline the general use case of the

which are i for any DNN Fast Simulation
generative model

Longitudinal Profile Energy Linearity
DNN Inference
Internal hooks of Geant4 (G4VFastSimulationModel) are
used to call the (under development) inference module (with an
external dependency on the TensorFlow C-+-+ API [4] at the
moment)

References

[1] OpenAl - Generative Models, June 2016. Retrieved from Generative Models

[2] Agostinelli, Sea, et al. "GEANT4-a simulation toolkit." Nuclear instruments and
methods in physics research section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 506.3 (2003): 250-303

(3] Grindhammer, Guenter, and S. Peters. “ The parameterized simulation of
electromagnetic showers in homogeneous and sampling calorimeters.” arXiv preprint
hep-ex/0001020 (2000)

[4] TensorFlow C++ Reference Retrieved from TensorFlow C-+

13

Where do we go now??
Plan for 2020

- Fast Simulation

- Geant4 modernization and improvements

} strongly correlated
- use of compute accelerators R&D

14

Fast simulation in 2020

‘Classical” EM shower parametrisation

Plan of work for 2020:
- Finalise transverse profile parametrisation

- Propose implementation of tools within G4 to automate
tuning

- Develop appropriate examples in different materials,
granularities

- Additions:
¢ Improve transverse profiles
¢ Introduce start of shower parametrisation (as
in CMS shower parametrisation)
+ Investigate parametrisation of only particles
below energy threshold (‘core’ of shower: full
sim, ‘branches’ parametrised)

Full shower simulation

Parametrisation of particles with
energy E<E,

Parametrisation of particles with
energy E<E; (E;>Ep)

4

\\ 16

Biasing - validation tools

-» Many biasing techniques (e.g. Russian roulette, weight window, ...)
present in G4, with examples, but ... need for general validation tools

Energy and angular distributions e .

Process occurrence
Interaction distance < SR
: Energy and angular distributions
Secondary production _,< of particles which left the biasing

In biasing volume

M.Verderi (23th Collaboration Meeting)

-» Started as a generalisation of biasing examples (importance sampling,
weight window biasing in radiation protection)

-» Needs to be improved, extended, documented, and integrated into
geant-val

17

https://indico.cern.ch/event/727112/contributions/3108065/attachments/1706376/2749618/Update_on_Generic_Biasing.pdf

ML-based FastSim in 2020

* Finalize the development of the
auto-regressive model

* Improve dependency model
between calorimeter cells (training)

* Improve data encoding/decoding
tools

* Extend and finalize framework
implementation for integration
with Geant4

* Automate data preparation

* Include other generative models
types for inference module

Geant4 modernization and use of
compute accelerators in 2020

Geant4 modernization and improvements R&Ds

o Geant4 ‘stateless’ transport prototype
o move the ‘state’ from managers to tracks to allow further study of track-level parallelism and
GPU usage

o Automate performance measurements
o hotspots and microarchitecture exploration data

o Single precision usage in simulation components
o study numerical stability and changes required

o Instruction and data cache optimizations
o reordering of data members, group Booleans into bit fields, etc

o Development of compact, self-contained physics library with predefined scoring

options (for example for EM shower simulation)

o would allow, for example, to stay ‘confined’ on GPU for an important % of simulation time .

Simulation on accelerators — current status

* Hardware quite different from CPUs
* Favoring massive parallelism exposed by the software

* Geant4 is a state machine toolkit, evolving states (tracks) per step

* Unpredictable processing sequence (particle physics is stochastic) -> hard to
make scalar processing pipelines

* A direct porting of Geant4 “as is” to GPU practically impossible and/or very
inefficient

* Existing efforts for porting Geant4 to GPU

* No available toolkit on accelerators for general purpose simulation
* Ports only for limited corner cases: optical photons, neutrons, medical physics

* Ongoing R&D exploration efforts for general purpose GPU porting in US
* Geant Exascale Pilot Project

GPU R&D #1: start from what we have

e Evolving a GPU simulation model based on a simple prototype

* Based on existing portable components developed in GeantV context
* Mostly geometry (VecGeom), but easy to extend to others (magnetic field, physics)

* Simple ray-tracer using geometry only
* Copy full (VecGeom) geometry to GPU (streaming mechanism working)

e Writing CUDA kernel making the “X-ray” image of geometry
* One ray per image pixel -> massive parallelism

* Expand the prototype, adding more models and eventually a simulation
flow
* Field, physics models creating secondaries

* Trying to adapt the simulation to the device requirements rather than map existing
CPU model to device

GPU R&D #2: Adapt simulation to vendor
optimized GPU ray-tracing package

* Optix provides a HW-accelerated ray-tracing framework
* Allowing user-defined geometry
* Offering optimized scheduling of ‘rays’ to user-defined kernels

* ‘Shaders’ for Optix -> kernels embedding (physics) models for us
 Start with simple prototype based on examples

* E.g. JUNO optical photon Optix-based simulation (Opticks, S.Blyth)
* Understand limitations and extension opportunities

* If prototype exercise promising, extend Optix-based model
* Interact with Optix dev team for possible functionality extensions
* Extend the prototype to a more comprehensive simulation

GPU R&D #3: Understand a sustainable
portability model for device

* Needed at medium/long-term scale by #1, #2 or any other approach
* Code base is large

* Understand features/limitations of existing performance portability
frameworks
* evaluate frameworks like Kokkos, Alpaka or SYCL/oneApi

* The optimal solution may be in the middle, transforming our code to
be more GPU-friendly, then using performance portability tools

24

Complementary GPU R&D

* Geometry transformations exposing massive parallelism

* For example: single solid type (polyhedron, tetrahedra), or tessellations
(everything made of triangles)

* Track data management to favor pipeline workflows

* i.e. benefit from both code and data locality

» E.g flushing large blocks with track data through pipelines of kernels and accounting via
masks

* Easier to explore using the GeantV prototype before embarking into deep
Geant4 transformations

Miscellaneous

e Geant4 R&D Task Force

o coordination and contribution

e EPR&D

o Fast simulation project on ML-based parameterizations

o AIDA2020 and AIDA++

o VecGeom, Fast Simulation

e HSF Detector Simulation working group
o coordination and contribution

summary

R&D on simulation software essential to meet the HL-LHC (and post)

requirements
o GeantV project concluded with a number of valuable findings

o three axis of further development
o improve and modernize Geant4

o Fast simulation R&D

o compute accelerators usage in simulation

o 2020 will be devoted to prototyping work to identify the most promising
directions

