
Simulation R&D PoW 2020
Witek Pokorski for the Simulation R&D team

03.02.2020

1

Motivation - Forecast Simulation Needs

2

LHCb

ATLAS
ALICE

CMS

Approach - Three Main Axes of Development
● Improve, optimise and modernise the existing Geant4 code to gain in

performance and precision for the detailed simulation

● Trade precision for performance using fast simulation techniques both
with parameterisations and with ML methods, and integrate them
seamlessly in Geant4

● Investigate the use of ‘accelerators’ such as GPUs for performance gain

3

Experiments
integration

>>

<<

Performance: main directions

Concurrency model review - fine
grain parallelism

Faster physics/geometry algorithms
- low level code optimizations

More compact code & data - simplified
calling sequence - stateless - pipelines for

heavy computation kernels

Heterogenous
computing

GPU friendly kernels

Fast sim revisiting
Parameterizations - ML

4

Parallelism

Optim
izatio

n

Restru
cturin

g

(CERN) Team
● Andrei
● John
● Guilherme

● Anna
● Ioana

● Witek

(+ 2 summer ‘19 students)

● Mihaly
● Alberto
● Gabriele

5

Activities in 2019
● GeantV Vector prototype

○ to assess the achievable speedup using a novel, vectorized approach to particle
transport

■ demonstrator of full EM shower in realistic (CMS) geometry and comparison to Geant4

● Fast simulation

○ revisiting classical parameterization

○ novel Machine-Learning based fast simulation R&D

6

GeantV in 2019

7

Outcome of GeantV prototype
● HSF GeantV dedicated meeting (15 Oct 2019)
● paper reporting all the results in preparation and will be sent for

publication soon
● new tools delivered to the community

○ VecCore, VecGeom, VecMath

○ successfully integrated into Geant4, ROOT, etc

● better understanding of possibility of ’vectorization’ of the simulation
code

8

https://indico.cern.ch/event/818702/

Main lessons

• Main factors in the speedup seem to include
• Better cache use (single track mode shows performance decrease for small caches)
• Tighter code (e.g., less classes, indirections and branching)

• Vectorization’s impact (much) smaller than hoped for
• Small fraction of the code has been vectorized or is run in vector mode effectively
• Overhead of basketization cost similar to vector gain for “small” modules
• Basketization can bring benefits for FP hotspots (e.g. magnetic field, multiple

scattering)

• Basketization cost in
• Either extra memory copy (using collection of tracks)
• Or lower memory access coherency (using collection of pointers)

9

Fast Simulation in 2019

10

‘Classical’ EM shower parametrisation

r
!

t
➔ Based on GFlash model (arXiv:hep-

ex/0001020)

➔ Basic implementation in Geant4:

◆ Only for homogeneous
media

◆ Hard-coded parameters
from paper (and GEANT3)

11

https://arxiv.org/abs/hep-ex/0001020

‘Classical’ EM shower parametrisation

G4 full sim
Tuned parameters
GFlash parameters

What has been done in 2019:

➔ Review of existing code

➔ Bug fixes (parallel world & processes in G4)

➔ Addition of new examples & validation tests

➔ Work on tuning procedure for parameters

◆ longitudinal profile ready

◆ transverse profile on-going

12

ML-based FastSim in 2019
⁃ Investigated generative models capabilities and

limitations for calorimeter shower simulation

⁃ GAN, VAE, Auto-regressive and customized Auto-
regressive network based on a ResNet architecture

⁃ Optimised training procedures through parallelization
on GPUs

⁃ Investigated different Loss Functions from deterministic
to probabilistic

⁃ Worked the ‘full cycle’ example/framework
implementation

⁃ Geant4 full simulation -> data processing ->
network training -> inference integration (C++
wrapper using Tensorflow C API) -> Geant4 fast
simulation

13

Where do we go now?
Plan for 2020
- Fast Simulation
- Geant4 modernization and improvements
- use of compute accelerators R&D

strongly correlated

14

Fast simulation in 2020

15

‘Classical’ EM shower parametrisation
Plan of work for 2020:

➔ Finalise transverse profile parametrisation

➔ Propose implementation of tools within G4 to automate
tuning

➔ Develop appropriate examples in different materials,
granularities

➔ Additions:
◆ Improve transverse profiles
◆ Introduce start of shower parametrisation (as

in CMS shower parametrisation)
◆ Investigate parametrisation of only particles

below energy threshold (‘core’ of shower: full
sim, ‘branches’ parametrised)

Full shower simulation

Parametrisation of particles with
energy E<E0

Parametrisation of particles with
energy E<E1 (E1>E0)

16

Biasing - validation tools

➔ Many biasing techniques (e.g. Russian roulette, weight window, …)
present in G4, with examples, but … need for general validation tools

➔ Started as a generalisation of biasing examples (importance sampling,
weight window biasing in radiation protection)

➔ Needs to be improved, extended, documented, and integrated into
geant-val

M.Verderi (23th Collaboration Meeting)

17

https://indico.cern.ch/event/727112/contributions/3108065/attachments/1706376/2749618/Update_on_Generic_Biasing.pdf

ML-based FastSim in 2020

• Finalize the development of the
auto-regressive model
• Improve dependency model

between calorimeter cells (training)
• Improve data encoding/decoding

tools
• Extend and finalize framework

implementation for integration
with Geant4
• Automate data preparation
• Include other generative models

types for inference module

18

Geant4 modernization and use of
compute accelerators in 2020

19

Geant4 modernization and improvements R&Ds

o Geant4 ‘stateless’ transport prototype
o move the ‘state’ from managers to tracks to allow further study of track-level parallelism and

GPU usage

o Automate performance measurements
o hotspots and microarchitecture exploration data

o Single precision usage in simulation components
o study numerical stability and changes required

o Instruction and data cache optimizations
o reordering of data members, group Booleans into bit fields, etc

o Development of compact, self-contained physics library with predefined scoring
options (for example for EM shower simulation)
o would allow, for example, to stay ‘confined’ on GPU for an important % of simulation time

20

Simulation on accelerators – current status

• Hardware quite different from CPUs
• Favoring massive parallelism exposed by the software

• Geant4 is a state machine toolkit, evolving states (tracks) per step
• Unpredictable processing sequence (particle physics is stochastic) -> hard to

make scalar processing pipelines
• A direct porting of Geant4 ”as is” to GPU practically impossible and/or very

inefficient
• Existing efforts for porting Geant4 to GPU
• No available toolkit on accelerators for general purpose simulation

• Ports only for limited corner cases: optical photons, neutrons, medical physics
• Ongoing R&D exploration efforts for general purpose GPU porting in US

• Geant Exascale Pilot Project

21

GPU R&D #1: start from what we have

• Evolving a GPU simulation model based on a simple prototype
• Based on existing portable components developed in GeantV context

• Mostly geometry (VecGeom), but easy to extend to others (magnetic field, physics)

• Simple ray-tracer using geometry only
• Copy full (VecGeom) geometry to GPU (streaming mechanism working)
• Writing CUDA kernel making the “X-ray” image of geometry

• One ray per image pixel -> massive parallelism

• Expand the prototype, adding more models and eventually a simulation
flow
• Field, physics models creating secondaries
• Trying to adapt the simulation to the device requirements rather than map existing

CPU model to device

22

GPU R&D #2: Adapt simulation to vendor
optimized GPU ray-tracing package
• Optix provides a HW-accelerated ray-tracing framework
• Allowing user-defined geometry
• Offering optimized scheduling of ‘rays’ to user-defined kernels

• ‘Shaders’ for Optix -> kernels embedding (physics) models for us

• Start with simple prototype based on examples
• E.g. JUNO optical photon Optix-based simulation (Opticks, S.Blyth)
• Understand limitations and extension opportunities

• If prototype exercise promising, extend Optix-based model
• Interact with Optix dev team for possible functionality extensions
• Extend the prototype to a more comprehensive simulation

23

GPU R&D #3: Understand a sustainable
portability model for device
• Needed at medium/long-term scale by #1, #2 or any other approach
• Code base is large

• Understand features/limitations of existing performance portability
frameworks
• evaluate frameworks like Kokkos, Alpaka or SYCL/oneApi

• The optimal solution may be in the middle, transforming our code to
be more GPU-friendly, then using performance portability tools

24

Complementary GPU R&D

• Geometry transformations exposing massive parallelism
• For example: single solid type (polyhedron, tetrahedra), or tessellations

(everything made of triangles)

• Track data management to favor pipeline workflows
• i.e. benefit from both code and data locality

• E.g flushing large blocks with track data through pipelines of kernels and accounting via
masks

• Easier to explore using the GeantV prototype before embarking into deep
Geant4 transformations

25

Miscellaneous
● Geant4 R&D Task Force

○ coordination and contribution

● EP R&D
○ Fast simulation project on ML-based parameterizations

● AIDA2020 and AIDA++
○ VecGeom, Fast Simulation

● HSF Detector Simulation working group
○ coordination and contribution

26

Summary
● R&D on simulation software essential to meet the HL-LHC (and post)

requirements
● GeantV project concluded with a number of valuable findings
● three axis of further development

○ improve and modernize Geant4

○ Fast simulation R&D

○ compute accelerators usage in simulation

● 2020 will be devoted to prototyping work to identify the most promising
directions

27

