Georgi-Machacek Vacua

Duarte Azevedo¹

Collaboration with: R. Santos¹²³, P. Ferreira¹², H. Logan⁴

¹CFTC-ULisboa ²ISEG-Ulisboa ³LIP, Lisboa ⁴Carleton University, Canada

CFTC-UL, UA and LIP meeting - Experiment vs. Theory Braga - Feb. 2020

Introduction

@ Georgi-Machacek model

Unphysical vacua

Conclusions

Introduction

Introduction

 \rightarrow Scalar particle discovered in 2012 with mass of \sim 125 GeV at the Large Hadron Collider (LHC).

ATLAS, Phys.Lett. B716 (2012), and CMS, Phys. Lett. B 716 (2012).

The SM is complete. No experimental result that strongly deviates from the predictions. Some mentionable exceptions:

- Muon's anomalous magnetic moment.
- B meson decay rates.

Still we know it cannot be the whole story.

- Gravity.
- Neutrinos' masses.
- **Enough CP-violation:** to support Sakharov's condition for baryogenesis.
- Dark Matter: Several indirect evidence: Galaxy rotation curves, Gravitational lensing, Cosmic microwave background, etc.
- ...

Group's representation

Different representations (group theory context) of the fields in the Lagrangian lead to different phenomenology!

Standard nomenclature: singlets, doublets, triplets \to Weak isospin symmetry group $SU(2)_L$. Doublets and triplets might carry Hypercharge $U(1)_Y$.

 \rightarrow We need at least a doublet with hypercharge (as in SM) for the Higgs mechanism.

Theory vs. Experiment (Phenomenology)

Singlets \iff More neutral Higgs bosons (e.g. DM), strong first-order phase transitions.

Doublets ← More neutral/charged Higgs bosons, CP-violation, FCNC.

Triplets \iff Same as previous (no FCNC), no Yukawa int., <u>larger Gauge-Higgs couplings than SM</u> (1)

$$(D_{\mu}X)^{\dagger}(D^{\mu}X) \supset X^{\dagger} \left[\frac{g^{2}}{2} W_{\mu}^{+} W^{-\mu} (T(T+1) - Y^{2}) + g^{2} W_{\mu}^{3} W^{3\mu} (T^{3})^{2} + g^{\prime 2} B_{\mu} B^{\mu}(Y)^{2} - 2gg^{\prime} B_{\mu} W^{3\mu} (T^{3})(Y) \right] X$$

$$(2)$$

The ρ parameter

 $\equiv \frac{-ig^2}{c^2 M^2} J_{Z\mu} J_Z^{\mu}$

The ratio of strengths between charged and neutral currents at low energies (q o 0) when

$$i\Delta\mathcal{L}_{Z} = \frac{-ig}{c_{W}}\left(\bar{\nu}\gamma_{\mu}\hat{\Omega}\nu\right)\frac{ig^{\mu\nu}}{M_{Z}^{2}}\frac{-ig}{c_{W}}\left(\bar{u}\gamma_{\nu}\hat{\Omega}u\right) \qquad i\Delta\mathcal{L}_{W} = \frac{ig}{\sqrt{2}}(\bar{e}_{L}\gamma_{\mu}\nu_{L})\frac{ig^{\mu\nu}}{M_{W}^{2}}\frac{ig}{\sqrt{2}}(\bar{u}_{L}\gamma_{\nu}d_{L}) \\ = \frac{-ig^{2}}{c_{W}^{2}M_{Z}^{2}}\left(\bar{\nu}\gamma_{\mu}\hat{\Omega}\nu\right)\left(\bar{u}\gamma^{\mu}\hat{\Omega}u\right) \qquad = \frac{-ig^{2}}{M_{W}^{2}}\frac{1}{\sqrt{2}}(\bar{e}_{L}\gamma_{\mu}\nu_{L})\frac{1}{\sqrt{2}}(\bar{u}_{L}\gamma^{\mu}d_{L})$$

(4)

 $\frac{-ig^{\mu\nu}}{g^2-M^2} \rightarrow \frac{-ig^{\mu\nu}}{M^2}$

(3)

(5)

The ho parameter is the ratio between the strengths of neutral to charged currents

$$\rho = \left(\frac{g^2}{c_W^2 M_Z^2}\right) \times \left(\frac{g^2}{M_W^2}\right)^{-1} = \frac{M_W^2}{c_W^2 M_Z^2} = 1 \text{ (in the SM at tree-level)}.$$
 (6)

 $\equiv \frac{-ig^2}{M^2} J_{W\mu}^- J_W^{+\mu},$

Current exp value: $ho = 1.00039 \pm 0.00019$ [global fit - PDG 2019]

Duarte (FCUL/CFTC) GM vacua E vs.T Braga 2020 6/16

Custodial symmetry

The SM gauge boson's mass matrix in the (W^1, W^2, W^3, B) basis

$$M^{2} = \frac{v^{2}}{4} \begin{pmatrix} g^{2} & 0 & 0 & 0 \\ 0 & g^{2} & 0 & 0 \\ 0 & 0 & g^{2} & -gg' \\ 0 & 0 & -gg' & g'^{2} \end{pmatrix}.$$
 (7)

If hypercharge interactions are turned off, $g' \rightarrow 0$

- $\bullet \ M_Z = M_W$
- $\theta_W = 0$
- ightarrow Rotation symmetry between $W^1 \leftrightarrow W^2 \leftrightarrow W^3$ called **custodial symmetry** (Global SU(2)).

Preserves $\rho=1$ to all orders of perturbation theory.

In a general model with N multiplets, X_i , and neutral component VEV, v_i , we have

$$\rho = \frac{\sum_{i} c_{i} [T_{i}(T_{i}+1) - Y_{i}^{2}/4] v_{i}^{2}}{\sum_{i} Y_{i}^{2} v_{i}^{2}/4}$$
(8)

which for complex doublets $T = \frac{1}{2}$ with Y = 1 is identically 1.

 \rightarrow Curiosity: Another solution are septets with T=3 and Y=4.

7 / 16

Duarte (FCUL/CFTC) GM vacua E vs.T Braga 2020

Georgi-Machacek model

First proposed by Georgi and Machacek, and later (same year) by Chanowitz and Golden in 1985.

 \rightarrow Elegant way to induce $\rho = 1$ at tree-level in a triplet model by exploiting $SU(2)_R$ symmetry (already present in the scalar potential of the SM).

Consists of usual doublet Φ (T=1/2) plus two triplets (T=1) written in bi-tuplet representation

Real Ξ (Y=0) and complex χ with Y=2

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^{+} \\ -\phi^{+*} & \phi^{0} \end{pmatrix}, \qquad X = \begin{pmatrix} \chi^{0*} & \xi^{+} & \chi^{++} \\ -\chi^{+*} & \xi^{0} & \chi^{+} \\ \chi^{++*} & -\xi^{+*} & \chi^{0} \end{pmatrix}$$
(9)

where the $SU(2)_L \times SU(2)_R$ transformation can be written as

$$(\Phi' \text{ or } X') = \exp(iT^a\theta_L^a)(\Phi \text{ or } X)\exp(-iT^b\theta_R^b). \tag{10}$$

Most general potential for $SU(2)_L \times SU(2)_R$ global symmetry

$$V(\Phi, X) = \frac{\mu_2^2}{2} \text{Tr}(\Phi^{\dagger}\Phi) + \lambda_1 [\text{Tr}(\Phi^{\dagger}\Phi)]^2 + \frac{\mu_3^2}{2} \text{Tr}(X^{\dagger}X) + \lambda_2 \text{Tr}(\Phi^{\dagger}\Phi) \text{Tr}(X^{\dagger}X)$$
$$+ \lambda_3 \text{Tr}(X^{\dagger}XX^{\dagger}X) + \lambda_4 [\text{Tr}(X^{\dagger}X)]^2 - \lambda_5 \text{Tr}(\Phi^{\dagger}\tau^a\Phi\tau^b) \text{Tr}(X^{\dagger}t^aXt^b)$$
$$- M_1 \text{Tr}(\Phi^{\dagger}\tau^a\Phi\tau^b) (UXU^{\dagger})_{ab} - M_2 \text{Tr}(X^{\dagger}t^aXt^b) (UXU^{\dagger})_{ab}. \tag{11}$$

Potential

$$V(\Phi, X) = \frac{\mu_2^2}{2} \text{Tr}(\Phi^{\dagger}\Phi) + \lambda_1 [\text{Tr}(\Phi^{\dagger}\Phi)]^2 + \frac{\mu_3^2}{2} \text{Tr}(X^{\dagger}X) + \lambda_2 \text{Tr}(\Phi^{\dagger}\Phi) \text{Tr}(X^{\dagger}X) + \lambda_3 \text{Tr}(X^{\dagger}XX^{\dagger}X) + \lambda_4 [\text{Tr}(X^{\dagger}X)]^2 - \lambda_5 \text{Tr}(\Phi^{\dagger}\tau^a\Phi\tau^b) \text{Tr}(X^{\dagger}t^aXt^b)$$

Goal: Find all possible vacua, properties and height relationships.

Motivation: Some unphysical vacuum can be the global minimum at a given parameter space point and coexist with a physical one \Rightarrow Theory constraints on the parameter space.

Given the symmetries the most general vacuum expectation value (VEV) for the fields reads

Two $SU(2)_L \times SU(2)_R$ transformations, first with $\theta_L = \theta_R$ and second $\theta_L = -\theta_R$

$$\Phi = \begin{pmatrix} v_1 & 0 \\ 0 & v_1 \end{pmatrix}, \qquad X = \begin{pmatrix} v_8 - iv_9 & v_6 & 0 \\ -v_{10} + iv_{11} & v_5 & v_{10} + iv_{11} \\ 0 & -v_6 & v_8 + iv_9 \end{pmatrix}.$$
(12)

There are at least two possible vacua:

- Dark Matter vacuum $(v_1 \neq 0 \land v_i = 0) \Rightarrow \rho = 1$ at and \mathbb{Z}_2 symmetry is not spontaneously broken.
- Custodial vacuum $(v_1 \neq 0 \land v_5 = v_8 \land v_i = 0) \Rightarrow \rho = 1$ at tree-level.

Duarte (FCUL/CFTC)

GM vacua

E vs.T Braga 2020 10 / 16

 \rightarrow We considered first just the real part of the VEV matrix.

Dark matter vacuum

There is no mixing of fields

$$m_h^2 = 8\lambda_1 v^2 \qquad m_{\chi^0}^2 = \mu_3^2 + \left(2\lambda_2 - \frac{1}{2}\lambda_5\right) v^2$$

$$m_{\xi^0}^2 = m_{\xi^+}^2 = m_{\chi^+}^2 = \mu_3^2 + 2\lambda_2 v^2 \qquad m_{\chi^{++}}^2 = \mu_3^2 + \left(2\lambda_2 + \frac{1}{2}\lambda_5\right) v^2, \qquad (13)$$

DM candidate is χ^0

Custodial vacuum

• A custodial five-plet $(H_5^{++}, H_5^+, H_5^{--}, H_5^-, H_5^0)$, triplet (H_3^+, H_3^-, H_3^0) and singlets (h, H).

Each multiplet is degenerate in mass

$$m_{5}^{2} = \frac{M_{1}}{4v_{\chi}}v_{\phi}^{2} + 12M_{2}v_{\chi} + \frac{3}{2}\lambda_{5}v_{\phi}^{2} + 8\lambda_{3}v_{\chi}^{2},$$

$$m_{3}^{2} = \frac{M_{1}}{4v_{\chi}}(v_{\phi}^{2} + 8v_{\chi}^{2}) + \frac{\lambda_{5}}{2}(v_{\phi}^{2} + 8v_{\chi}^{2}) = \left(\frac{M_{1}}{4v_{\chi}} + \frac{\lambda_{5}}{2}\right)v^{2}$$

$$m_{h,H}^{2} = \frac{1}{2}\left[\mathcal{M}_{11}^{2} + \mathcal{M}_{22}^{2} \mp \sqrt{\left(\mathcal{M}_{11}^{2} - \mathcal{M}_{22}^{2}\right)^{2} + 4\left(\mathcal{M}_{12}^{2}\right)^{2}}\right].$$
(14)

 Quarte (FCUL/CFTC)
 GM vacua
 E vs.T Braga 2020
 11 / 16

Unphysical vacua

Unphysical vacua

Charge-breaking (5 solutions)

- $v_5 = v_8 = 0$
- $v_1 = v_5 = v_8 = 0 \land v_6 = \pm v_{10}$
- $v_5 = v_8 = 0 \land v_6 = \pm v_{10}$

Corresponding gauge bosons' mass matrix (W^1, W^2, W^3, B)

$$M^{2} = \begin{pmatrix} \frac{1}{4}g^{2} \left(v_{1}^{2} + 4v_{10}^{2}\right) & 0 & 0 & 0\\ 0 & \frac{1}{4}g^{2} \left(v_{1}^{2} + 4\left(v_{6}^{2} + v_{10}^{2}\right)\right) & 0 & 0\\ 0 & 0 & \frac{1}{4}g^{2} \left(v_{1}^{2} + 4v_{6}^{2}\right) & -\frac{1}{4}v_{1}^{2}gg'\\ 0 & 0 & -\frac{1}{4}v_{1}^{2}gg' & \frac{1}{4}g'^{2} \left(v_{1}^{2} + 4v_{10}^{2}\right) \end{pmatrix}$$
(15)

There is no null eigenvalue \rightarrow photon is massive!

Wrong-Electroweak (Hypercharge is not spontaneously broken, 2 solutions)

- $v_1 = v_8 = v_{10} = 0$
- $v_1 = v_5 = v_8 = v_{10} = 0$

Corresponding gauge bosons' mass matrix (W^1, W^2, W^3, B)

$$M^{2} = \begin{pmatrix} g^{2}v_{5}^{2} & 0 & g^{2}v_{5}v_{6} & 0\\ 0 & g^{2}\left(v_{5}^{2} + v_{6}^{2}\right) & 0 & 0\\ g^{2}v_{5}v_{6} & 0 & g^{2}v_{6}^{2} & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(16)$$

There are two null eigenvalue \rightarrow Only two gauge bosons are massive!

Duarte (FCUL/CFTC) GM vacua E vs.T Braga 2020 13/16

Bilinear formalism

We also found vacua with three massive and one massless gauge bosons. Example:

$$v_1 = v_6 = v_8 = 0 (17)$$

Corresponding gauge bosons' mass matrix (W^1, W^2, W^3, B)

$$\begin{pmatrix}
g^{2} \left(v_{5}^{2} + v_{10}^{2}\right) & 0 & 0 & 0 \\
0 & g^{2} \left(v_{5}^{2} + v_{10}^{2}\right) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & v_{10}^{2} g^{2}
\end{pmatrix}$$
(18)

These are most likely unphysical but it ask for reevaluation of the charge operator definition, which in the SM is solely a convention.

Bilinear formalism

Because of the \mathbb{Z}_2 symmetry of the potential \to there are no cubic VEV terms.

$$V = A^{\mathsf{T}}X + \frac{1}{2}X^{\mathsf{T}}BX \tag{19}$$

with A, B a vector and a matrices, respectively, of the parameters of the potential and X a vector of VEVs.

This formalism allows for easy comparison of potential heights between different minima! (To be continued...)

Conclusions

Conclusions

Theory side

- The model is interesting due to capacity fixing $\rho=1$ at tree-level.
- Characterizing the vacua and their phenomenology.
- Check if existence of unphysical vacua might constrain the parameter space.
- Work in progress...

Experimentally speaking it serves as a benchmark for collider study of triplets.

- Higher Gauge-Higgs couplings might be interesting to study and look for (some papers do already exist).
- Dark matter phase is still unexplored terrain.

16 / 16

Duarte (FCUL/CFTC) GM vacua E vs.T Braga 2020