Gravitational footprints of neutrino mass and lepton number violation

Andrea Addazi ² Antonino Marcianò² **António P. Morais**¹ Roman Pasechnik³ Rahul Srivastava ⁴ José W. F. Valle⁴

¹Center for Research and Development in Mathematics and Applications (CIDMA) Aveiro University, Aveiro, Portugal

²Department of Physics and Center for Field Theory and Particle Physics Fudan University, Shanghai, China

³Department of Theoretical Physics, Lund university, Lund, Sweden

⁴Institut de Física Corpuscular, Universitat de València Parc Cientific de Paterna, Valencia, Spain

January 31, 2020

Experiment vs Theory meeting — LIP-Minho, Braga

Based upon 1909.09740 and 1910.00717 and 2002.xxxx

- Introduction
- 2 High- and low-scale seesaw variants
- Gravitational Waves from FOPT
- 4 Results
- Conclusions

- Introduction
- Pigh- and low-scale seesaw variants
- Gravitational Waves from FOPT
- 4 Results
- Conclusions

Introduction

Stochastic Gravitational Wave (GW) background

- Superposition of unresolved astrophysical sources
- Cosmological events
 - (i) Inflation
 - (ii) Cosmic strings
 - (iii) Strong cosmological phase transitions (PTs) → by expanding vacuum bubbles of a broken phase in a universe filled with a symmetric phase

GW background as a gravitational probe for New Physics

Focus on the EW phase transition (EWPT)

Look for graviational footprints of lepton number symmetry breaking and the mechanism of neutrino mass generation.

- Introduction
- 2 High- and low-scale seesaw variants
- Gravitational Waves from FOPT
- Results
- Conclusions

High- and low-scale seesaw variants

Standard type-I

$$\mathcal{L}_{\text{Yuk}}^{\text{Type-I}} = Y_{\nu} \bar{L} H \nu^{c} + M \nu^{c} \nu^{c} + h.c.$$

- $L = (v, l)^{\top}$; v^c are three SM-singlet RH-neutrinos; M and Y_v are 3×3 matrices
- M explicitly breaks lepton number symmetry $\mathrm{U}(1)_\mathrm{L} o \mathbb{Z}_2$ as $L(\mathbf{v}^c) = -1$
- Mass for light neutrinos after EWSB $\langle H \rangle = v_h/\sqrt{2}$

$$m_{\nu}^{\text{Type-I}} = \frac{v_h^2}{2} Y_{\nu}^T M^{-1} Y_{\nu} \qquad Y_{\nu} \sim \mathcal{O}(1) \text{ , } M \sim \mathcal{O}(10^{14} \text{ GeV}) \Rightarrow m_{\nu} \sim \mathcal{O}(0.1 \text{ eV})$$

Low-scale variant: Inverse seesaw

• Add two gauge singlet fermion carrying opposite lepton number charge, $L(v^c) = -1$ and L(S) = -1

$$\mathcal{L}_{Yuk}^{Inverse} = Y_{\nu} \bar{L} H \nu^{c} + M \nu^{c} S + \mu SS + h.c.$$

• Smallness of neutrino mass linked to the breaking of $U(1)_L \to \mathbb{Z}_2$ through the $\mu\text{-term}$

$$m_{\nu}^{\text{Inverse}} = \frac{v_h^2}{2} Y_{\nu}^T M^{T-1} \mu M^{-1} Y_{\nu}$$

Small neutrino masses protected by $U(1)_L$ (restored in the limit $\mu \to 0$)

Inverse seesaw with majoron

• Add a complex singlet scalar σ , the majoron, with $L(\sigma) = -2$

$$\mu SS \rightarrow Y_{\sigma} \sigma SS$$

• $\langle \sigma \rangle = v_{\sigma}/\sqrt{2}$ spontaneously breaks $U(1)_L \to \mathbb{Z}_2$

$$\mu = Y_{\sigma} v_{\sigma} / \sqrt{2} \rightarrow \text{generates effective } \mu \text{ term}$$

$$m_{\nu}^{\text{Inverse}} \sim Y_{\nu}^2 Y_{\sigma} \frac{v_h^2 v_{\sigma}}{M^2}$$

Two possibilities for low-scale seesaw, $M \sim \mathcal{O} (0.1 - 1 \text{TeV})$

$$V_{v} \sim 0.01, \ Y_{\sigma} \sim 0 \ (0.001 - 1)$$

$$\Rightarrow m_{v} \sim 0 \ (0.0001 - 0.1 \text{eV})$$

- \circ $v_{\sigma} \sim O(\text{keV})$
- $v_{\sigma} \sim 0 \ (0.1 1 \ \text{TeV})$
- ② $Y_{\nu} \sim 10^{-6}$, $Y_{\sigma} \sim \mathcal{O} (0.001 1)$ $\Rightarrow m_{\nu} \sim \mathcal{O} (0.0001 - 0.1 \text{eV})$

Extended scalar sector:

$$V_0 = \mu_h^2 H^\dagger H + \lambda_h \left(H^\dagger H \right)^2 + \mu_\sigma^2 \sigma^* \sigma + \lambda_\sigma \left(\sigma^* \sigma \right)^2 + \lambda_{\sigma h} H^\dagger H \sigma^* \sigma + \left(\frac{1}{2} \mu_b^2 \sigma^2 + \text{c.c.} \right)$$

$$H = rac{1}{\sqrt{2}} \left(rac{G + iG'}{v_h + h + i\eta}
ight) , \qquad \quad \sigma = rac{1}{\sqrt{2}} (v_\sigma + \sigma_R + i\sigma_I) ,$$

1) Softly broken $U(1)_L$ case: $v_h = 246 \text{ GeV}$ and $v_{\sigma} = 0$

$$m_h^2 = 2\lambda_h v_h^2$$
, $m_{\sigma_R}^2 = \mu_\sigma^2 + \mu_b^2 + \frac{\lambda_{\sigma h} v_h^2}{2}$, $m_{\sigma_I}^2 = \mu_\sigma^2 - \mu_b^2 + \frac{\lambda_{\sigma h} v_h^2}{2}$

- U(1)_L softly broken by μ_b term
- If $\mu_b^2>0$ the majoron mass can be tuned to provide testable dark matter candidate [Valle et al PRD (1993), PRL (2007); Bazzocchi et al JCAP (2008)]
- For simplicity we use this scenario as a good approximation to the $v_{\sigma} \sim \mathcal{O} (\text{keV})$ case for small $m_{\sigma_I} \ll m_{\sigma_R}$.

- 2) Spontaneously broken $U(1)_L$ case: $v_h = 246 \text{ GeV}$ and $v_\sigma \neq 0$
 - If $\mu_b^2 < 0$ majoron becomes a pseudo-Goldstone boson

Minimization and BFB conditions:

$$\begin{split} \mu_h^2 &= -\lambda_h v_h^2 - \frac{1}{2} \lambda_{\sigma h} v_\sigma^2 \,, \qquad \mu_\sigma^2 = -\mu_b^2 - \lambda_\sigma v_\sigma^2 - \frac{1}{2} \lambda_{\sigma h} v_h^2 \\ \lambda_h &> 0 \,, \qquad \lambda_\sigma > 0 \,, \qquad \lambda_{\sigma h} > -2 \sqrt{\lambda_h \lambda_\sigma} \end{split} \qquad \text{[Bonilla, Valle, Romão PRD (2015)]}$$

Mass spectrum and mixing:

$$\begin{split} M_{\mathrm{CP-even}}^2 &= \begin{pmatrix} 2\lambda_h v_h^2 & \lambda_{\sigma h} v_h v_\sigma \\ \lambda_{\sigma h} v_h v_\sigma & 2\lambda_\sigma v_\sigma^2 \end{pmatrix} \,, \\ \begin{pmatrix} m_{h_1}^2 & 0 \\ 0 & m_{h_2}^2 \end{pmatrix} &= \mathcal{R} M_{\mathrm{CP-even}}^2 \mathcal{R}^{-1} \,, \qquad \mathcal{R} &= \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \,, \\ \\ m_{\sigma_l}^2 &= -2\mu_b^2 > 0 \,, \qquad m_{h_1,h_2}^2 &= \lambda_h v_h^2 + \lambda_\sigma v_\sigma^2 \mp \frac{\lambda_\sigma v_\sigma^2 - \lambda_h v_h^2}{\cos 2\theta} \,. \end{split}$$

 $\sigma_{\it I}$ can become keV DM candidate without any tuning as in the softly-broken $U(1)_L$ scenario

- Introduction
- High- and low-scale seesaw variants
- Gravitational Waves from FOPT
- Results
- Conclusions

Gravitational Waves from FOPT

- Vacuum bubbles nucleated from-first order phase transitions (FOPT)
- The main source of GW production is due to sound waves

$$h^2 \Omega_{\text{GW}} (f; \alpha, \beta/H, f_{\text{peak}})$$
 $f_{\text{peak}} (\alpha, \beta/H, T_n)$

Three relevant parameters to determine the GW power spectrum

 $\alpha \to \text{ transition strength}, \ \beta/H \to \text{ inverse time scale}, \ T_n \to \text{nucleation temp}.$

$$\alpha \propto \frac{1}{T_n^4} \left[V_i - V_f - \frac{T}{4} \left(\frac{\partial V_i}{\partial T} - \frac{\partial V_f}{\partial T} \right) \right] \qquad \frac{\beta}{H} = T_n \frac{\partial}{\partial T} \left(\frac{\hat{S}_3}{T} \right) \bigg|_{T_n}$$

Particle Physics details encoded in α and β/H

- Bubble nucleation takes place when the probability to realize 1 transition per cosmological horizon is equal to one $\Rightarrow \hat{S}_3/T_n = 140$
- ullet Classical motion in Euclidean space described by the Euclidean action \hat{S}_3

$$\hat{S}_3 = 4\pi \int_0^\infty \mathrm{d}r \, r^2 \left\{ rac{1}{2} \left(rac{\mathrm{d}\hat{\varphi}}{\mathrm{d}r}
ight)^2 + V_{\mathrm{eff}}(\hat{\varphi}, T)
ight\} \, ,$$

- $\bullet \ \hat{\varphi} \to \text{solution}$ of the e.o.m. found by the path that minimizes the energy.
- Effective potential: loop and thermal corrections

$$V_{
m eff}^{(1)}(\hat{f \varphi},T) = V_0 + V_{
m CW} + \Delta V^{(1)}(T)$$

Formalism implemented in CosmoTransitions [Wainwright]

- Introduction
- High- and low-scale seesaw variants
- Gravitational Waves from FOPT
- 4 Results
- Conclusions

Softly broken U(1)_L

An inclusive scan

Y_{σ}	M/GeV	λ_{σ}	$\lambda_{\sigma h}$	$m_{\sigma_R}/{\rm GeV}$	m_{σ_I}/keV	Y_{ν}
$[10^{-3}, 3.5]$	[50, 1000]	$[10^{-3}, 5]$	$[10^{-3}, 5]$	[50, 1000]	1	10^{-2}

- The stronger the transition the higher the peak amplitude
- The longer the transition time the lower the peak frequency
- Colour gradation and distribution of points is not always smooth: depend on different transition patterns

Most relevant patterns, at $T \neq 0$, are $(0,0) \rightarrow (0,\nu_{\sigma})$ and $(0,\nu_{\sigma}) \rightarrow (\nu_h,0)$

Study the effect of λ_{σ} , $\lambda_{\sigma h}$ and Y_{σ} and search for points at the reach of LISA

$$(0,0) \rightarrow (0,v_{\sigma})$$
 case

$$\lambda_{\sigma} = 0.0017$$
 $\lambda_{\sigma h} = 0.82$ $Y_{\sigma} = \begin{bmatrix} 10^{-3}, 3.5 \end{bmatrix}$ $M = 430 \text{ GeV}$ $m_{\sigma_R} = 169 \text{ GeV}$

Increasing \boldsymbol{Y}_{σ} enhances the transition strength thus GW peak amplitude

Fixing $\mathit{Y}_{\sigma}=1.41$ and varying λ_{σ} and $\lambda_{\sigma\mathit{h}}$

- Several points at the reach of LISA for smaller quartics
- $h^2\Omega_{\rm GW}^{\rm peak}$ and $f_{\rm peak}$ quite sensitive to theory parameters
- Can the GW-portal become a possibility for precision measurements?

$$(0, v_{\sigma}) \rightarrow (v_h, 0)$$
 case

$$\lambda_{\sigma} = 0.54 \quad \lambda_{\sigma h} = 1.06 \quad Y_{\sigma} = 0.02 \quad M = 225 \text{ GeV} \quad m_{\sigma_{R}} = 147 \text{ GeV}$$

$$10^{-10} \quad 1.05 \quad 1.05 \quad 1.00 \quad 1.0$$

10-1 Y_{σ} and $\lambda_{\sigma h}$ impact is inverted in comparison to the $(0,0) \to (0,v_{\sigma})$ case

 10^{-4} 10^{-3} 10^{-2}

f [Hz]

10−6 10-

 f_{peak} [Hz]

Spontaneously broken $U(1)_L$

An inclusive scan

$[10^{-3}, 3.5]$ $[50, 1000]$ > 0.85 $[50, 1000]$ $[50, 1000]$ 1 10^{-6}	Y_{σ}	•			m_{h_2}/GeV		Y_{ν}
	$[10^{-3}, 3.5]$	[50, 1000]	> 0.85	[50, 1000]	[50, 1000]	1	10^{-6}

$$\lambda_{\sigma} = \frac{1}{4v_{\sigma}^2} \left(\cos 2\theta (m_{h_2}^2 - m_{h_1}^2) + m_{h_1}^2 + m_{h_2}^2 \right) , \quad \lambda_{\sigma h} = \frac{1}{2v_h v_{\sigma}} \cos 2\theta \tan 2\theta (m_{h_2}^2 - m_{h_1}^2)$$

$$(0, v_{\sigma}) \rightarrow (v_h, v_{\sigma})$$
 case

$$\cos \theta = 0.996$$
 $v_{\sigma} = 858 \text{ GeV}$ $Y_{\sigma} = 2.9$ $M = 141 \text{ GeV}$ $m_{h_2} = 590 \text{ GeV}$

$$\lambda_h = 0.15$$
 $\lambda_{\sigma} = 0.13$ $\lambda_{\sigma h} = 0.24$

- Consistency with Higgs invisible decays bounds
- Possibility to distinguish/falsify the underlying neutrino mass generation mechanism

- Introduction
- Pigh- and low-scale seesaw variants
- Gravitational Waves from FOPT
- Results
- 6 Conclusions

Conclusions

- Visible signals testable at LISA require at least one sizeable coupling.
- ② GW footprints for spontaneous $\mathrm{U}(1)_\mathrm{L}$ breaking require sizeable Y_σ to compensate small quartics
- Invisible Higgs decays for the softly broken $U(1)_L$ case may pose extra constraints (not yet applied)
- A traditional type-I seesaw leaves no GW footprint due to decoupled new physics scale

Multi-messenger era

GW physics may shed light on the mystery of neutrino mass generation and, in general, become a complementary channel for New Physics studies.

Dynamics of phase transitions

ullet High T o classical motion in Euclidean space described by action \hat{S}_3

$$\hat{S}_3 = 4\pi \int_0^\infty \mathrm{d}r \, r^2 \left\{ \frac{1}{2} \left(\frac{\mathrm{d}\hat{\Phi}}{\mathrm{d}r} \right)^2 + V_{\mathrm{eff}}(\hat{\Phi}) \right\} ,$$

Effective potential: loop and thermal corrections

$$\begin{split} V_{\rm eff}^{(1)}(\hat{\varphi}) &= V_{\rm tree} + V_{\rm CW} + \Delta V^{(1)}(T) \\ V_{\rm CW} &= \sum_i (-1)^F n_i \frac{m_i^4}{64\pi^2} \left(\log \left[\frac{m_i^2(\hat{\varphi}_{\alpha})}{\Lambda^2} \right] - c_i \right) \\ \Delta V^{(1)}(T) &= \frac{T^4}{2\pi^2} \left\{ \sum_b n_b J_B \left[\frac{m_b^2(\hat{\varphi}_{\alpha})}{T^2} \right] - \sum_f n_f J_F \left[\frac{m_f^2(\hat{\varphi}_{\alpha})}{T^2} \right] \right\} \,, \end{split}$$

• $\hat{\varphi} \to \text{solution}$ of the e.o.m. found by the path that minimizes the energy.

Nucleation temperature

- Nucleation temperature T_n → the PT does effectively occur → vacuum bubble nucleation processes
- Satisfies $T_n < T_c$, where T_c is the critical temperature \rightarrow degenerate minima
- Corresponds to probability to realize one transition per cosmological horizon volume equal one

$$\frac{\Gamma}{H^4} \sim 1 \qquad \Rightarrow \qquad \frac{\hat{S}_3}{T_n} \sim 140$$

The phase transition rate

$$\Gamma \sim T^4 \left(rac{\hat{S}_3}{2\pi T}
ight)^{3/2} \exp\left(-\hat{S}_3/T
ight) \,.$$

 This formalism is implemented in CosmoTransitions package (Wainwright'12)

The need for a strong first order PT and New Physics

Observed baryon asymmetry (BA) in the Universe

$$\frac{n_B-n_{\overline{B}}}{s}\sim 10^{-11}$$

- Conditions for dynamical production of the baryon asymmetry Sakharov'67
 - (i) B violation
 - (ii) C and CP violation
 - (iii) Departure from thermal equilibrium → strong 1st-order PT

Nucleation of expanding broken-phase vacuum bubbles → sphaleron suppression

$$\frac{\Phi(T_c)}{T_c} \gtrsim 1.1$$
 \rightarrow 1st order PT

Standard Model (SM) does not explain the BA \rightarrow the need to go beyond the SM

EW phase transition in multi-scalar SM extensions

- The more scalar d.o.f.'s, the more complicated vacuum structure → new possibilities for strong 1st-order EWPT at tree-level
- Multi-Higgs SM extensions are very common and originate as e.g. low-energy limits of Grand-Unified theories
- Tree-level (strong) EWPT → free energy release is largely amplified → stronger GW signals
- Tree-level weak (2nd-order) transitions can become 1st-order ones due to quantum corrections
- Certain scenarios exhibit multi-step successive 1st-order PTs
- Multi-step transition → multi-peak structures in the induced GW spectrum → potential access by the next generation of space-based GW interferometers
- GW signature of multiple EW symmetry breaking steps → a gravitational probe for New Physics, yet unreachable at colliders

Backup slides: GW spectrum characteristics

GW signals calculation

(for more details, see Caprini'16; Grojean'07; Leitao'16)

- Using α and β , one computes the bubble-wall velocity (\approx 0.6-0.8) and the efficiency coefficient (accounting for the latent leat saturation for runaway bubbles)
- For each of the three contributions (Ω_{col} , Ω_{sw} , Ω_{MHD} terms)

GWs signal ~ amplitude
$$\times$$
 spectral shape (f/f_{peak})

where the peak frequency (contains redshift information)

$$f_{\mathrm{peak}} \simeq 16.5 Hz \left(\frac{f_n}{H_n}\right) \left(\frac{T_n}{10^8 \mathrm{GeV}}\right) \left(\frac{100}{g_{\star}}\right)^{\frac{1}{6}}$$

with peak frequency at nucleation time $f_n = \frac{0.62\beta}{1.8 - 0.1 v_w + v_w^2}$

• Details of the particle physics model encoded in T_n and α .

Backup slides: The sphaleron solution

Note: from the greek *shpaleros* ($\sigma \varphi \alpha \lambda \epsilon \rho o \sigma$): **ready to fall**

- Non-trivial transitions between physically identical but topologically distinct vacua
 - Identified by the Chern-Simons number $N_{CS} \in \mathbb{Z}$
 - Axial B+L anomaly in a SM-like theory yields $\Delta B=N_f\Delta N_{CS}$
 - B L current is conserved

http://astr.phys.saga-u.ac.jp/ funakubo/yitp/files/funakubo.pdf

- T=0: Instanton solution
 - > Tunnelling prob. $\sim 10^{-170}$ (EW theory)
- $T \neq 0$: Sphaleron solution thermal jump
 - > Transition prob. $\sim T^4$
 - > Static saddle-point solution
 - $N_f = 3 \Rightarrow B \rightarrow 3B$

Backup slides: Sphaleron washout criterion

First order phase transition:

Nucleation of broken phase vacuum bubbles expanding in the surrounding plasma of unbroken symmetry

- > Particles in the plasma experience the passing bubble
- > Reflection of particles → plasma out of equilibrium
- With CP-violation, matter/anti-matter asymmetry accumulates over time inside the bubble (different reflection coefficients)
- > Sphaleron process (active in unbroken phase) provides
 - (i) B-violation (quantified by sphaleron rate)
 - (ii) C-violation (only couples to LH-fermions)

Backup slides: Sphaleron washout criterion

If sphaleron process still active after phase transition the system restores equilibrium, B=0, after a time of the order of the Hubble scale.

Broken Phase:

$$\Gamma_{sph} \simeq T^4 e^{-E_{sph}/T}, \qquad E_{sph} \simeq \frac{4\pi \Phi_c}{g}\Xi, \qquad \Xi \simeq 2.8$$

Γ_{sph} in broken phase needs to be much smaller than Hubble scale

$$\Gamma_{sph} \ll HT^3 \Rightarrow \boxed{\frac{\Phi_c}{T_c} \gtrsim 1.1}$$

- Sphaleron processes suppressed in the broken phase
- Avoid washout of generated baryon asymmetry
- EWBG can be realized (in the SM needs 40 GeV Higgs mass)