Gravitational footprints of neutrino mass and lepton number violation

Andrea Addazi ${ }^{2}$ Antonino Marcianò ${ }^{2}$ António P. Morais ${ }^{1}$ Roman Pasechnik ${ }^{3} \quad$ Rahul Srivastava ${ }^{4}$ José W. F. Valle ${ }^{4}$
${ }^{1}$ Center for Research and Development in Mathematics and Applications (CIDMA) Aveiro University, Aveiro, Portugal
${ }^{2}$ Department of Physics and Center for Field Theory and Particle Physics Fudan University, Shanghai, China
${ }^{3}$ Department of Theoretical Physics, Lund university, Lund, Sweden
${ }^{4}$ Institut de Física Corpuscular, Universitat de València Parc Cientific de Paterna, Valencia, Spain

$$
\begin{gathered}
\text { January 31, } 2020 \\
\text { Experiment vs Theory meeting - LIP-Minho, Braga }
\end{gathered}
$$

Based upon 1909.09740 and 1910.00717 and 2002.xxxx

Outline

(1) Introduction
(2) High- and low-scale seesaw variants
(3) Gravitational Waves from FOPT
(4) Results
(5) Conclusions

Outline

(2) High- and low-scale seesaw variants

3 Gravitational Waves from FOPT
(4) Results

5 Conclusions

Introduction

Stochastic Gravitational Wave (GW) background

- Superposition of unresolved astrophysical sources
- Cosmological events
(i) Inflation
(ii) Cosmic strings
(iii) Strong cosmological phase transitions (PTs) \rightarrow by expanding vacuum bubbles of a broken phase in a universe filled with a symmetric phase

GW background as a gravitational probe for New Physics

- Focus on the EW phase transition (EWPT)

Look for graviational footprints of lepton number symmetry breaking and the mechanism of neutrino mass generation.

Outline

(1) Introduction

(2) High- and low-scale seesaw variants

3 Gravitational Waves from FOPT

4 Results

5 Conclusions

High- and low-scale seesaw variants

Standard type-I

$$
\mathcal{L}_{\text {Yuk }}^{\text {Type-I }}=Y_{v} \bar{L} H v^{c}+M v^{c} v^{c}+h . c .
$$

- $L=(v, l)^{\top} ; v^{c}$ are three SM-singlet RH-neutrinos; M and Y_{v} are 3×3 matrices
- M explicitly breaks lepton number symmetry $\mathrm{U}(1)_{\mathrm{L}} \rightarrow \mathbb{Z}_{2}$ as $L\left(v^{c}\right)=-1$
- Mass for light neutrinos after EWSB $\langle H\rangle=v_{h} / \sqrt{2}$

$$
m_{v}^{\text {Type-I }}=\frac{v_{h}^{2}}{2} Y_{v}^{T} M^{-1} Y_{v} \quad Y_{v} \sim \mathcal{O}(1), M \sim \mathcal{O}\left(10^{14} \mathrm{GeV}\right) \Rightarrow m_{v} \sim \mathcal{O}(0.1 \mathrm{eV})
$$

Low-scale variant: Inverse seesaw

- Add two gauge singlet fermion carrying opposite lepton number charge, $L\left(v^{c}\right)=-1$ and $L(S)=-1$

$$
\mathcal{L}_{\text {Yuk }}^{\text {Inverse }}=Y_{v} \bar{L} H \nu^{c}+M \nu^{c} S+\mu S S+\text { h.c. }
$$

- Smallness of neutrino mass linked to the breaking of $\mathrm{U}(1)_{\mathrm{L}} \rightarrow \mathbb{Z}_{2}$ through the μ-term

$$
m_{v}^{\text {Inverse }}=\frac{v_{h}^{2}}{2} Y_{v}^{T} M^{T^{-1}} \mu M^{-1} Y_{v}
$$

Small neutrino masses protected by $\mathrm{U}(1)_{\mathrm{L}}$ (restored in the limit $\mu \rightarrow 0$)

Inverse seesaw with majoron

- Add a complex singlet scalar σ, the majoron, with $L(\sigma)=-2$

$$
\mu S S \rightarrow Y_{\sigma} \sigma S S
$$

- $\langle\sigma\rangle=v_{\sigma} / \sqrt{2}$ spontaneously breaks $\mathrm{U}(\mathbf{1})_{\mathrm{L}} \rightarrow \mathbb{Z}_{2}$
$\mu=Y_{\sigma} v_{\sigma} / \sqrt{2} \rightarrow$ generates effective μ term

$$
m_{v}^{\text {Inverse }} \sim Y_{v}^{2} Y_{\sigma} \frac{v_{h}^{2} v_{\sigma}}{M^{2}}
$$

Two possibilities for low-scale seesaw, $M \sim \mathcal{O}(0.1-1 \mathrm{TeV})$

- $Y_{v} \sim 0.01, Y_{\sigma} \sim \mathcal{O}(0.001-1)$
- $v_{\sigma} \sim \mathcal{O}(\mathrm{keV})$ $\Rightarrow m_{v} \sim \mathcal{O}(0.0001-0.1 \mathrm{eV})$
(2) $v_{\sigma} \sim \mathcal{O}(0.1-1 \mathrm{TeV})$
(3) $Y_{v} \sim 10^{-6}, Y_{\sigma} \sim \mathcal{O}(0.001-1)$

$$
\Rightarrow m_{v} \sim \mathcal{O}(0.0001-0.1 \mathrm{eV})
$$

Extended scalar sector:

$$
\begin{gathered}
V_{0}=\mu_{h}^{2} H^{\dagger} H+\lambda_{h}\left(H^{\dagger} H\right)^{2}+\mu_{\sigma}^{2} \sigma^{*} \sigma+\lambda_{\sigma}\left(\sigma^{*} \sigma\right)^{2}+\lambda_{\sigma h} H^{\dagger} H \sigma^{*} \sigma+\left(\frac{1}{2} \mu_{b}^{2} \sigma^{2}+\text { c.c. }\right) \\
H=\frac{1}{\sqrt{2}}\binom{G+i G^{\prime}}{v_{h}+h+i \eta}, \quad \sigma=\frac{1}{\sqrt{2}}\left(v_{\sigma}+\sigma_{R}+i \sigma_{I}\right),
\end{gathered}
$$

1) Softly broken $\mathrm{U}(1)_{\mathrm{L}}$ case: $v_{h}=246 \mathrm{GeV}$ and $v_{\sigma}=0$

$$
m_{h}^{2}=2 \lambda_{h} v_{h}^{2}, \quad m_{\sigma_{R}}^{2}=\mu_{\sigma}^{2}+\mu_{b}^{2}+\frac{\lambda_{\sigma h} v_{h}^{2}}{2}, \quad m_{\sigma_{I}}^{2}=\mu_{\sigma}^{2}-\mu_{b}^{2}+\frac{\lambda_{\sigma h} v_{h}^{2}}{2}
$$

- $\mathrm{U}(1)_{\mathrm{L}}$ softly broken by μ_{b} term
- If $\mu_{b}^{2}>0$ the majoron mass can be tuned to provide testable dark matter candidate (valle etal PRD (1993), PRLL(2007); Bazzochi eta J JCAP (2008)]
- For simplicity we use this scenario as a good approximation to the $v_{\sigma} \sim \mathcal{O}(\mathrm{keV})$ case for small $m_{\sigma_{I}} \ll m_{\sigma_{R}}$.

2) Spontaneously broken $\mathrm{U}(1)_{\mathrm{L}}$ case: $v_{h}=246 \mathrm{GeV}$ and $v_{\sigma} \neq 0$

- If $\mu_{b}^{2}<0$ majoron becomes a pseudo-Goldstone boson Minimization and BFB conditions:

$$
\mu_{h}^{2}=-\lambda_{h} v_{h}^{2}-\frac{1}{2} \lambda_{\sigma h} v_{\sigma}^{2}, \quad \mu_{\sigma}^{2}=-\mu_{b}^{2}-\lambda_{\sigma} v_{\sigma}^{2}-\frac{1}{2} \lambda_{\sigma h} v_{h}^{2}
$$

$$
\lambda_{h}>0, \quad \lambda_{\sigma}>0, \quad \lambda_{\sigma h}>-2 \sqrt{\lambda_{h} \lambda_{\sigma}}
$$

[Bonilla, Valle, Romão PRD (2015)]

Mass spectrum and mixing:

$$
\begin{gathered}
M_{\mathrm{CP}-\mathrm{even}}^{2}=\left(\begin{array}{cc}
2 \lambda_{h} v_{h}^{2} & \lambda_{\sigma h} v_{h} v_{\sigma} \\
\lambda_{\sigma h} v_{h} v_{\sigma} & 2 \lambda_{\sigma} v_{\sigma}^{2}
\end{array}\right), \\
\left(\begin{array}{cc}
m_{h_{1}}^{2} & 0 \\
0 & m_{h_{2}}^{2}
\end{array}\right)=\mathcal{R} M_{\mathrm{CP}-\mathrm{even}}^{2} \mathcal{R}^{-1}, \quad \mathcal{R}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right), \\
m_{\sigma_{l}}^{2}=-2 \mu_{b}^{2}>0, \quad m_{h_{1}, h_{2}}^{2}=\lambda_{h} v_{h}^{2}+\lambda_{\sigma} v_{\sigma}^{2} \mp \frac{\lambda_{\sigma} v_{\sigma}^{2}-\lambda_{h} v_{h}^{2}}{\cos 2 \theta} .
\end{gathered}
$$

σ_{I} can become keV DM candidate without any tuning as in the softly-broken $\mathrm{U}(1)_{\mathrm{L}}$ scenario

Outline

(1) Introduction

(2) High- and low-scale seesaw variants
(3) Gravitational Waves from FOPT
(4) Results
(5) Conclusions

Gravitational Waves from FOPT

- Vacuum bubbles nucleated from-first order phase transitions (FOPT)
- The main source of GW production is due to sound waves

$$
h^{2} \Omega_{\mathrm{GW}}\left(f ; \alpha, \beta / H, f_{\text {peak }}\right) \quad f_{\text {peak }}\left(\alpha, \beta / H, T_{n}\right)
$$

- Three relevant parameters to determine the GW power spectrum
$\alpha \rightarrow$ transition strenght, $\beta / H \rightarrow$ inverse time scale, $T_{n} \rightarrow$ nucleation temp.

$$
\alpha \propto \frac{1}{T_{n}^{4}}\left[V_{i}-V_{f}-\frac{T}{4}\left(\frac{\partial V_{i}}{\partial T}-\frac{\partial V_{f}}{\partial T}\right)\right] \quad \frac{\beta}{H}=\left.T_{n} \frac{\partial}{\partial T}\left(\frac{\hat{S}_{3}}{T}\right)\right|_{T_{n}}
$$

Particle Physics details encoded in α and β / H

- Bubble nucleation takes place when the probability to realize 1 transition per cosmological horizon is equal to one $\Rightarrow \hat{S}_{3} / T_{n}=140$
- Classical motion in Euclidean space described by the Euclidean action \hat{S}_{3}

$$
\hat{S}_{3}=4 \pi \int_{0}^{\infty} \mathrm{d} r r^{2}\left\{\frac{1}{2}\left(\frac{\mathrm{~d} \hat{\phi}}{\mathrm{~d} r}\right)^{2}+V_{\mathrm{eff}}(\hat{\phi}, T)\right\}
$$

- $\hat{\phi} \rightarrow$ solution of the e.o.m. found by the path that minimizes the energy.
- Effective potential: loop and thermal corrections

$$
V_{\mathrm{eff}}^{(1)}(\hat{\phi}, T)=V_{0}+V_{\mathrm{CW}}+\Delta V^{(1)}(T)
$$

- Formalism implemented in CosmoTransitions [Wainwright]

Outline

(1) Introduction

(2) High- and low-scale seesaw variants

3 Gravitational Waves from FOPT
(4) Results

5 Conclusions

Softly broken U(1)L

An inclusive scan

- The stronger the transition the higher the peak amplitude
- The longer the transition time the lower the peak frequency
- Colour gradation and distribution of points is not always smooth: depend on different transition patterns

Most relevant patterns, at $T \neq 0$, are $(0,0) \rightarrow\left(0, v_{\sigma}\right)$ and $\left(0, v_{\sigma}\right) \rightarrow\left(v_{h}, 0\right)$

Study the effect of $\lambda_{\sigma}, \lambda_{\sigma h}$ and Y_{σ} and search for points at the reach of LISA

$(0,0) \rightarrow\left(0, v_{\sigma}\right)$ case

$$
\lambda_{\sigma}=0.0017 \quad \lambda_{\sigma h}=0.82 \quad Y_{\sigma}=\left[10^{-3}, 3.5\right] \quad M=430 \mathrm{GeV} \quad m_{\sigma_{R}}=169 \mathrm{GeV}
$$

Increasing Y_{σ} enhances the transition strength thus GW peak amplitude

Fixing $Y_{\sigma}=1.41$ and varying λ_{σ} and $\lambda_{\sigma h}$

- Several points at the reach of LISA for smaller quartics
- $h^{2} \Omega_{\mathrm{GW}}^{\text {peak }}$ and $f_{\text {peak }}$ quite sensitive to theory parameters
- Can the GW-portal become a possibility for precision measurements?
$\left(0, v_{\sigma}\right) \rightarrow\left(v_{h}, 0\right)$ case

$$
\lambda_{\sigma}=0.54 \quad \lambda_{\sigma h}=1.06 \quad Y_{\sigma}=0.02 \quad M=225 \mathrm{GeV} \quad m_{\sigma_{R}}=147 \mathrm{GeV}
$$

Y_{σ} and $\lambda_{\sigma h}$ impact is inverted in comparison to the $(0,0) \rightarrow\left(0, v_{\sigma}\right)$ case

Spontaneously broken U(1)L

An inclusive scan

Y_{σ}	M / GeV	$\|\cos \theta\|$	$v_{\sigma} / \mathrm{GeV}$	$m_{h_{2}} / \mathrm{GeV}$	$m_{\sigma_{l}} / \mathrm{keV}$	Y_{v}
$\left[10^{-3}, 3.5\right]$	$[50,1000]$	>0.85	$[50,1000]$	$[50,1000]$	1	10^{-6}

$\lambda_{\sigma}=\frac{1}{4 v_{\sigma}^{2}}\left(\cos 2 \theta\left(m_{h_{2}}^{2}-m_{h_{1}}^{2}\right)+m_{h_{1}}^{2}+m_{h_{2}}^{2}\right), \quad \lambda_{\sigma h}=\frac{1}{2 v_{h} v_{\sigma}} \cos 2 \theta \tan 2 \theta\left(m_{h_{2}}^{2}-m_{h_{1}}^{2}\right)$

$\left(0, v_{\sigma}\right) \rightarrow\left(v_{h}, v_{\sigma}\right)$ case

$$
\cos \theta=0.996 \quad v_{\sigma}=858 \mathrm{GeV} \quad Y_{\sigma}=2.9 \quad M=141 \mathrm{GeV} \quad m_{h_{2}}=590 \mathrm{GeV}
$$

$$
\lambda_{h}=0.15 \quad \lambda_{\sigma}=0.13 \quad \lambda_{\sigma h}=0.24
$$

- Consistency with Higgs invisible decays bounds
- Possibility to distinguish/falsify the underlying neutrino mass generation mechanism

Outline

(2) High- and low-scale seesaw variants
(3) Gravitational Waves from FOPT
(4) Results
(5) Conclusions

Conclusions

- Visible signals testable at LISA require at least one sizeable coupling.
(2) GW footprints for spontaneous $\mathrm{U}(1)_{\mathrm{L}}$ breaking require sizeable Y_{σ} to compensate small quartics
© Invisible Higgs decays for the softly broken $\mathrm{U}(1)_{\mathrm{L}}$ case may pose extra constraints (not yet applied)
- A traditional type-I seesaw leaves no GW footprint due to decoupled new physics scale

Multi-messenger era

GW physics may shed light on the mystery of neutrino mass generation and, in general, become a complementary channel for New Physics studies.

Outline

APM (Aveiro U.)

Dynamics of phase transitions

- High $T \rightarrow$ classical motion in Euclidean space described by action \hat{S}_{3}

$$
\hat{S}_{3}=4 \pi \int_{0}^{\infty} \mathrm{d} r r^{2}\left\{\frac{1}{2}\left(\frac{\mathrm{~d} \hat{\phi}}{\mathrm{~d} r}\right)^{2}+V_{\mathrm{eff}}(\hat{\phi})\right\},
$$

- Effective potential: loop and thermal corrections

$$
\begin{aligned}
V_{\mathrm{eff}}^{(1)}(\hat{\phi}) & =V_{\mathrm{tree}}+V_{\mathrm{CW}}+\Delta V^{(1)}(T) \\
V_{\mathrm{CW}} & =\sum_{i}(-1)^{F} n_{i} \frac{m_{i}^{4}}{64 \pi^{2}}\left(\log \left[\frac{m_{i}^{2}\left(\hat{\phi}_{\alpha}\right)}{\Lambda^{2}}\right]-c_{i}\right) \\
\Delta V^{(1)}(T) & =\frac{T^{4}}{2 \pi^{2}}\left\{\sum_{b} n_{b} J_{B}\left[\frac{m_{b}^{2}\left(\hat{\phi}_{\alpha}\right)}{T^{2}}\right]-\sum_{f} n_{f} J_{F}\left[\frac{m_{f}^{2}\left(\hat{\phi}_{\alpha}\right)}{T^{2}}\right]\right\},
\end{aligned}
$$

- $\hat{\phi} \rightarrow$ solution of the e.o.m. found by the path that minimizes the energy.

Nucleation temperature

- Nucleation temperature $T_{n} \rightarrow$ the PT does effectively occur \rightarrow vacuum bubble nucleation processes
- Satisfies $T_{n}<T_{c}$, where T_{c} is the critical temperature \rightarrow degenerate minima
- Corresponds to probability to realize one transition per cosmological horizon volume equal one

$$
\frac{\Gamma}{H^{4}} \sim 1 \quad \Rightarrow \quad \frac{\hat{S}_{3}}{T_{n}} \sim 140
$$

- The phase transition rate

$$
\Gamma \sim T^{4}\left(\frac{\hat{S}_{3}}{2 \pi T}\right)^{3 / 2} \exp \left(-\hat{S}_{3} / T\right)
$$

- This formalism is implemented in CosmoTransitions package (Wainwright'12)

The need for a strong first order PT and New Physics

- Observed baryon asymmetry (BA) in the Universe

$$
\frac{n_{B}-n_{\bar{B}}}{s} \sim 10^{-11}
$$

- Conditions for dynamical production of the baryon asymmetry Sakharov'67
(i) B violation
(ii) C and $C P$ violation
(iii) Departure from thermal equilibrium \rightarrow strong $\mathbf{1}^{\text {st }}$-order PT

Nucleation of expanding broken-phase vacuum bubbles \rightarrow sphaleron suppression

$$
\frac{\phi\left(T_{c}\right)}{T_{c}} \gtrsim 1.1 \quad \rightarrow \quad 1^{\text {st }} \text { order PT }
$$

Standard Model (SM) does not explain the BA \rightarrow the need to go beyond the SM

EW phase transition in multi-scalar SM extensions

- The more scalar d.o.f.'s, the more complicated vacuum structure \rightarrow new possibilities for strong $1^{\text {st }}$-order EWPT at tree-level
- Multi-Higgs SM extensions are very common and originate as e.g. low-energy limits of Grand-Unified theories
- Tree-level (strong) EWPT \rightarrow free energy release is largely amplified \rightarrow stronger GW signals
- Tree-level weak (2 $2^{\text {nd }}$-order) transitions can become $1^{\text {st }}$-order ones due to quantum corrections
- Certain scenarios exhibit multi-step successive $1^{\text {st }}$-order PTs
- Multi-step transition \rightarrow multi-peak structures in the induced GW spectrum \rightarrow potential access by the next generation of space-based GW interferometers
- GW signature of multiple EW symmetry breaking steps \rightarrow a gravitational probe for New Physics, yet unreachable at colliders

Backup slides: GW spectrum characteristics

GW signals calculation
(for more details, see Caprini'16; Grojean'07; Leitao'16)

- Using α and β, one computes the bubble-wall velocity ($\approx 0.6-0.8$) and the efficiency coefficient (accounting for the latent leat saturation for runaway bubbles)
- For each of the three contributions ($\Omega_{\mathrm{col}}, \Omega_{\mathrm{sw}}, \Omega_{\mathrm{MHD}}$ terms)

$$
G W s \text { signal } \sim \text { amplitude } \times \text { spectral shape }\left(f / f_{\text {peak }}\right)
$$

where the peak frequency (contains redshift information)

$$
f_{\text {peak }} \simeq 16.5 H z\left(\frac{f_{n}}{H_{n}}\right)\left(\frac{T_{n}}{10^{8} \mathrm{GeV}}\right)\left(\frac{100}{g_{\star}}\right)^{\frac{1}{6}}
$$

with peak frequency at nucleation time $f_{n}=\frac{0.62 \beta}{1.8-0.1 v_{w}+v_{w}^{2}}$

- Details of the particle physics model encoded in T_{n} and α.

Backup slides: The sphaleron solution

Note: from the greek shpaleros ($\sigma \varphi \alpha \lambda \varepsilon \rho o \sigma$): ready to fall

- Non-trivial transitions between physically identical but topologically distinct vacua
- Identified by the Chern-Simons number $N_{C S} \in \mathbb{Z}$
- Axial $B+L$ anomaly in a SM-like theory yields $\Delta B=N_{f} \Delta N_{C S}$
- $B-L$ current is conserved

http://astr.phys.saga-u.ac.jp/ funakubo/yitp/files/funakubo.pdf
- $T=0$: Instanton solution
$>$ Tunnelling prob. $\sim 10^{-170}$ (EW theory)
- $T \neq 0$: Sphaleron solution - thermal jump
$>$ Transition prob. $\sim T^{4}$
$>$ Static saddle-point solution
$>N_{f}=3 \Rightarrow B \rightarrow 3 B$

Backup slides: Sphaleron washout criterion

- First order phase transition:

Nucleation of broken phase vacuum bubbles expanding in the surrounding plasma of unbroken symmetry
$>$ Particles in the plasma experience the passing bubble
$>$ Reflection of particles \rightarrow plasma out of equilibrium
$>$ With $C P$-violation, matter/anti-matter asymmetry accumulates over time inside the bubble (different reflection coefficients)
> Sphaleron process (active in unbroken phase) provides
(i) B-violation (quantified by sphaleron rate)
(ii) C-violation (only couples to LH-fermions)

[hep-ph] 1302.6713

Backup slides: Sphaleron washout criterion

If sphaleron process still active after phase transition the system restores equilibrium, $B=0$, after a time of the order of the Hubble scale.

Broken Phase:

$$
\Gamma_{s p h} \simeq T^{4} e^{-E_{s p h} / T}, \quad E_{s p h} \simeq \frac{4 \pi \phi_{c}}{g} \Xi, \quad \Xi \simeq 2.8
$$

- $\Gamma_{\text {sph }}$ in broken phase needs to be much smaller than Hubble scale

$$
\Gamma_{s p h} \ll H T^{3} \Rightarrow \frac{\phi_{c}}{T_{c}} \gtrsim 1.1
$$

- Sphaleron processes suppressed in the broken phase
- Avoid washout of generated baryon asymmetry
- EWBG can be realized (in the SM needs 40 GeV Higgs mass)

