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OverviewOverview
The Higgs boson couplings to bo�om and top quarks have been measured and agree well with the Standard Model

predic�ons.

On the other hand, decays to lighter quarks and gluons remain uncovered. Observing these decays is essen�al to

complete the picture of the Higgs boson interac�ons.



The gluons pair decay is completely buried beneath a huge background of
jet pairs from leading order QCD interac�ons turning its observa�on
prac�cally impossible in the gluon fusion channel.

This mo�vates the search for untagged jets in Higgs decays in cleaner
produc�on channels:
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observa�on of the Higgs decay to light jets were found to be rather
difficult:

 sensi�vity a�er an integrated luminosityof 3000  and an upper bound of

, at 95% CL

Linda M. Carpenter, Tao Han, et al., Phys.Rev. D95 (2017) no.5, 053003 (2017-03-09)

1σ fb1

BR(H → jj) < 4 ×B (H → gg)RSM

The authors suggested a mul�variate analysis might improve the sensi�vity of the LHC searches compared to
the standard cut-and-count analysis.



Following that sugges�on, we use machine learning (ML) in combina�on with
Computer Vision (CV) techniques in order to improve the prospects to observe
light quark and gluon jet pairs from Higgs boson decays.

We study the following processes:

q , gg→ Z(→ ) H(→ gg), ℓ = e,μq̄ ℓ+ℓ−

q , gg→ Z(→ ) H(→ b )q̄ ℓ+ℓ− b̄
q , gg→ Z(→ ) H(→ c )q̄ ℓ+ℓ− c̄
pp→ Z(→ ) j(jj)ℓ+ℓ−

pp→ Z(→ )W(→ jj)ℓ+ℓ−

pp→ Z(→ ) Z(→ jj)ℓ+ℓ−

pp→ t(→ ) (→ b)W − b̄ t̄ W +



we also imposed the following cuts to further eliminate backgrounds:

at least two same-flavour opposite-charge leptons with:

at least one central fat-jet with:

all the events must have

| | < 2.5, > 30 GeVηℓ pℓT
> 80 GeV, = ( + ) > 100 GeVMℓℓ pℓℓT pℓ1T pℓ2T

| | < 2.0, > 150 GeVηj p
j
T

| − | < 20 GeVMj mH

< 40 GeV//ET



CONSTRUCTION OF ABSTRACT IMAGESCONSTRUCTION OF ABSTRACT IMAGES
Delphes uses a par�cle-flow algorithm which produces two collec�ons of 4-vectors:

par�cle-flow tracks
par�cle-flow towers

EFlowTrack (b or c tagged quarks, charged pions, leptons, etc) Red circles.
EFlowPhoton (photons) Green squares.
EFlowNeutralHadrons (neutrons, neutral pions,...) Blue hexagons.
centered at the  coordinates of the object and their radius are propor�onal to the logarithm of
their transverse momentum.
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The abstract image data set consists of:

Zj(jj): 4779 images with 224 x 224, 8-bit/color RGBA.
WZ  jj: 2760 images with 224 x 224, 8-bit/color RGBA.
ZZ  jj: 3164 images with 224 x 224, 8-bit/color RGBA.
ZH : 29663 images with 224 x 224, 8-bit/color RGBA.
ZH : 37887 images with 224 x 224, 8-bit/color RGBA.
ZH : 35280 images with 224 x 224, 8-bit/color RGBA.

: 204 images with 224 x 224, 8-bit/color RGBA.

→ ℓ+ℓ−

→ ℓ+ℓ−

→ bℓ+ℓ− b̄
→ cℓ+ℓ− c̄
→ ggℓ+ℓ−

t → bt̄ ℓ+ℓ− νℓ ν̄ ℓ b̄



CNN ARCHITECTURE AND TRAININGCNN ARCHITECTURE AND TRAINING
METHODOLOGYMETHODOLOGY
We want to classify whether a given abstract image belongs to one of the
7 classes:

the signal class ZH(jj)
back-ground classes ZZ, WZ, Z+j(jj), ZH ,ZH , .(b )b̄ (c )c̄ tt̄

We use a ResNet-50 as our base architecture, with some modifica�ons:

an adap�ve concatenate pooling layer (Adap�veConcatPool2d)
a fla�en layer,
a block with batch normaliza�on, dropout, linear, and ReLU layers,
a dense linear layer with 7 units as outputs, each unit
corresponding to a class and a so�max ac�va�on func�on.



We trained our model in a 3-stage scheme:

1. end to the end (no transfer learning) for 50 epochs.
2. freeze the weights and biases up to the last 3 layers, and train for

25 epochs.
3. freeze all layers up to the last layer (the classifica�on layer or

header) and trained for 15 epochs.



PERFORMANCE OF THE CLASSIFIERSPERFORMANCE OF THE CLASSIFIERS
We can evaluate our CNN by looking into the ROC curves:



Or we can evaluate our quan�ta�vely by using the Asimov Significance
defined as:
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Classi�cation with ResNet-50 and BDTsClassi�cation with ResNet-50 and BDTs
The representa�on of the data used to train the decision trees algorithm
comprises the following variables:

, , , 

, , , 

the score provided by the CNN classifica�on for each one of the 7 classes.
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We make use of Evolu�onary Algorithm to search the best hyper-parameters which can achiev the highest significance
for our signal. In our analysis we found that:

mul�-class AdaBoost classifier.
700 base es�mators.
a maximum tree depth of 5.
a learning rate of 1.0.



Evalua�ng the BDT performance by looking into the ROC curves:



where  is the mean signal significance obtained a�er the BDT
classifica�on computed with the simple significance metrics 

where  and  assuming  0(5\%)[10\%]
uncertain�es in the background normaliza�on.
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Signal signi�cance and constraints on theSignal signi�cance and constraints on the
light jet Higgs branching ratio:light jet Higgs branching ratio:
We have to outline two major characteris�cs of our analysis:

1. we consider the two-lepton category only.
2. we include the signal contaminants  and  in the

background category from the beginning.
ZH(b )b̄ ZH(c )c̄

In previous work (Phys.Rev. D95 (2017) no.5), was considered:

1. one+two-lepton categories and  is also take into account in
the analysis.

2. The  and  categories are considered only in the
sta�s�cal analysis to constrain the light jets branching ra�o.

WH

ZH(b )b̄ ZH(c )c̄



The efficient clearing up from  and  background events
allows to place a direct upper bound on the Higgs to light jets branching
ra�o at the 95\% confidence level (CL)

ZH(b )b̄ ZH(c )c̄

= ≤ 1 + = 2.0 (2.07) [2.26],μj
BR(H → jj)

(H → jj)BRSM

χ2
95%

− −−−√
Sj

BR(H → jj) ≤ 2(2.07)[2.26] × (H → gg) ,BRSM





We obtained the following 95\% CL upper bound limit for the Higgs
branching ra�o into untagged jets with 0\% and 1\% systema�c errors, in
parenthesis, for 3000 �−1

BR(H → ) ⩽ 3.26(3.28) ×B (H → gg).j′j′ RSM



ConclusionsConclusions
We employed several state-of-art ML techniques to improve the
performance of the CNN algorithm in obtaining the highest signal
significance possible.

In spite of its power, the CNNs were not able to separate signal
from backgrounds at the level we need, however, the output scores
assigned by the CNNs to each event class is by themselves a very
dis�nc�ve feature that can be combined with kinema�c
informa�on of the par�cles of the event to train another ML
algorithm

Our methodology was able to reach  in the sta�s�cs
dominance scenario a�er 3000 � , despite even a 10%
systema�cs on the backgrounds normaliza�on

∼ 2σ
−1



the ML algorithm was able to eliminate the  and
 contaminants allowing us to derive the following 95%

CL bound directly on the light jets branching ra�o:

assuming a 0(10)% systema�c uncertainty on the background
normaliza�on.

Combining the significance reached in this analysis with the ones in
the search for  and  taking into account mixings
of tagged and mistagged jet classes,

which improves the results obtained exclusively with a dedicated
cut-and-count analysis.

Z(H → b )b̄
Z(H → c )c̄

BR(H → jj) ≤ 2(2.26) × (H → gg) ,BRSM

H → bb̄ H → cc̄

BR(H → ) ≤ 3.26(3.28) × (H → gg) ,j′j′ BRSM


