How well can the muon $(g-2)_{\mu}$ anomaly be explained with a heavy $U(1)_{B-L}$ Z' gauge boson?

António P. Morais 1 Roman Pasechnik 2 João Pedro Rodrigues 1

¹Center for Research and Development in Mathematics and Applications (CIDMA) Aveiro University, Aveiro, Portugal

²Department of Theoretical Physics, Lund University, Lund, Sweden

January 31th, 2020

Experiment vs Theory meeting — LIP Minho, Braga

(arxiv.org/pdf/1912.11882.pdf)

- Introduction
- 2 The minimal $U(1)_{B-L}$ extension of the SM

- Results
- Conclusions and outlook

- Introduction
- 2 The minimal $U(1)_{B-L}$ extension of the SM
- Results
- Conclusions and outlook

Introduction

Motivations for $\mathrm{B}-\mathrm{L}$ (Baryon number minus Lepton number) symmetry:

- The SM contains an accidental symmetry that conserves B − L,
- \bullet B L symmetry relevant for baryogenesis through leptogenesis,
 - > sphaleron process violates B but preserves B-L
- \bullet Grand Unified Theories, e.g. $SO(10),\,E_6,\,E_8,\dots$ contain gauged $\mathrm{U}(1)_{B-L},$
- \bullet The scale of $\mathrm{U}(1)_{B-L}$ breaking sets the mass scale of the right-handed Majorana neutrinos.

BSM physics

- Three generations of right-handed neutrinos → no gauge anomalies
 - > Lightest is sterile and can be keV to TeV dark matter candidate. Kaneta, Kang, Lee: JHEP 1702 (2017) 031
 - > Or stabilized via a \mathbb{Z}_2^{DM}
 - Annihilation via Z' portal Okada: Adv. High Energy Phys. 2018 (2018) 5340935
 - Annihilation via Higgs portal Okada, Seto: Phys.Rev. D82 (2010) 023507
- Model contains a complex-singlet scalar χ whose VEV breaks $U(1)_{B-L}$
 - Scalar sector studies: Basso, Moretti, Pruna: Eur.Phys.J. C71 (2011) 1724, Phys.Rev. D82 (2010) 055018
 - > Enhanced vacuum stability compared to the SM
- Model contains an extra Z' gauge boson Basso, Belyaev, Moretti, Pruna: JHEP 0910 (2009) 006; Basso, Belyaev, Moretti, Shepherd-Themistocleous: Phys.Rev. D80 (2009) 055030

BSM vector bosons and scalars contribute to $(g-2)_{\mu}$ anomaly

Not studied in the B-L SM (recently discussed in the supersymmetric version B-L SSM Yang, Feng et al. Phys.Rev. D99 (2019) no.1, 015002)

Direct Z' searches exclude masses below $m_{Z'} \approx 4 \text{ TeV}$ ATLAS-CONF-2017-027

 \bullet Can the minimal B-L SM still address the muon $(g-2)_{\mu}$ anomaly and how well?

- Introduction
- 2 The minimal $U(1)_{B-L}$ extension of the SM

- Results
- Conclusions and outlook

The minimal $U(1)_{B-L}$ extension of the SM

	$SU(3)_{C}$	$SU(2)_L$	$U(1)_{Y}$	$U(1)_{B-L}$
$q_{ m L}$	3	2	1/6	1/3
$u_{\rm R}$	3	1	2/3	1/3
d_{R}	3	1	-1/3	1/3
$\ell_{ m L}$	1	2	-1/2	-1
e_{R}	1	1	-1	-1
ν_{R}	1	1	0	-1
H	1	2	$-\frac{1}{2}$	
χ	1	1	0	2

Scalar sector

$$V(H,\chi) = m^2 H^{\dagger} H + \mu^2 \chi^* \chi + \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (\chi^* \chi)^2 + \lambda_3 \chi^* \chi H^{\dagger} H$$

• Boundedness from below: $4\lambda_1\lambda_2 - \lambda_3^2 > 0$ and λ_1 , $\lambda_2 > 0$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} -i(\omega_1 - i\omega_2) \\ v + (h + iz) \end{pmatrix} \qquad \chi = \frac{1}{\sqrt{2}} \left[x + (h' + iz') \right]$$

• $\omega^{\pm}=\omega_1\mp i\omega_2$, z and z' are Goldstone bosons eaten by W^{\pm} , Z and Z'

$$\langle H \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \qquad \langle \chi \rangle = \frac{x}{\sqrt{2}} \qquad \Rightarrow \qquad \begin{cases} v^2 = \frac{-\lambda_2 m^2 + \frac{\lambda_3}{2} \,\mu^2}{\lambda_1 \lambda_2 - \frac{1}{4} \lambda_3^2} > 0 \\ x^2 = \frac{-\lambda_1 \mu^2 + \frac{\lambda_3}{2} \,m^2}{\lambda_1 \lambda_2 - \frac{1}{4} \lambda_3^2} > 0 \end{cases}$$

$$\begin{cases} \lambda_2 m^2 < \frac{\lambda_3}{2} \mu^2 \\ \lambda_1 \mu^2 < \frac{\lambda_3}{2} m^2 \\ 4\lambda_1 \lambda_2 - \lambda_3^2 > 0 \\ \lambda_1, \lambda_2 > 0 \end{cases}$$

X: There is no solution √: There is solution

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha_h & -\sin \alpha_h \\ \sin \alpha_h & \cos \alpha_h \end{pmatrix} \begin{pmatrix} h \\ h' \end{pmatrix}$$

Heavy Z' implies that $x \gg v$ for most of the parameters points:

$$\sin \alpha_h pprox rac{1}{2} rac{\lambda_3}{\lambda_2} rac{v}{x} \qquad m_{h_1}^2 pprox 2\lambda_1 v^2 \qquad m_{h_2}^2 pprox 2\lambda_2 x^2$$

$$m_{h_2}^2 \approx 2\lambda_2 x^2$$

Gauge Kinetic Mixing

$$\mathcal{L}_{\text{bosons}} = |D_{\mu}H|^{2} + |D_{\mu}\chi|^{2} - V(H,\chi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} - \frac{1}{2}\kappa F_{\mu\nu}F'^{\mu\nu}$$

- κ is a $U(1)_Y \times U(1)_{B-L}$ gauge kinetic-mixing parameter
- Field strength tensors $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$ and $F'_{\mu\nu} = \partial_{\mu}A'_{\nu} \partial_{\nu}A'_{\mu}$
- Redefine $\kappa = \sin \alpha$ and gauge fields as (convenient basis choice)

$$\begin{pmatrix} A_{\mu} \\ A'_{\mu} \end{pmatrix} = \begin{pmatrix} 1 & -\tan\alpha \\ 0 & \sec\alpha \end{pmatrix} \begin{pmatrix} B_{\mu} \\ B'_{\mu} \end{pmatrix} \,,$$

Kinetic terms acquire canonical form

$$\mathcal{L}_{\rm kinetic} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} B'_{\mu\nu} B'^{\mu\nu}$$

Redefined covariant derivative absorbs the kinetic mixing information:

$$D_{\mu} = \partial_{\mu} + i (g_Y Y + g_{BY} Y_{B-L}) B_{\mu} + i (g_{BL} Y_{B-L} + g_{YB} Y) B'_{\mu}$$

- g₁ and g'₁ are U(1)_Y and U(1)_{B-L} gauge couplings
- g_{YR} and g_{RY} result from the kinetic mixing
- With our basis choice

$$\begin{cases} g_Y = g_1 \\ g_{BL} = g_1' \sec \alpha \\ g_{YB} = -g_1 \tan \alpha \\ g_{BY} = 0 \end{cases}$$

No mixing limit: $\sec \alpha = 1 \Rightarrow g_{BL} = g'_1$

Gauge kinetic-mixing induces mixing between Z', Z and γ

$$\begin{pmatrix} \gamma_{\mu} \\ Z_{\mu} \\ Z_{\mu}' \end{pmatrix} = \begin{pmatrix} \cos\theta_{W} & \sin\theta_{W} & 0 \\ -\sin\theta_{W}\cos\theta_{W}' & \cos\theta_{W}\cos\theta_{W}' & \sin\theta_{W}' \\ \sin\theta_{W}\sin\theta_{W}' & -\cos\theta_{W}'\sin\theta_{W}' & \cos\theta_{W}' \end{pmatrix} \begin{pmatrix} B_{\mu} \\ A_{\mu}^{3} \\ B_{\mu}' \end{pmatrix}$$
 Again in the limit $x \gg v$
$$\sin\theta_{W}' \approx \frac{1}{8} \frac{g_{_{YB}}g_{_{B-L}}}{\left(\frac{v}{r}\right)^{2} \sqrt{g^{2} + g_{Y}^{2}}}$$

- g is SU(2)_L gauge coupling
- $\sin \theta_W' = 0$ for no kinetic mixing, $g_{YB} = 0$, and $Z'_{\mu} = B'_{\mu}$
 - > For $g_{_{YB}}=0$ we have $m_Z=\frac{1}{2}v\sqrt{g^2+g_Y^2}$ and $m_{Z'}pprox 2g_{_{\rm B-L}}x$
 - > For $x \gg v$ we also have $m_{Z'} \approx 2g_{\rm B-L} x$

Yukawa sector

$$\mathcal{L}_{\text{Yukawa}} = -y_u^{ij} \overline{q_{\text{Li}}} u_{\text{Rj}} \widetilde{H} - y_d^{ij} \overline{q_{\text{Li}}} d_{\text{Rj}} H - y_e^{ij} \overline{\ell_{\text{Li}}} e_{\text{Rj}} H - y_v^{ij} \overline{\ell_{\text{Li}}} v_{\text{Rj}} \widetilde{H} - \frac{1}{2} y_M^{ij} \overline{v_{\text{Ri}}^c} v_{\text{Rj}} \chi + \text{c.c.}$$

- $\widetilde{H} = i\sigma^2 H^*$
- Dirac and Majorana masses matrices: $m_D = \frac{y_v}{\sqrt{2}}v$ and $M = \frac{y_M}{\sqrt{2}}x$
- ullet Neutrino masses via see-saw mechanism: $egin{pmatrix} 0 & m_D \ m_D & M \end{pmatrix}
 ightarrow egin{pmatrix} m_{
 u_I} pprox rac{m_D^2}{M} \ m_{
 u_h} pprox M \end{pmatrix}$
- ullet Small mixing angle: $anlpha_{
 m v}pprox -2\sqrt{rac{m_{
 m v_I}}{m_{
 m v_h}}}$

- Introduction
- 2 The minimal $U(1)_{B-L}$ extension of the SM

- Results
- 4 Conclusions and outlook

Results

λ_1	$\lambda_{2,3}$	g_{BL}	g_{YB}	x [TeV]	
$[10^{-2}, 10^{0.5}]$	$[10^{-8}, 10]$	$[10^{-8}, 3]$	$[10^{-8}, 3]$	[0.5, 20.5]	

- Model file: SARAH-4.12.3
- Spectrum generator: SPheno-4.0.3
 - Unitarity
 - One-loop mass spectrum and two-loop Higgs mass
 - Mixing angles
 - EW precision observables STU
 - $(g-2)_{e}$
 - Decay widths and Branching Fractions
- **3** Generated points with $m_{h_1} = 125.1 \pm 0.14$ GeV input to HiggsBounds-4.3.1 and HiggsSingnals-1.4.0
- Surviving points passed to MadGraph5_am5@NLO

- Applied LEP constraints from 4 fermion contact interactions
- Model explains $(g-2)_{\mu}$ for 5 TeV $\lesssim m_{Z'} \lesssim$ 8 TeV within -2.25σ uncertainty (4 black dots).
- Red cross highlights a benchmark point with $m_{Z'} \approx 3 \text{ TeV}$ regarded as an early-discovery (or early-exclusion) scenario in future LHC runs.
- Magenta diamond corresponds to the lightest BSM Higgs found, $m_{h_2} \approx 396~{\rm GeV}$

$\Delta a_{\mu}^{Z'}$ calculated in SARAH and numerically evaluated in SPheno

ullet When $rac{m_{\mu}}{m_{Z'}}\ll 1$ the Z' contribution reads

$$\Delta a_{\mu}^{Z'} \approx -\tfrac{1}{3\pi^2} \tfrac{m_{\mu}^2}{m_{Z'}^2} \left[6g_{\rm L}^{\mu\mu Z'} g_{\rm R}^{\mu\mu Z'} - 4\left(g_{\rm L}^{\mu\mu Z'^2} + g_{\rm R}^{\mu\mu Z'^2} \right) \right]$$

Contribution from h_2 is tiny: $\Delta a_{\mu}^{h_2} \propto \frac{m_{\mu}^2}{m_{h_1}^2} (y_{\mu} \sin \alpha_h)^2$

Suppressed by $\sin^2 \alpha_h < 0.0064$ and $m_{h_2} > 396$ GeV

Expanding for $v \ll x$

To enhance $\Delta a_{\mu}^{Z'}$ for heavy Z' one needs sizeable $g_{\rm R-L}$ and/or $g_{\rm VR}$

• Note strong correlation between $\left(\frac{\nu}{x}\right)^2$ and $\Delta a_{\mu}^{Z'}$ except for the sparser upper edge!

Four-fermion contact interactions constrain $g_{_{\mathrm{R-I}}} < 1.8$ in the B-L SM

Enhancement of $\Delta a_{\mathfrak{u}}^{Z'}$ is due to sizeable $g_{y_{\mathfrak{p}}}$, thus large $g_{\mathfrak{p}_{\mathfrak{p}}}^{\ell\ell Z'}$

LEP constraints set upper bound $\sin \theta_w' \lesssim 10^{-3}$

$$\sin\theta_W' \approx \frac{1}{8} \frac{g_{YB}}{g_{B-L}} \left(\frac{v}{x}\right)^2 \sqrt{g^2 + g_Y^2}$$

which is respected even for the larger values of g_{yy} :

Small coupling of Z' to W bosons: $g^{WWZ'} \simeq \frac{1}{16} \frac{g_{_{YB}}}{g_{_{B-I}}} \left(\frac{v}{x}\right)^2$.

Two-loop Barr-Zee type contributions are subdominant

Larger contribution from the top-left diagram due to $g_{_{\rm L,R}}^{ttZ'}\gg g^{WWZ'}$, α_h , however:

$$\frac{\Delta a_{\mu}^{\rm Barr-Zee}}{\Delta a_{\mu}^{Z'}} \simeq -\frac{1}{65536\pi^2} \frac{g^2 \left(g^2 + g_{_{\rm Y}}^2\right) g_{_{\rm YB}}^3}{\left[3g_{_{\rm B-L}}g_{_{\rm YB}} + 2 \left(g_{_{\rm B-L}}^2 + g_{_{\rm YB}}^2\right)\right]} \left(\frac{\nu}{x}\right)^4 \ll 1$$

Benchmark points

$m_{Z'}$	m_{h_2}	х	$\log_{10}\Delta a_{\mu}^{\rm NP}$	σB	θ_W'	α_h	$g_{\scriptscriptstyle \mathrm{B-L}}$	$g_{_{\mathrm{YB}}}$	$g_{\scriptscriptstyle L}^{\ell\ell Z'}$	$g_{\scriptscriptstyle R}^{\ell\ell Z'}$
3.13	3.72	15.7	-12.1	2.22×10^{-4}	≈ 0	5.67×10^{-5}	0.0976	2.0×10^{-8}	0.0976	0.0976
5.37	0.396	9.10	-11.7	4.23×10^{-5}	2.55×10^{-7}	9.44×10^{-7}	0.302	8.73×10^{-4}	0.302	0.303
7.59	3.072	4.36	-9.89	0.0302	7.26×10^{-4}	0.0471	0.612	1.99	3.37	2.76
6.13	2.24	6.67	-9.92	0.0696	8.0×10^{-4}	0.0593	0.383	2.80	1.78	3.18
6.373	3.43	6.56	-9.92	0.0615	7.86×10^{-4}	0.0266	0.395	2.82	1.81	3.22
5.14	4.21	2.77	-9.94	0.0896	6.52×10^{-4}	0.0132	0.871	1.86	1.80	2.73

- First line: Early discovery/exclusion scenario with the lightest Z' found in the scan,
- Second line: Lightest new scalar found in the scan,
- Third to fourth lines: Four best $(g-2)_{\mu}$ points.

- Introduction
- 2 The minimal $U(1)_{B-L}$ extension of the SM

- Results
- Conclusions and outlook

Conclusions and outlook

Muon $(g-2)_{\mu}$ anomaly:

- A heavy Z' between 5 and 8 TeV can explain it up to a 2.25σ uncertainty,
- Needs sizeable kinetic-mixing parameter $g_{_{YB}}$

Our result offers an important piece of information that can be relevant for upcoming a_{μ} precision measurements as well as for building less minimal models containing heavy Z' bosons and capable of a better explanation of the muon $(g-2)_{\mu}$ anomaly in comparison to the plain **B-L-SM**.

Potential for new physics searches

- For a relatively light new scalar, $m_{h_2} \approx 400 \text{ GeV}$
- For an early discovery/exclusion Z' boson $m_{Z'} \approx 3.1 \text{ TeV}$
- \bullet Probing the possiblity for a maximal contribution of the muon $(g-2)_{\mu}$ anomaly.