Escola de Ciências LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia ## [search for monotop events] CFTC-UL, UA and LIP meeting - Experiment vs. theory Braga, 31 jan 2020 Nuno Castro nfcastro@lip.pt ### Monotop signals - one search to rule them all - Single top + large MET topology : - Same topology for dark matter and single vector-like top search - Both leptonic($\mathbf{W} \to \mathbf{l}\mathbf{v}$) and hadronic($\mathbf{W} \to \mathbf{q}\mathbf{q}'$) W decay covered # **Non-resonant Monotop** - Vector mediator V decays to invisible fermion pair as DM - FCNC interactions in **u-t-V** vertex - Additional scenario using V directly as DM - Coloured, charged scalar ϕ decaying to top and DM - Majorana fermion as DM - Vector-like top quark $T \rightarrow tZ$ - Additional forward jet # From our fellow theorists, the lagrangians we are using $$\mathcal{L}_{int} = aV_{\mu}\bar{u}\gamma^{\mu}P_{R}t + g_{\chi}V_{\mu}\bar{\chi}\gamma^{\mu}\chi + h.c.$$ $$\mathcal{L}_{int} = \lambda\phi\bar{d}^{c}P_{R}s + y\phi\bar{\chi}P_{R}t + h.c.$$ $$\mathcal{L} = \kappa_T \left\{ \sqrt{\frac{\zeta_i \xi_W^T}{\Gamma_W^0}} \frac{g}{\sqrt{2}} \left[\bar{T}_{L/R} W_\mu^+ \gamma^\mu d_{L/R}^i \right] + \sqrt{\frac{\zeta_i \xi_Z^T}{\Gamma_Z^0}} \frac{g}{2c_W} \left[\bar{T}_{L/R} Z_\mu \gamma^\mu u_{L/R}^i \right] - \sqrt{\frac{\zeta_i \xi_H^T}{\Gamma_H^0}} \frac{M}{v} \left[\bar{T}_{R/L} H u_{L/R}^i \right] \right\}$$ ## Regions, regions and more regions | | 11. D | A CD | 11 mcp | 11 WCD | | |---|------------------|-----------|--------------------------------|--------------------------|--| | Selections (leptonic channel) | 1L-DM-SR | | 1L-TCR | 1L-WCR | | | Number of leptons | = 1 | | = 1 | = 1 | | | $p_{\mathrm{T}}(\ell)$ [GeV] | > 30 | | > 30 | > 30 | | | Lepton charge | > 0 | | > 0 | > 0 | | | Number of jets | = 1 | | = 2 | = 1 | | | Number of <i>b</i> -tagged jets | = 1 | | = 2 | = 1 | | | $p_{\rm T}(b$ -tagged jet) [GeV] | > 30 | | > 30 | > 30 | | | $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV] | > 50 | | > 50 | > 50 | | | $m_{\rm T}^{W} + E_{\rm T}^{\rm miss}$ [GeV] | > 60 | | > 60 | > 60 | | | m_{T}^{W} [GeV] | > 260 | | $60 < m_{\rm T}^W < 100$ | $60 < m_{\rm T}^W < 100$ | | | $ \Delta\phi(\ell,b) $ | < 1.2 | | - | - | | | Selections (hadronic channel) | 0L-DM-SR | 0L-VLT-SR | 0L-TCR | 0L-VCR | | | Number of forward jets | = 0 | ≥ 1 | | - | | | Number of leptons | = 0 | | =0 | = 0 | | | $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV] | > 200 | | > 200 | > 200 | | | Number of large- <i>R</i> jets | ≥ 1 | | ≥ 1 | ≥ 1 | | | Number of top-tagged jets | ≥ 1 | | ≥ 1 | ≥ 1 | | | $\Delta\Phi(E_{ m T}^{ m miss},\ J)$ | $>\frac{\pi}{2}$ | | $> \frac{\pi}{2}$ | $> \frac{\pi}{2}$ | | | Number of track-jets | ≥ 1 | | ≥ 1 | ≥ 1 | | | Number of <i>b</i> -tagged track-jets | = 1 | | ≥ 2 | = 0 | | | Veto jet (masked tile-calo) | - | | applied | - | | | $\Omega = rac{E_{ m T}^{ m miss} - p_{ m T}(J)}{E_{ m T}^{ m miss} + p_{ m T}(J)}$ | > -0.3 | | > -0.3 | > -0.3 | | | $\Delta\Phi_{\min}(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{calojets})$ | > 1.0 | | $0.2 < \Delta\Phi_{min} < 1.0$ | > 1.0 | | # Regions, regions and more regions pre-fit yields | | 1L-DM-SR | 1L-TCR | 1L-WCR | 0L-DM-SR | 0L-VLT-SR | 0L-TCR | 0L-VCR | |---|-----------------|-------------------|-------------------|-----------------|-----------------|-----------------|-----------------| | $\overline{t} \overline{t}$ | 390 ± 140 | 12300 ± 3100 | 8400 ± 1700 | 10200 ± 2900 | 3700 ± 1200 | 7000 ± 1700 | 6100 ± 1800 | | Single top | 66 ± 21 | 2930 ± 760 | 12200 ± 1700 | 1020 ± 260 | 356 ± 97 | 274 ± 71 | 890 ± 250 | | W+jets | 34.2 ± 8.4 | 1890 ± 640 | 92000 ± 24000 | 2240 ± 900 | 770 ± 310 | 147 ± 87 | 28000 ± 12000 | | Z+jets | 0.40 ± 0.86 | 112 ± 49 | 3410 ± 990 | 2700 ± 1100 | 850 ± 360 | 139 ± 83 | 27000 ± 11000 | | Other | 14 ± 15 | 640 ± 880 | 7000 ± 10000 | 530 ± 190 | 89 ± 28 | 1060 ± 640 | 2730 ± 760 | | Total Background | 500 ± 140 | 17900 ± 3400 | 123000 ± 26000 | 16600 ± 4500 | 5800 ± 1700 | 8600 ± 2000 | 66000 ± 22000 | | Data | 511 | 17662 | 127286 | 15 781 | 5454 | 8493 | 62 304 | | $R DM m_{\phi} = 1 TeV$ | - | _ | - | 11300 ± 1300 | - | 56 ± 13 | 8100 ± 1600 | | R DM $m_{\phi} = 2 \text{ TeV}$ | - | - | = | 469 ± 83 | - | 4.3 ± 1.1 | 349 ± 86 | | $\overline{NR DM m_{\phi} = 1 \text{ TeV}}$ | 165 ± 23 | 1.02 ± 0.47 | 20.2 ± 2.8 | 2090 ± 280 | _ | 29.0 ± 5.9 | 1600 ± 320 | | NR DM $m_{\phi} = 2 \text{ TeV}$ | 6.5 ± 2.7 | 0.027 ± 0.013 | 0.496 ± 0.097 | 95 ± 13 | - | 1.08 ± 0.21 | 75 ± 15 | | $VLT m_{VLT} = 0.9 \text{ TeV}$ | - | - | - | - | 112 ± 20 | 21.0 ± 5.3 | 76 ± 17 | #### hadronic channel: $\Omega = (ETmiss - pT(J))/(ETmiss + pT(J))$ #### hadronic channel: multijet estimate #### **ABCD** method used: - SR requirements varied to define multi-jet estimation region - Binned shape distribution (B) scale with global correction factor (C/D) - Multi-jet shape reasonably modeled - ☐ Slight norm. offset - ☐ Covered by stats. & syst. uncertainties #### hadronic channel: top tagging https://arxiv.org/abs/1808.07858 #### hadronic channel: top tagging ATL-PHYS-PUB-2015-053 #### fitting: single lepton channel - Some slight pulls of ttbar modeling uncertainties observed - Ranking of systs. pre-/post-fit impact on μ : - Main impact from ttbar modeling uncert. - Also larger impact of MC statistics in single SR bin #### leptonic channel - post-fit plots #### fitting: hadronic channel - ☐ Similar behavior for each binning - ttbar modeling & multi-jet syst. pulls : - Account for top p_T mis.modeling - V+jets modeling & large-R jet syst. pulls : - Account for norm. offset and compensate ttbar syst. pulls #### hadronic channel: post-fit plots ## fitting: results #### no evidence for signal found (yet...) so we have limits - Non resonant DM model: - Combined limits (1-L & 0-L channels) - ☐ 1-L channel : more sensitive for lower m(V) - □ 0-L channel : more sensitive for higher m(V) - Resonant DM model: - ☐ Limits exclusively from 0-L channel ### fitting: results from the competition... https://arxiv.org/abs/1801.08427 #### fitting: 2D plots #### NR DM: Norm. uncert. ~10% #### DM signals: - ☐ Binned re-weights derived as function of truth MET - Re-weighting to different theory parameters - \square NR DM : m(V), m(χ), a, g_{χ} - $\mathbf{I} \quad \mathbf{R} \, \mathbf{DM} : \mathbf{m}(\phi), \, \mathbf{y}, \, \lambda$ R DM: Norm. uncert. ~25% #### fitting: results from the competition... https://arxiv.org/abs/1801.08427 #### fitting: results from the competition... https://arxiv.org/abs/1801.08427 ## prospects for the future HL-LHC ### **VLQs** #### **VLQs** ## prospects for the future anomaly detection using ML arXiv:1811.10276 #### Random thoughts - Impossible to tackle every possible final state at LHC - But we do want to make sure we don't miss new physics in our (present and future) dataset - How to have general (or as general as possible) searches without compromising sensitivity? - clever choice of inclusive signatures - machine learning - 。 ???