

Escola de Ciências

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

[search for monotop events]

CFTC-UL, UA and LIP meeting - Experiment vs. theory
Braga, 31 jan 2020

Nuno Castro

nfcastro@lip.pt

Monotop signals - one search to rule them all

- Single top + large MET topology :
 - Same topology for dark matter and single vector-like top search
 - Both leptonic($\mathbf{W} \to \mathbf{l}\mathbf{v}$) and hadronic($\mathbf{W} \to \mathbf{q}\mathbf{q}'$) W decay covered

Non-resonant Monotop

- Vector mediator V decays to invisible fermion pair as DM
- FCNC interactions in **u-t-V** vertex
- Additional scenario using V directly as DM
- Coloured, charged scalar ϕ decaying to top and DM
- Majorana fermion as DM
- Vector-like top quark $T \rightarrow tZ$
- Additional forward jet

From our fellow theorists, the lagrangians we are using

$$\mathcal{L}_{int} = aV_{\mu}\bar{u}\gamma^{\mu}P_{R}t + g_{\chi}V_{\mu}\bar{\chi}\gamma^{\mu}\chi + h.c.$$

$$\mathcal{L}_{int} = \lambda\phi\bar{d}^{c}P_{R}s + y\phi\bar{\chi}P_{R}t + h.c.$$

$$\mathcal{L} = \kappa_T \left\{ \sqrt{\frac{\zeta_i \xi_W^T}{\Gamma_W^0}} \frac{g}{\sqrt{2}} \left[\bar{T}_{L/R} W_\mu^+ \gamma^\mu d_{L/R}^i \right] + \sqrt{\frac{\zeta_i \xi_Z^T}{\Gamma_Z^0}} \frac{g}{2c_W} \left[\bar{T}_{L/R} Z_\mu \gamma^\mu u_{L/R}^i \right] - \sqrt{\frac{\zeta_i \xi_H^T}{\Gamma_H^0}} \frac{M}{v} \left[\bar{T}_{R/L} H u_{L/R}^i \right] \right\}$$

Regions, regions and more regions

	11. D	A CD	11 mcp	11 WCD	
Selections (leptonic channel)	1L-DM-SR		1L-TCR	1L-WCR	
Number of leptons	= 1		= 1	= 1	
$p_{\mathrm{T}}(\ell)$ [GeV]	> 30		> 30	> 30	
Lepton charge	> 0		> 0	> 0	
Number of jets	= 1		= 2	= 1	
Number of <i>b</i> -tagged jets	= 1		= 2	= 1	
$p_{\rm T}(b$ -tagged jet) [GeV]	> 30		> 30	> 30	
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 50		> 50	> 50	
$m_{\rm T}^{W} + E_{\rm T}^{\rm miss}$ [GeV]	> 60		> 60	> 60	
m_{T}^{W} [GeV]	> 260		$60 < m_{\rm T}^W < 100$	$60 < m_{\rm T}^W < 100$	
$ \Delta\phi(\ell,b) $	< 1.2		-	-	
Selections (hadronic channel)	0L-DM-SR	0L-VLT-SR	0L-TCR	0L-VCR	
Number of forward jets	= 0	≥ 1		-	
Number of leptons	= 0		=0	= 0	
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 200		> 200	> 200	
Number of large- <i>R</i> jets	≥ 1		≥ 1	≥ 1	
Number of top-tagged jets	≥ 1		≥ 1	≥ 1	
$\Delta\Phi(E_{ m T}^{ m miss},\ J)$	$>\frac{\pi}{2}$		$> \frac{\pi}{2}$	$> \frac{\pi}{2}$	
Number of track-jets	≥ 1		≥ 1	≥ 1	
Number of <i>b</i> -tagged track-jets	= 1		≥ 2	= 0	
Veto jet (masked tile-calo)	-		applied	-	
$\Omega = rac{E_{ m T}^{ m miss} - p_{ m T}(J)}{E_{ m T}^{ m miss} + p_{ m T}(J)}$	> -0.3		> -0.3	> -0.3	
$\Delta\Phi_{\min}(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{calojets})$	> 1.0		$0.2 < \Delta\Phi_{min} < 1.0$	> 1.0	

Regions, regions and more regions pre-fit yields

	1L-DM-SR	1L-TCR	1L-WCR	0L-DM-SR	0L-VLT-SR	0L-TCR	0L-VCR
$\overline{t} \overline{t}$	390 ± 140	12300 ± 3100	8400 ± 1700	10200 ± 2900	3700 ± 1200	7000 ± 1700	6100 ± 1800
Single top	66 ± 21	2930 ± 760	12200 ± 1700	1020 ± 260	356 ± 97	274 ± 71	890 ± 250
W+jets	34.2 ± 8.4	1890 ± 640	92000 ± 24000	2240 ± 900	770 ± 310	147 ± 87	28000 ± 12000
Z+jets	0.40 ± 0.86	112 ± 49	3410 ± 990	2700 ± 1100	850 ± 360	139 ± 83	27000 ± 11000
Other	14 ± 15	640 ± 880	7000 ± 10000	530 ± 190	89 ± 28	1060 ± 640	2730 ± 760
Total Background	500 ± 140	17900 ± 3400	123000 ± 26000	16600 ± 4500	5800 ± 1700	8600 ± 2000	66000 ± 22000
Data	511	17662	127286	15 781	5454	8493	62 304
$R DM m_{\phi} = 1 TeV$	-	_	-	11300 ± 1300	-	56 ± 13	8100 ± 1600
R DM $m_{\phi} = 2 \text{ TeV}$	-	-	=	469 ± 83	-	4.3 ± 1.1	349 ± 86
$\overline{NR DM m_{\phi} = 1 \text{ TeV}}$	165 ± 23	1.02 ± 0.47	20.2 ± 2.8	2090 ± 280	_	29.0 ± 5.9	1600 ± 320
NR DM $m_{\phi} = 2 \text{ TeV}$	6.5 ± 2.7	0.027 ± 0.013	0.496 ± 0.097	95 ± 13	-	1.08 ± 0.21	75 ± 15
$VLT m_{VLT} = 0.9 \text{ TeV}$	-	-	-	-	112 ± 20	21.0 ± 5.3	76 ± 17

hadronic channel: $\Omega = (ETmiss - pT(J))/(ETmiss + pT(J))$

hadronic channel: multijet estimate

ABCD method used:

- SR requirements varied to define multi-jet estimation region
- Binned shape distribution (B) scale with global correction factor (C/D)
- Multi-jet shape reasonably modeled
- ☐ Slight norm. offset
 - ☐ Covered by stats. & syst. uncertainties

hadronic channel: top tagging

https://arxiv.org/abs/1808.07858

hadronic channel: top tagging

ATL-PHYS-PUB-2015-053

fitting: single lepton channel

- Some slight pulls of ttbar modeling uncertainties observed
- Ranking of systs. pre-/post-fit impact on μ :
 - Main impact from ttbar modeling uncert.
 - Also larger impact of MC statistics in single SR bin

leptonic channel - post-fit plots

fitting: hadronic channel

- ☐ Similar behavior for each binning
- ttbar modeling & multi-jet syst. pulls :
 - Account for top p_T mis.modeling
 - V+jets modeling & large-R jet syst. pulls :
 - Account for norm. offset and compensate ttbar syst. pulls

hadronic channel: post-fit plots

fitting: results

no evidence for signal found (yet...) so we have limits

- Non resonant DM model:
 - Combined limits (1-L & 0-L channels)
 - ☐ 1-L channel : more sensitive for lower m(V)
 - □ 0-L channel : more sensitive for higher m(V)

- Resonant DM model:
- ☐ Limits exclusively from 0-L channel

fitting: results from the competition...

https://arxiv.org/abs/1801.08427

fitting: 2D plots

NR DM: Norm. uncert. ~10%

DM signals:

- ☐ Binned re-weights derived as function of truth MET
- Re-weighting to different theory parameters
 - \square NR DM : m(V), m(χ), a, g_{χ}
 - $\mathbf{I} \quad \mathbf{R} \, \mathbf{DM} : \mathbf{m}(\phi), \, \mathbf{y}, \, \lambda$

R DM: Norm. uncert. ~25%

fitting: results from the competition...

https://arxiv.org/abs/1801.08427

fitting: results from the competition...

https://arxiv.org/abs/1801.08427

prospects for the future HL-LHC

VLQs

VLQs

prospects for the future anomaly detection using ML

arXiv:1811.10276

Random thoughts

- Impossible to tackle every possible final state at LHC
- But we do want to make sure we don't miss new physics in our (present and future) dataset
- How to have general (or as general as possible) searches without compromising sensitivity?
 - clever choice of inclusive signatures
 - machine learning
 - 。 ???