Microsensors, Microsystems and MEMS

CERN
Geneva, January 24t 2019

Piero Malcovati

Department of Electrical, Computer, and Biomedical Engineering
University of Pavia

E-Mail: piero.malcovati@unipv.it

1/67

University of Pavia Sensors and Microsystems Laboratory SHS




Outline

Introduction

Microsensors and MEMS
m Available Materials
m Fabrication Process
m Sensing and Actuation
m Inertial Sensors

Integrated Microsystems
m Architecture
m Analog Front-End Circuits
m A/D Converters

Conclusions

2/67

University of Pavia Sensors and Microsystems Laboratory SMS




Outline

Introduction

3/67

University of Pavia Sensors and Microsystems Laboratory SMS




Introduction — Definitions

B Microsensor =» Sensor realized with micro-fabrication technologies
B Microactuator =» Actuator realized with micro-fabrication technologies
B Microsystem =» Complete system realized with micro-fabrication technologies

B MEMS = Micro-electro-mechanical system (formally subset of microsystems, often used as
a synonym of microsystem and/or microsensor)
B The introduction of micro-fabrication technologies enabled the widespread diffusion of
sensors in almost any application field
B Mobile devices/loT
B Automotive
Bl Domotics
B Entertainment
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Introduction — Sensors for loT /Mobile Devices (Consumer Market)

Force Sensor

Pressure Sensor

Light Sensors
Temperture Sensors

Fingerprint Sensor
3-Axis Accelerometer
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Introduction — Sensors and Actuators for Cars (Automotive Market)

Fuel Injector GPSandinertial  Accelerometer for
Silicon Mozzlesfor  PressureSensor  Navigation System  Airbag Deployment

Microphones for

Fuel Injection —
. 2 [Noise Cancellation

Suspension Control .
Brake Pressure
Sensor and Control Sensors
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Introduction — Sensor and MEMS Market
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Introduction — Sensor and MEMS Market
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Microsensors and MEMS — What Are We Talking About?
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Microsensors and MEMS — What Are We Talking About?

Mobile Parts Anchors
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Microsensors and MEMS — What Are We Talking About?

Bridge

Cross Beam Spiral
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Microsensors and MEMS — Available Materials

Standard materials

B Mono-crystalline silicon (Si) = Anisotropic semiconductor crystal

B Poly-crystalline silicon (Polysilicon) < Mostly isotropic semiconductor material
M Silicon dioxide (SiOy) = Excellent thermal and electrical insulator

B Silicon nitride (SigN4) = Excellent electrical insulator

B Aluminum (Al) = Good electrical conductor

Specific materials

B Copper (Cu) = Excellent electrical conductor
M Gold (Au) and Platinum (Pt) = Excellent electrical conductors, mostly inert

M Various polymer, ceramic and composite materials
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Microsensors and MEMS — Fabrication Process

B Micro-fabrication technology for MEMS =» Micromachining
B Processing steps
B Deposition

B Patterning (photolithography)
B Etching

B Substrate = Silicon wafer

B Standard wafer
Bl Silicon on Insulator (SOI) wafer

B Surface micromachining = The process does not involve the silicon substrate

B Bulk micromachining = The process involves the silicon substrate
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Microsensors and MEMS — Fabrication Process
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— Optical lithography
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— Double-sided lithography '

Photoresist

Thin film

Substrate

Deposition

— Epitaxy ‘

— Oxidation ...

— Sputtering

— Evaporation Etching

- CVD/LPCVD/PECVD — Wet isotropic
— Spin-on method — Wet anisotropic
— Sol-gel — Plasma

— Anodic bonding - RIE

— Silicon fusion bonding - DRIE
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Microsensors and MEMS — Etching of Silicon
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Microsensors and MEMS — Etching of Silicon

Anisotropic Etching of Silicon

— KOH (Potassium Hydroxide)

— EDP (Ethylene Diamine and
Pyrocatechol)

— TMAH (Tetramethylammonium
Hydroxide)

Front-Side Etching (Grooves) Back-Side Etching (Membranes)
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Etch Mask f 1 \
Silicon Substrate

Silicon Etched

1

Polymer Layer Deposition

Microsensors and MEMS — Deep Reactive lon Etching (DRIE)

3 Step

SF,
Bottom Polymer Layer Etched

AR

Polymer Layer and Silicon Etched

1t Step Again
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Microsensors and MEMS — Deep Reactive lon Etching (DRIE)
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Microsensors and MEMS — Sacrificial Layer

Structural
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Microsensors and MEMS — Sacrificial Layer
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Microsensors and MEMS — Movable MEMS Structures

F Suspended Mass m

Spring Coefficient k

Damping Coefficient r

B mX(t) + rx(t) + kx(t) = F(t) = G(s) = =

k
W o=/ - -> Resonance frequency

vk
HQ= Tm = Quality factor
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Microsensors and MEMS — Sensing and Actuation

B How to actuate movable structures (apply F) and sense the movement (detect x)?
B Actuation
B Thermal - Thermal expansion (bi-layer structures)
B Piezoelectric » Charge — Force
B Capacitive = Electrostatic force
M Sensing
B Piezoresistive = Stress —» Resistance variation
B Piezoelectric = Force —+ Charge
B Capacitive < Capacitance variation
B Capacitive sensing/actuation

B Parallel-plate structures
Bl Comb-finger structures
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Microsensors and MEMS — Parallel-Plates
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Microsensors and MEMS — Parallel-Plates

M Interaction between sensing and actuation

B Measure x = Read C = Apply V = Generate F = Change x

B Solution = Use differential structures (with V4 = V_, Fy = F_ for x = 0)
M Non-linear function F(x) = Spring softening effect and pull-in effect

2 2 2
Vioh | Vielhx(®) 4, Vielh
2d3 ds do

B The spring coefficient k is lowered by applying V =» The resonance frequency wo decreases

B mx(t) + rx(t) + kx(t) = -F(t) =
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Microsensors and MEMS — Parallel-Plates

Forces

Vs
Unstable
Low V
Stable
: Pull-In Effect
0 x(V) x Position d
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Microsensors and MEMS — Comb-Fingers

V
h — Depth
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Microsensors and MEMS — Comb-Fingers

M Interaction between sensing and actuation

B Measure x = Read C = Apply V = Generate F < Change x
B Solution = Use differential structures (with V4 = V_, Fy = F_ for x = 0)

B Linear function F(x) = No spring softening effect
Veoh

B mx(t) + rx(t) + kx(t) = -F(t) = -

B The spring coefficient k is independent of V =» The resonance frequency wp remains constant
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Microsensors and MEMS — Inertial Sensors

0, Q \ ac'y

Fixed Referemce
System
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Microsensors and MEMS — Inertial Sensors

B Absolute acceleration of the mass in the moving reference system (

i5.k)
&= (54 §7) + 0k x [k x (07| + QK x (7 +y7) +
+ 20K x (>'<T+ yf) + (ac,x?+ ac,yj)
M Differential equations along x and y
kX=X 4 Fe=m <5&—Qy—2§2y—§22x+ a)
—ky—ry+F=m (y 4 Ox + 20% - Q2 + ac,y)

W a., and acy =» Linear accelerations
B Qy and Qx =» Coriolis acceleration

B Q%x, Q% > Negligible, being Q < /ksy/m

30/67

University of Pavia Sensors and Microsystems Laboratory SMS




Microsensors and MEMS — Accelerometer

W Accelerometer 2 F, =0, F, =0, Q=0
B mX+ X+ kex + macx =0
B my+ry+ky+ma, =0

B Sensitivity . D = _m
acx ky
[k vkem
| Wo,x = _X' Qx - X
m Iy
W Sensitivity 2 D p, = -
Acx ky
k v/ kym
. (-‘)O,y = _yv Qy - Y
V m ry
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Microsensors and MEMS — Two-Axis Accelerometer

Comb-Fingers y

Mass

Comb-Fingers x

Comb-Fingers y
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Microsensors and MEMS — Three-Axis Accelerometer
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Microsensors and MEMS — Gyroscope

W Gyroscope = acx = 0, acy = 0, Q constant (Q =0), Fx = Fgsin(wt), Fy =0, y < x

_FOr
B mX + r,x + ke = Fy = Driving 2 X(w) = Lo
Y-+ ()
05, @0xQy
2mwX
B my +ry + kyy = —2mQx = Sensing =2 Y(w) = by

B Maximum sensitivity y/Q = wox = oy = &
2mwFoQ.Q,

kcky
B Spring softening effect = Tuning of wo, to match wox

| Mmax =
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Microsensors and MEMS — Two-Mass Gyroscope

° S

Coriolis

Reject linear accelerations
— ma — Common-mode signal
-F — Differential signal

Coriolis

Coriolis
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Microsensors and MEMS — Two-Mass Gyroscope

g Angular Rate

Actuation Actuation
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Microsensors and MEMS — Four-Mass Gyroscope

B Optimal driving = ky > k,

B Optimal sensing = ky > ky

B Optimal sensitivity = wox & woy 2 ke ~ ky

B Four-mass gyroscope =» Decouple sensing and driving wox, ®oy, kx, Ky
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Microsensors and MEMS — Four-Mass Gyroscope

Sense Mass

~~ Drive Mass
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Microsensors and MEMS — Three-Axis Gyroscope

Yaw Mode (Y): Q,
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Microsensors and MEMS — Three-Axis Gyroscope
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Integrated Microsystems

B Integrated microsystem = MEMS device = interface circuits 4 package
B MEMS device, interface circuits and package must be designed and optimized together from
the very beginning
B Optimal MEMS device 4 Optimal interface circuit 4 Optimal package < Not necessarily
optimal microsystem
B The specifications and performances of the different blocks must be balanced
B Loading effects and interactions among blocks must be considered
B Architectural choices
B Single chip or multiple chips?
B Analog or digital signal processing?
B Key parameters (assuming that the required performances are obtained)
Bl Cost
B Size
M Power consumption
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Integrated Microsystems — Single Chip

Serice edts /
47 7%
Sensor Sensor Sensor
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Integrated Microsystems — Multiple Chips

A 4 e (et L7
- yo-24 24 Im
|
pazd

I IBonding
| |
7 7
] Sersrs Connection
/ :W/ A, — Wire bonding
— Bump bonding
Lo o] — Wafer-wafer bonding
l Multiple chips
p p
— Side by side
Substrate (Package) — One on-top of the other
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Integrated Microsystems — Single Chip vs Multiple Chips

Single chip Multiple chips

@ Reliability (no bonding)

@® Minimal parasitics

® Simple assembling

® Yield (different failure mechanisms)
@ Optimal process only for circuits
® Reduced flexibility

® Technology scaling

® Yield (different processes)

@® Optimal process for sensors and circuits
® Maximal flexibility

® Technology scaling

@ Reliability (bonding wires)

@ Additional interconnection parasitics

@ Complex assembling

The two-chip approach turned out to be the winning solution for MEMS

University of Pavia
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Integrated Microsystems — Assembling

Encapsulation Wire bond
| |
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Integrated Microsystems — Six-Axis Inertial Sensor

Wire Bonding
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Integrated Microsystems — Architecture

| Sensor  Hs=| A Low-Level | g] A/D J'l> High Level
Processing Processing Bus Interface
" _ : C, SPI
DSP, or
| Sensor  Ha=| A Low—Leyel L1 A/D LN Data Fusion, KN Wireless :J\
Processing 1] Calibration, 1] Interface id
T - - Control, Bluetooth,
Self—Testl, ZigBee, NB-loT,
T3 Sensor A Low—Leyel = A/D = LoRA
Processing 1]
Sensor Analog Domain Digital Domain
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Integrated Microsystems — Analog Front-End Circuits

B Sensor readout = Depends on the sensor output quantity

B Voltage = Voltage amplifier

B Current = Transimpedance amplifier

B Charge - Charge amplifier

B Resistance variation = Bridge 4 voltage amplifier

B Capacitance variation = Capcitance-to-voltage converter

B Key design issues
M Offset and noise = Chopper stabilization or correlated-double sampling are often used
B Parasitics and parasitic effects = Try to compensate for them as early as possible in the
processing chain (eventually using feedback)
B Capcitance-to-voltage converter
B Tiny capacitance variations < AC in the aF range
B Large capacitances = C(0) in the pF range
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Integrated Microsystems — Capacitance-to-Voltage Converter

CK CK
_VO_/_T_”
W;CZ cK
11
K “CF
+VO_/_T_I IiA K
W C1

J7 —oVO

B Single-ended structure = C; = Co + AC and C, = Cy
B Differential structure = C; = Co + AC and C, = Co— AC
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Integrated Microsystems — Capacitance-to-Voltage Converter

BCK=1CK=0

. QI,CK = C]_V, Q2,CK = _C2Vr QF,CK =0

W Vo=0
BCK=1CK=0

B Qx=0 Qe =0 Qrex = CrVo

. Node A is isolated 9 QI,W + QZW + QF,W = QI,CK + Q2,CK + QF,CK 9 ClV - C2V = CFVO

CGV-QGV
HVo= """
Cr

Co —|—AC—C0V _ %V

Cr Cr
Co+AC-Co+ AC 2AC

V =
Cr Cr

M Typically implemented with fully-differential structure

B Single-ended structure = Vg =

V

B Differential structure = Vg =
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Integrated Microsystems — Capacitance-to-Voltage Converter

CK
+vO_/_T_| ——t
K C1 - oV

:} + :::::::::::> 0,+
CK + = oV

C
-V H—H F——r C

CK ¢, [LF
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Integrated Microsystems — A/D Converters

B A/D converter for sensor applications

B Small bandwidth (maximum tens of kHz)
B High resolution and accuracy (up to 20 bits)

PQ
B Oversampled A/D converters
B Sigma-delta modulators
B Incremental A/D converters /
/
N\

PSD

132
B Total quantization noise power = Pq = R |
£ >
f
B Oversampling ratio » M = % / fs,1/2 =B fs,2/2 f
o . A?
B In-band quantization noise power = Pqg = oM PQ’B

53/67

University of Pavia Sensors and Microsystems Laboratory SMS




Integrated Microsystems — Sigma-Delta Modulators (XAMs)

Block Diagram Linearized Model e(2)
IN + OUT IN + ! ouT
— H, [ A/D — H —
Implementation:
— Discrete-time (DT) — H,(z), H,(Z)
H, ~— D/A H, = — Continuous-time (CT) — H,(s), H,(s)
H
B Signal transfer function = STF = 1+H11((ZZ))HQ(Z) 2>STF=1
B Quantization noise transfer function = NTF = o = NTF = (1 —z‘l)L

1+ Hy(2)H2(2)
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Integrated Microsystems — Sigma-Delta Modulators (XAMs)

16
Second Order (L = 2)
12
a
o 8
B First Order (L = 1)
Al x
0
0 Frequency (Normalized to f, = 1) 0.5

B Noise shaping = Quantization noise pushed at high frequency
A2m2l

12 (2L 4 1) M*H

B In-band quantization noise power = Pqg =
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Integrated Microsystems — Second-Order > AM

N + Latch >
fr,

Integrator Integrator Comparator

AJ2 Resolution
T N = 15 log,M - 11.1
L AJ2 Q
IN + 71 + 1 (- % _OiJT
- 1-z1] = 1-2z1
DT Implementation
1 2
Integrator Integrator Comparator
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Integrated Microsystems — Incremental A/D Converter

Reset lfs
Latch
Integrator Comparator
+A/2
_|<
-A/2

Y

Reset
ouT

Counter

N

B Reset at the beginning of each conversione cycle < U(0) =0
B N-bit resolution =» 2N clock periods = U(k + 1) = U(k) + [IN — (-1)0+2 A/2]

B OUT = 2M+1IN/A
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Integrated Microsystems — CT X AM

B CT XAM

@ Relaxed operational amplifier bandwidth requirements = Low power consumption
@ Sampling at the input of the quantizer = Inherent antialiasing filtering
B Example = Third-order, single-loop, multi-bit CT ~AM [3, 4, 5]
B Designed for minimizing power consumption (P) and maximizing dynamic range (DR)
@® Feedforward architecture = Reduced integrator voltage swing
® Multi-bit quantizer (15 levels) = Reduced jitter sensitivity and quantization noise

@® DAC with three-level current-steering elements < Reduced noise at low input signal levels
@® Third-order loop filter with only two operational amplifiers = Reduced power consumption

B Target DR > 100dB and P < 0.5 mW
B Among best-in-class A/D converters for MEMS applications

58/67

University of Pavia Sensors and Microsystems Laboratory SMS




Integrated Microsystems — CT X AM

q)ADC
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Integrated Microsystems — CT X AM
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Integrated Microsystems — CT X AM
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Integrated Microsystems — CT XAM
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Integrated Microsystems — CT X AM

L V, = -104d8B,, E
SNDR = 91.3 dB
I SDR = 95.5 dB i
SNR = 03.4 dB
SFDR = 98.4 dB
- —V_ = 600d8B,,
ﬂ SNDR = 43.1 dB
L 46.0 dB,
SFDR = 57.6 dB

10
Frequency [kHz]

University of Pavia
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Integrated Microsystems — CT XAM

Input Signal Frequency [MHz]
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Outline

Conclusions
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Conclusions

Crucial aspects in microsystem design

B Concurrent design of MEMS device, front-end circuits and package
B Choice of microsystem partitioning = Number of chips, analog/digital boundary

Open issues and trends in microsystem design

B Testing and calibration involving physical quantities = Contributes significantly to
the microsystem cost

B Increased accuracy = Can enable many new applications

B Multiple sensors and data fusion <> Neural networks and deep learning

J
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Conclusions
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