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Introduction — Definitions

Microsensor $ Sensor realized with micro-fabrication technologies

Microactuator $ Actuator realized with micro-fabrication technologies

Microsystem $ Complete system realized with micro-fabrication technologies

MEMS $ Micro-electro-mechanical system (formally subset of microsystems, often used as
a synonym of microsystem and/or microsensor)

The introduction of micro-fabrication technologies enabled the widespread diffusion of
sensors in almost any application field

Mobile devices/IoT
Automotive
Domotics
Entertainment
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Introduction — Sensors for IoT/Mobile Devices (Consumer Market)

3-Axis Accelerometer

3-Axis Gyroscope

Proximity Sensor

3-Axis Magnetometer

MicrophonesFingerprint Sensor

Pressure Sensor

Humidity SensorGas Sensors

Temperture Sensors

Light Sensors

Cameras

Force Sensor
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Introduction — Sensors and Actuators for Cars (Automotive Market)
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Introduction — Sensor and MEMS Market

Top MEMS Manufacturers in US$ Millions

Source Yole Développement, 2019
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Introduction — Sensor and MEMS Market

MEMS Market Forecast in US$ Billions

Source Yole Développement, 2017
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Microsensors and MEMS — What Are We Talking About?
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MEMS1.mp4
Media File (video/mp4)


MEMS2.mp4
Media File (video/mp4)



Microsensors and MEMS — What Are We Talking About?

Mobile Parts Anchors
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Microsensors and MEMS — What Are We Talking About?

Floating Plate
Bridge Cantileaver Beam

Cross Beam Spiral
Springs
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Microsensors and MEMS — Available Materials

Standard materials
Mono-crystalline silicon (Si) $ Anisotropic semiconductor crystal

Poly-crystalline silicon (Polysilicon) $ Mostly isotropic semiconductor material

Silicon dioxide (SiO2) $ Excellent thermal and electrical insulator

Silicon nitride (Si3N4) $ Excellent electrical insulator

Aluminum (Al) $ Good electrical conductor

Specific materials

Copper (Cu) $ Excellent electrical conductor

Gold (Au) and Platinum (Pt) $ Excellent electrical conductors, mostly inert

Various polymer, ceramic and composite materials
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Microsensors and MEMS — Fabrication Process

Micro-fabrication technology for MEMS $ Micromachining

Processing steps

Deposition
Patterning (photolithography)
Etching

Substrate $ Silicon wafer

Standard wafer
Silicon on Insulator (SOI) wafer

Surface micromachining $ The process does not involve the silicon substrate

Bulk micromachining $ The process involves the silicon substrate
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Microsensors and MEMS — Fabrication Process

Deposition
– Epitaxy
– Oxidation
– Sputtering
– Evaporation
– CVD/LPCVD/PECVD
– Spin-on method
– Sol-gel
– Anodic bonding
– Silicon fusion bonding

Etching
– Wet isotropic
– Wet anisotropic
– Plasma
– RIE
– DRIE

Patterning
– Optical lithography
– Double-sided lithography
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Microsensors and MEMS — Etching of Silicon

Wet Etching

{100}

54.7°
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Plasma Dry Etching

{111}
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Microsensors and MEMS — Etching of Silicon

Anisotropic Etching of Silicon
– KOH (Potassium Hydroxide)
– EDP (Ethylene Diamine and

Pyrocatechol)
– TMAH (Tetramethylammonium

Hydroxide)
Front-Side Etching (Grooves) Back-Side Etching (Membranes)
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Microsensors and MEMS — Deep Reactive Ion Etching (DRIE)

1st Step

2nd Step

3rd Step

1st Step Again

SF6

SF6

CFx

SF6

Silicon Etched Bottom Polymer Layer Etched

Polymer Layer Deposition Polymer Layer and Silicon Etched

Etch Mask
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Microsensors and MEMS — Deep Reactive Ion Etching (DRIE)
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Microsensors and MEMS — Sacrificial Layer

Structural
Sacrificial

Movable Structure

SMSUniversity of Pavia Sensors and Microsystems Laboratory

20/67



Microsensors and MEMS — Sacrificial Layer

Holes for Sacrificial
Layer Etching
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Microsensors and MEMS — Movable MEMS Structures

Spring Coefficient k 
 
Damping Coefficient r 

Suspended Mass m

x, ẋ, ẍ

F  

 

mẍ(t) + rẋ(t) + kx(t) = F(t) $ G(s) =
X(s)

F(s)
= –

1
k

1 + 1
ω0Q

s + 1
ω

2
0
s2

ω0 =

√
k

m
$ Resonance frequency

Q =

√
km

r
$ Quality factor
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Microsensors and MEMS — Sensing and Actuation

How to actuate movable structures (apply F) and sense the movement (detect x)?

Actuation

Thermal $ Thermal expansion (bi-layer structures)
Piezoelectric $ Charge −→ Force
Capacitive $ Electrostatic force

Sensing

Piezoresistive $ Stress −→ Resistance variation
Piezoelectric $ Force −→ Charge
Capacitive $ Capacitance variation

Capacitive sensing/actuation

Parallel-plate structures
Comb-finger structures
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Microsensors and MEMS — Parallel-Plates

d h → Depth

L

VF
x

C =
ε0Lh

d
$ d→ d0 – x $ C =

ε0Lh

d0 – x

Sensing $ ΔC = C(x) – C(0) =
ε0Lhx

d2
0 – d0x

−−−→
x�d0

ΔC ≈ ε0Lhx

d2
0

Actuation $ E =
1

2
CV2

$ |F| =

∣∣∣∣dE

dx

∣∣∣∣ =
V2
ε0Lh

2 (d0 + x)2
−−−→
x�d0

|F| ≈ V2
ε0Lh

2d2
0

(
1 –

2x

d0

)
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Microsensors and MEMS — Parallel-Plates

V+C0 + ΔC

C0 – ΔC V–

F+

F–

Interaction between sensing and actuation

Measure x $ Read C $ Apply V $ Generate F $ Change x
Solution $ Use differential structures (with V+ = V–, F+ = F– for x = 0)

Non-linear function F(x) $ Spring softening effect and pull-in effect

mẍ(t) + rẋ(t) + kx(t) = –F(t) = –
V2
ε0Lh

2d2
0

+
V2
ε0Lhx(t)

d3
0

$ k→ k –
V2
ε0Lh

d3
0

The spring coefficient k is lowered by applying V $ The resonance frequency ω0 decreases

SMSUniversity of Pavia Sensors and Microsystems Laboratory

25/67



Microsensors and MEMS — Parallel-Plates

x Position

Fo
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es

0 d

kx
F

Low V

x(V)

Stable

Unstable

Pull-In Effect

VLarge V
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Microsensors and MEMS — Comb-Fingers

d

L

d
F

x
h → Depth

V

V

C =
2ε0Lh

d
$ L→ L0 + x $ C =

2ε0h (L0 + x)

d

Sensing $ ΔC = C(x) – C(0) =
2ε0hx

d

Actuation $ E =
1

2
CV2

$ |F| =

∣∣∣∣dE

dx

∣∣∣∣ =
V2
ε0h

d
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Microsensors and MEMS — Comb-Fingers

F+ F–

V+

V+

V–

V–

C0 + ΔC C0 – ΔC

Interaction between sensing and actuation

Measure x $ Read C $ Apply V $ Generate F $ Change x
Solution $ Use differential structures (with V+ = V–, F+ = F– for x = 0)

Linear function F(x) $ No spring softening effect

mẍ(t) + rẋ(t) + kx(t) = –F(t) = –
V2
ε0h

d
The spring coefficient k is independent of V $ The resonance frequency ω0 remains constant
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Microsensors and MEMS — Inertial Sensors

Mass (m)
P

ac,x

ac,y

R x
Fixed Referemce
System

yFx

Fy

ry

rx

ky

kx
O xMoving
Reference
System

y

Θ, Ω

SMSUniversity of Pavia Sensors and Microsystems Laboratory

29/67



Microsensors and MEMS — Inertial Sensors

Absolute acceleration of the mass in the moving reference system (~i,~j,~k)

~a =
(

ẍ~i + ÿ~j
)

+ Ω~k×
[
Ω~k×

(
x~i + y~j

)]
+ Ω̇~k×

(
x~i + y~j

)
+

+ 2Ω~k×
(

ẋ~i + ẏ~j
)

+
(

ac,x~i + ac,y~j
)

Differential equations along x and y

– kxx – rxẋ + Fx = m
(

ẍ – Ω̇y – 2Ωẏ – Ω2x + ac,x
)

– kyy – ryẏ + Fy = m
(

ÿ + Ω̇x + 2Ωẋ – Ω2y + ac,y
)

ac,x and ac,y $ Linear accelerations
Ωẏ and Ωẋ $ Coriolis acceleration
Ω

2x, Ω2y $ Negligible, being Ω�
√

kx,y/m
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Microsensors and MEMS — Accelerometer

Accelerometer $ Fx = 0, Fy = 0, Ω = 0

mẍ + rxẋ + kxx + mac,x = 0

mÿ + ryẏ + kyy + mac,y = 0

Sensitivity
x

ac,x
$ μx = –

m

kx

ω0,x =

√
kx
m

, Qx =

√
kxm

rx

Sensitivity
y

ac,x
$ μy = –

m

ky

ω0,y =

√
ky
m

, Qy =

√
kym

ry
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Microsensors and MEMS — Two-Axis Accelerometer

Mass

Comb-Fingers x

Comb-Fingers y

Springs

Comb-Fingers y

Springs
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Microsensors and MEMS — Three-Axis Accelerometer

z

y

x

y
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z
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XY
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Microsensors and MEMS — Gyroscope

Gyroscope $ ac,x = 0, ac,y = 0, Ω constant (Ω̇ = 0), Fx = F0 sin(ωt), Fy = 0, y� x

mẍ + rxẋ + kxx = Fx $ Driving $ X(ω) =

F0

ω
2
0,xm√(

1 – ω2

ω
2
0,x

)2
+
(

ω

ω0,xQx

)2
mÿ + ryẏ + kyy = –2mΩẋ $ Sensing $ Y(ω) =

2mωΩX
ky√(

1 – ω2

ω
2
0,y

)2
+
(

ω

ω0,yQy

)2
Maximum sensitivity y/Ω $ ω0,x = ω0,y = ω

μmax =
2mωF0QxQy

kxky

Spring softening effect $ Tuning of ω0,y to match ω0,x

SMSUniversity of Pavia Sensors and Microsystems Laboratory

34/67



Microsensors and MEMS — Two-Mass Gyroscope

z

x

y

ma ma

Reject linear accelerations
– ma → Common-mode signal
– FCoriolis → Differential signal

Ω

v m m v

FCoriolis

FCoriolis
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Microsensors and MEMS — Two-Mass Gyroscope
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Microsensors and MEMS — Four-Mass Gyroscope

Drive Mass

ky,d

kx,d kx,s kx,s kx,d

ky,d

ky,s

ky,s

md

ms

Sense Mass

Drive Mass

ky,d

kx,d kx,s kx,s kx,d

ky,d

ky,s

ky,s

md

ms

Sense Mass

Optimal driving $ kx � ky
Optimal sensing $ ky � kx
Optimal sensitivity $ ω0,x ≈ ω0,y $ kx ≈ ky
Four-mass gyroscope $ Decouple sensing and driving ω0,x, ω0,y, kx, ky
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Microsensors and MEMS — Four-Mass Gyroscope

Sense Mass

Drive Mass
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Microsensors and MEMS — Three-Axis Gyroscope

Drive Modem1

Yaw Mode (Y): Ωz

Pitch Mode (P): ΩyRoll Mode (R): Ωx
x

z

y

m4

m3
m2
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Microsensors and MEMS — Three-Axis Gyroscope

Y

Y

P

P

RR
m1

m2

m4

m3
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Integrated Microsystems

Integrated microsystem $ MEMS device + interface circuits + package
MEMS device, interface circuits and package must be designed and optimized together from
the very beginning

Optimal MEMS device + Optimal interface circuit + Optimal package $ Not necessarily
optimal microsystem
The specifications and performances of the different blocks must be balanced
Loading effects and interactions among blocks must be considered

Architectural choices
Single chip or multiple chips?
Analog or digital signal processing?

Key parameters (assuming that the required performances are obtained)
Cost
Size
Power consumption
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Integrated Microsystems — Single Chip

Interface Circuits

Sensor Sensor Sensor
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Integrated Microsystems — Multiple Chips

Substrate (Package)

Multiple chips
– Side by side
– One on-top of the other

Sensors

Interface Circuits
Bonding

Connection
– Wire bonding
– Bump bonding
– Wafer-wafer bonding
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Integrated Microsystems — Single Chip vs Multiple Chips

Single chip

é Reliability (no bonding)

é Minimal parasitics

é Simple assembling

j Yield (different failure mechanisms)

j Optimal process only for circuits

j Reduced flexibility

j Technology scaling

Multiple chips

é Yield (different processes)

é Optimal process for sensors and circuits

é Maximal flexibility

é Technology scaling

j Reliability (bonding wires)

j Additional interconnection parasitics

j Complex assembling

The two-chip approach turned out to be the winning solution for MEMS
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Integrated Microsystems — Assembling
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Integrated Microsystems — Six-Axis Inertial Sensor

z

y MEMS

MEMS

ASIC

ASIC

Wire Bonding

x

Ωz

Ωy

Ωx
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Integrated Microsystems — Architecture

A/D

,

Bus Interface
I2C, SPI

or
Wireless
Interface
Bluetooth,

ZigBee, NB-IoT,
LoRA

 

Sensor Analog Domain Digital Domain

Sensor

Sensor

Sensor

A

A

A

Low-Level
Processing

High Level
Processing

DSP,
Data Fusion,
Calibration,

Control,
Self-Test,

Self Repair,
...

Low-Level
Processing

Low-Level
Processing

A/D

A/D
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Integrated Microsystems — Analog Front-End Circuits

Sensor readout $ Depends on the sensor output quantity

Voltage $ Voltage amplifier
Current $ Transimpedance amplifier
Charge $ Charge amplifier
Resistance variation $ Bridge + voltage amplifier
Capacitance variation $ Capcitance-to-voltage converter

Key design issues

Offset and noise $ Chopper stabilization or correlated-double sampling are often used
Parasitics and parasitic effects $ Try to compensate for them as early as possible in the
processing chain (eventually using feedback)

Capcitance-to-voltage converter

Tiny capacitance variations $ ΔC in the aF range
Large capacitances $ C(0) in the pF range
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Integrated Microsystems — Capacitance-to-Voltage Converter

VO

CF

C1

C2

–V

+V

CK

A

CK

CK

CK

CK

CK
CK

Single-ended structure $ C1 = C0 +ΔC and C2 = C0

Differential structure $ C1 = C0 +ΔC and C2 = C0 – ΔC
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Integrated Microsystems — Capacitance-to-Voltage Converter

CK = 1, CK = 0

Q1,CK = C1V, Q2,CK = –C2V, QF,CK = 0
VO = 0

CK = 1, CK = 0

Q1,CK = 0, Q2,CK = 0, QF,CK = CFV0

Node A is isolated $ Q1,CK + Q2,CK + QF,CK = Q1,CK + Q2,CK + QF,CK $ C1V – C2V = CFVO

VO =
C1V – C2V

CF

Single-ended structure $ VO =
C0 +ΔC – C0

CF
V =

ΔC

CF
V

Differential structure $ VO =
C0 +ΔC – C0 +ΔC

CF
V =

2ΔC

CF
V

Typically implemented with fully-differential structure
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Integrated Microsystems — Capacitance-to-Voltage Converter

VO,+

VO,–

CF

CF

C1

C2

+V

–V

CK

CK
CK

CK

CK

CK
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Integrated Microsystems — A/D Converters

A/D converter for sensor applications

Small bandwidth (maximum tens of kHz)
High resolution and accuracy (up to 20 bits)

Oversampled A/D converters

Sigma-delta modulators
Incremental A/D converters

Total quantization noise power $ PQ =
Δ

2

12

Oversampling ratio $ M =
fS
2B

In-band quantization noise power $ PQ,B =
Δ

2

12M

f

PS
D

PQ

PQ,B

fS,1/2 = B fS,2/2
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Integrated Microsystems — Sigma-Delta Modulators (ΣΔMs)

H1

H2

A/D

D/A

+
–

IN OUT +
–

IN OUT

Implementation:
– Discrete-time (DT) → H1(z), H2(Z)
– Continuous-time (CT) → H1(s), H2(s)

e(z)Linearized ModelBlock Diagram

H1

H2

Signal transfer function $ STF =
H1(z)

1 + H1(z)H2(z)
$ STF = 1

Quantization noise transfer function $ NTF =
1

1 + H1(z)H2(z)
$ NTF =

(
1 – z–1

)L
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Integrated Microsystems — Sigma-Delta Modulators (ΣΔMs)

0

4

8

12

16

0 0.5

PS
D

Frequency (Normalized to fS = 1)

Second Order (L = 2)

First Order (L = 1)B

Noise shaping $ Quantization noise pushed at high frequency

In-band quantization noise power $ PQ,B =
Δ

2
π
2L

12 (2L + 1) M2L+1
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Integrated Microsystems — Second-Order ΣΔM

∫ ∫ Latch

fS

IN OUT

Integrator Integrator Comparator
+ ∆/2

– ∆/2
IN OUT

DT Implementation

Resolution
N = 15 log2M – 11.1

Integrator Integrator Comparator

z–1

1 – z–1 1 – z–1 
1 z–1

Q

1 2

– –

– –

+ +

+ +
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Integrated Microsystems — Incremental A/D Converter

∫ Latch

fS

IN

Integrator Comparator
+∆/2 

–∆/2

–

+

Reset

Counter

Reset
OUT

N

QU

Reset at the beginning of each conversione cycle $ U(0) = 0

N-bit resolution $ 2N clock periods $ U(k + 1) = U(k) +
[
IN – (–1)Q(k)+1

Δ/2
]

OUT = 2N+1IN/Δ
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Integrated Microsystems — CT ΣΔM

CT ΣΔM

é Relaxed operational amplifier bandwidth requirements $ Low power consumption
é Sampling at the input of the quantizer $ Inherent antialiasing filtering

Example $ Third-order, single-loop, multi-bit CT ΣΔM [3, 4, 5]

Designed for minimizing power consumption (P) and maximizing dynamic range (DR)

é Feedforward architecture $ Reduced integrator voltage swing
é Multi-bit quantizer (15 levels) $ Reduced jitter sensitivity and quantization noise
é DAC with three-level current-steering elements $ Reduced noise at low input signal levels
é Third-order loop filter with only two operational amplifiers $ Reduced power consumption

Target $ DR > 100 dB and P < 0.5 mW

Among best-in-class A/D converters for MEMS applications
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Integrated Microsystems — CT ΣΔM
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Integrated Microsystems — CT ΣΔM
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Integrated Microsystems — CT ΣΔM
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Integrated Microsystems — CT ΣΔM
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Integrated Microsystems — CT ΣΔM

Frequency  [kHz]
0.1 1 10 100 1000

PS
D

  [
dB

]

-160
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0

Vin = –60.0 dBFS
SNDR = 43.1 dB
 46.0 dBASFDR = 57.6 dB

Vin = –1.0 dBFS

SNDR = 91.3 dB
SDR = 95.5 dB
SNR = 93.4 dB
SFDR = 98.4 dB
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Integrated Microsystems — CT ΣΔM
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Outline
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Conclusions

Crucial aspects in microsystem design

Concurrent design of MEMS device, front-end circuits and package

Choice of microsystem partitioning $ Number of chips, analog/digital boundary

Open issues and trends in microsystem design

Testing and calibration involving physical quantities $ Contributes significantly to
the microsystem cost

Increased accuracy $ Can enable many new applications

Multiple sensors and data fusion $ Neural networks and deep learning
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Conclusions

1990 2000 2010 2020

Digital Age
– Data Storage
– PCs

Internet Age
– Internet search
– Online video 
– Gaming

Mobile Age
– Smartphones
– Mobile networks 
– Social media

Cloud/IoT Age
– Cloud services
– IoT services

Automation Age
– Smart Industry
– Smart Driving
– Automation everywhere

First MEMS Wave

Next MEMS Wave

Va
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