"Beyond 3 Gen Standard Model"

2nd Workshop – NTU, Taiwan, Jan 14-16 2010

Full agenda: <u>http://indico.cern.ch/conferenceOtherViews.py?view=standard&confId=68036</u>

Daniel Whiteson, UC Irvine

Outline

Introduction/Motivation **Constraints** Electroweak constraints Mixing constraints Heirarchy problem Strong coupling/dynamics Searches **Tevatron Direct Searches** Followup: updated t' result Followup: limits as function of BRs **Tevatron Indirect Searches** LHC prospects **Dark Matter connections** Clues from meson mixing?

Motivation

4th generation

A Natural SM extension.

Motivation

4th generation

A Natural SM extension.

<u>Note</u>

PDG says it's ruled out to 6 sigma....

... assuming degenerate masses

Electroweak Constraints

Erkcan showed a general tool for EW oblique parameters.

4th gen allows heavier higgs to be consistent with EW precision

CKM mixing constraints

$$V_{CKM4} = \left(egin{array}{ccccc} V_{ud} & V_{us} & V_{ub} & V_{ub'} \ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \ V_{td} & V_{ts} & V_{tb} & V_{tb'} \ V_{t'd} & V_{t's} & V_{t'b} & V_{t'b'} \end{array}
ight)$$

V_{ud}	=	0.97418	\pm	0.00027	Nuclear Beta decay
V_{us}	=	0.2255	\pm	0.0019	Semileptonic K-decay
V_{ub}	=	0.00393	\pm	0.00036	Semileptonic B-decay

V_{cd}	=	0.230	\pm	0.011	Semileptonic D-decay
V_{cs}	=	1.04	\pm	0.06	Semi- /Leptonic D-decay
V_{cb}	=	0.0412	\pm	0.0011	Semileptonic B-decay

 $V_{tb} > 0.74$

Single Top-production

CKM mixing constraints

$$V_{CKM4} = \left(egin{array}{ccccc} V_{ud} & V_{us} & V_{ub} & V_{ub'} \ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \ V_{td} & V_{ts} & V_{tb} & V_{tb'} \ V_{t'd} & V_{t's} & V_{t'b} & V_{t'b'} \end{array}
ight)$$

 $\begin{aligned} |V_{ub'}|^2 &= 0.0001 \pm 0.0014 \\ &\Rightarrow \text{ Error: } 0.037 \approx 0.74 \cdot \lambda^2 \approx 3.3 \cdot \lambda^3 \\ |V_{td}|^2 + |V_{t'd}|^2 &= -0.0020 \pm 0.0055 \\ &\Rightarrow \text{ Error: } 0.074 \propto 1.5 \cdot \lambda^2 \\ |V_{ts}|^2 + |V_{t's}|^2 &= -0.13 \pm 0.13 \\ &\Rightarrow \text{ Error: } 0.36 \approx 1.6 \cdot \lambda^1 \\ |V_{cb'}|^2 &= -0.14 \pm 0.18 \\ &\Rightarrow \text{ Error: } 0.42 \approx 1.9 \cdot \lambda^1 \\ |V_{t'b}|^2 &< 0.45 \\ &\Rightarrow |V_{t'b}| < 0.67 = 0.67 \cdot \lambda^0 \end{aligned}$

Lenz

CKM mixing constraints

$$V_{CKM4} = \left(egin{array}{cccccc} V_{ud} & V_{us} & V_{ub} & V_{ub'} \ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \ V_{td} & V_{ts} & V_{tb} & V_{tb'} \ V_{t'd} & V_{t's} & V_{t'b} & V_{t'b'} \end{array}
ight)$$

Bounds from FCNC:

$$\begin{array}{c} \underline{b} \\ \underline{a} \\ \underline{t}, c, u \\ W \\ \underline{t}, c, u \\ \underline{b} \\ \underline{d} \\ \underline{t}, c, u \\ \underline{b} \\ \underline{d} \\ \underline{t}, c, u \\ \underline{b} \\ \underline{c} \\ \underline{t}, c, u \\ \underline{c} \\ \underline{b} \\ \underline{t}, c, u \\ \underline{b} \\ \underline{t}, c, u \\ \underline{b} \\ \underline{c} \\ \underline{t}, c, u \\ \underline{b} \\ \underline{c} \\ \underline{t}, c, u \\ \underline{b} \\ \underline{c} \\ \underline{t}, c, u \\ \underline{c} \\ \underline{b} \\ \underline{c} \\ \underline{c$$

• *K*-Mixing: $Re(\Delta_K) = 1 \pm 0.5 (0.25)$ $Im(\Delta_K) = 0 \pm 0.3 (0.15)$

• B_d -Mixing: $|\Delta_{B_d}| = 1 \pm 0.3 (0.1)$ $Arg(\Delta_{B_d}) = 0 \pm 10^{\circ} (5^{\circ})$

a B_s -Mixing: $|\Delta_{B_s}| = 1 \pm 0.3 \, (0.1)$ $Arg(\Delta_{B_s}) =$ free

 $\blacksquare b \to s\gamma$

 $\Delta_{b \to s \gamma} = 1 \pm 0.15 \, (0.07)$

Lenz

CKM constraints

Angles

CP-violating phases

Combined CKM+EW constraints underway

Heirarchy Problem

If 4th family is fairly light (200-300 GeV)

Then can co-exist with Higgs, but doesn't make heirarchy problem any easier. $h^{t',b'}$

(for simplest Higgs sector with one scalar. See Bar-Shalom's talk on composite Higgs & the 4th gen)

(Unless we make other modifications. See PQ Hung talk on a fixed point....)

Strong dynamics

If 4th family is fairly heavy their yukawa couplings get very large, and there may be new strong dynamics.

<u>Good</u>:

No need for a Higgs, replaced by fermion condensate

<u>Bad</u>: If they're very heavy (>600 GeV) then can't use perturbative calculations, worry about partial wave unitarity.

Direct Searches

"It ain't murder until you've found the body..."

Direct b' limits: low mass

<u>LEP: $m_{b'}$ > ~90 GeV</u>

CDF/D0: long lived b'

CDF b' search

<u>Selection</u>

- 2 like-signed leptons
 pt>20 GeV
 at least one isolated
 2 jets
- pt>20 GeV >=1 btags Missing transverse energy >20 GeV

\bar{q}

<u>Sample</u>

2.7/fb

Data (2.7/fb)

Final selection

2 like-signed leptons 2 jets >=1 btags

Missing transverse energy

5-jet $e^+\mu^+$ event

Limits

<u>Limit</u> m_{b'} > 338 GeV

CDF t' search

<u>Selection</u>

1 lepton
 pt>20 GeV
4 jets
 pt>20 GeV
Missing transverse energy
 >20 GeV

p

Sample

2.8/fb

Room on tail for signal events

Events

Followup: t' result

22

Followup: t' result

Old data, new modes

WWb data sensitive to both $b' \rightarrow Wt \rightarrow WWb$ $t' \rightarrow Wb' \rightarrow WWt \rightarrow WWWb$

Four corners

DW et al, to appear

All data

Limits on lighter quark mass (b')

DW et al, to appear

Wq data

Wq data provides strong limits on t' mass, imply strong limits on b' if m_{b'} > m_{t'}, stronger than limits from WWb data.

DW et al, to appear

Boosted Ws?

Angles between decay products becomes small

In hadronic mode, jets merge into one.

Collinear approximation

Use lepton angle to resolve t' mass under-constraint in dilepton channel

CDF: Majorana neutrinos

Production via W has been studied

hep-ph/0604064

LEP limits at 90 GeV

Majorana neutrinos

<u>Production via Z</u>

avoids WIN vertex in production mechanism

One mass point studied for LHC

Reconstruction

arXiv:1001.1229 Reconstruct N mass as M_{lii}

Mass reconstruction

Signal and backgrounds

Tevatron Power

Study using parametric detector sim (PGS) Not official CDF results

Indirect H->WW

4th family increases production rate of H by factor of 9

Indirect t' -> th

JHEP 0906:001,2009, arXiv:0902.0792v2

<u>Selection</u>

1 lepton 5+ jets 3+ btags

LHC prospects

LHC has much larger rates for heavy quarks

LHC-specific backgrounds

At Tevatron, true same-charge leptons are rare Primarily from trilepton processes

pp nature of LHC beams offers new background with true same-sign dileptons

CMS light b'

5

 $b'\overline{b'} \rightarrow bZcW$ $\rightarrow q\ell\nu$

m(b') @ 1 fb ⁻¹	200 GeV	225 GeV	250 GeV
Cross-section	113 pb	65 pb	11 pb
Expected Yields	29.9	16.7	11.4
Background	13.8	13.8	13.8
Significance	3.8 σ	1.9 σ	1.1 σ

CMS heavy b'

m(b') @ 200pb ⁻¹	300 GeV	400 GeV	500 GeV
Cross-section	13.6 pb	2.8 pb	0.78 pb
Expected Yields	34.08	10.58	3.52
Background	1.08	1.08	1.08
Significance	9.0 σ	3.7 σ	1.4 σ

ude b' masses less than 485 (405) GeV with 200 (60) pb

CMS T_{5/3}

Darkmatter

Discovery for T' $\overline{T'} \rightarrow t X \overline{t} X$ at 10 TeV LHC

Clues?

Combining with additional external constraints gives smaller SM p-value.

CDF/D0 combined

hints from B factories

Fun theory

<u>arXiv:hep-ph/0611107v2</u> Fourth Generation CP Violation Effect on $B \to K\pi$, ϕK and ρK in NLO PQCD

Wei-Shu Hou¹, Hsiang-nan Li^{2,3}, Satoshi Mishima⁴, and Makiko Nagashima⁵

We study the effect from a sequential fourth generation quark on penguin-dominated two-body nonleptonic B meson decays in the next-to-leading order perturbative QCD formalism. With an enhancement of the color-suppressed tree amplitude and possibility of a new CP phase in the electroweak penguin, we can account better for $A_{\rm CP}(B^0 \to K^+\pi^-) - A_{\rm CP}(B^+ \to K^+\pi^0)$. Taking $|V_{t's}V_{t'b}| \sim 0.02$ with phase just below 90°, which are consistent with the $b \to s\ell^+\ell^-$ rate and the B_s mixing parameter Δm_{B_s} , we find a downward shift in the mixing-induced CP asymmetries of $B^0 \to K_S \pi^0$ and ϕK_S . The predicted behavior for $B^0 \to \rho^0 K_S$ is opposite.

arXiv:hep-ph/0610385v4

Large Time-dependent CP Violation in B^0_* System and Finite $D^0-\bar{D}^0$ Mass Difference in Four Generation Standard Model

Wei-Shu Hou^a, Makiko Nagashima^b, and Andrea Soddu^c

Combining the measured B_s mixing with $b \to s\ell^+\ell^-$ rate data, we find a sizable 4 generation t' quark effect is allowed, for example with $m_{t'} \sim 300 \text{ GeV}$ and $V_{t's}^* V_{t'b} \sim 0.025 e^{\pm i 70^\circ}$, which could underly the new physics indications in CP violation studies of $b \rightarrow s\bar{q}q$ transitions. With positive phase, large and negative mixing-dependent CP violation in B_s system is predicted, $\sin 2\Phi_{B_s} \sim -0.5$ to -0.7. This can also be probed via width difference methods. As a corollary, the short distance generated $D^0 - \bar{D}^0$ mass difference is found to be consistent with, if not slightly higher than, recent B factory measurements, while CP violation is subdued with $\sin 2\Phi_D \sim -0.2$.

Summary

A lot of experiment and theoretical activity

Much I didn't mention:

- Reinterpret observables for CKM triangle in 4th gen mode
- Understand CP violation in presence of 4th gen
- explore Higgs sectors motivated by condensates of 4th gen fermions

LHC should discover or exclude up to large masses