Unusual Higgs Decays from Gauge Mediated Supersymmetry Breaking

David Morrissey

with

John Mason and David Poland

PRD80:115015,2009 - hep-ph/0909.3523

West Coast ATLAS Seminar, April 7, 2010

The Big Picture

• $h^0 \to \chi_1^0 \chi_1^0$ $\chi_1^0 \to \tilde{g} \gamma$ promptly in low-scale GMSB

 \Rightarrow collider signal of $\gamma\gamma + E_T$

Motivation

We really want to find the Higgs!

```
(Or convince ourselves it's not there.) SU(2)_L \times U(1)_Y \rightarrow U(1)_{em} when \langle H \rangle \neq 0
```

- Lower mass bound: $m_h > 114.4 \, \text{GeV} \, (\text{LEP} \text{SM Higgs}).$
- Indirect evidence from precision electroweak constraints:

Higgs Puzzles and Supersymmetry

• The Higgs potential inducing $\langle H \rangle = v = 174 \, \text{GeV}$ is unstable under quantum corrections:

$$\Delta v^2 \sim \frac{g_{\psi}^2}{(4\pi)^2} M_{\psi}^2.$$

Supersymmetry (SUSY) fixes this:

$$---- + ---- = 0 + SUSY$$

SUSY Complications

- Supersymmetry must be broken.
- ullet If SUSY breaking is soft with $m_{soft}\lesssim 1000\,{
 m GeV}$, the Higgs potential is still protected by SUSY.

• Flavour Problem:
$$-\mathcal{L}_{soft}\supset m_{sd}^2\,\widetilde{s}^*\tilde{d}+h.c.$$

$$\overset{d}{\longrightarrow}\overset{\tilde{d}}{\stackrel{\tilde{s}}{\longrightarrow}}\overset{\tilde{s}}{\longrightarrow}\overset{s}{\longrightarrow}\overset{s}{\longrightarrow}\overset{s}{\longrightarrow}\overset{s}{\longrightarrow}\overset{s}{\longrightarrow}\overset{s}{\longrightarrow}\overset{d}{\longrightarrow}\overset{d}{\longrightarrow}\overset{s}{\longrightarrow}\overset{s}{\longrightarrow}\overset{s}{\longrightarrow}\overset{d}{\longrightarrow}\overset{d}{\longrightarrow}\overset{s}{\longrightarrow}\overset{s}{\longrightarrow}\overset{d}{\longrightarrow}\overset{d}{\longrightarrow}\overset{s}{\longrightarrow}\overset{s}{\longrightarrow}\overset{s}{\longrightarrow}\overset{d}{\longrightarrow}\overset{s}{\longrightarrow}\overset{$$

$$\Rightarrow \frac{|m_{\tilde{sd}}^2|}{m_{soft}^2} \lesssim 10^{-3} \qquad \text{[Ciuchini et al. '96]}$$

SUSY breaking must have special properties . . .

Gauge Mediated SUSY Breaking (GMSB)

- Gauge interactions are the same for all flavours.
 - ⇒ soft masses are flavour-independent! (up to CKM)
- The gravitino is the lightest superpartner (LSP) if

$$M \ll \frac{g^2}{(4\pi)^2} M_{\rm Pl}.$$

Minimal Implementation of Gauge Mediation

• $W \supset \lambda \, X \, \Phi^c \Phi$ $X \to \langle X \rangle = M + F \, \theta^2 \to \text{SUSY breaking in a hidden sector}$ $\Phi, \, \Phi^c = \mathbf{5}, \, \mathbf{\bar{5}} \in SU(5) \supset SU(3)_c \times SU(2)_L \times U(1)_Y$

Scalar Superpartner Soft Masses:

$$m_i^2 \simeq \sum_{a=1}^3 \frac{2 g_a^4}{(4\pi)^4} C_a^i \left| \frac{F}{M} \right|^2$$

⇒ flavour-universal and diagonal

• Gaugino Superpartner Soft Masses:

Minimal GMSB Spectra

• Soft masses go like g_a^2 .

 $M_1 \sim \sqrt{m_{\tilde{\ell}_R}^2}$ are the smallest soft masses: $g_1 < g_2 < g_3$.

⇒ get a light mostly-Bino neutralino and light sleptons

Mass Bounds:

$$m_{ ilde{\ell}_R}~\gtrsim~100\,{
m GeV}~{
m from~LEP~searches}$$
 $\simeq~m_{\chi_1^0}~{
m in~minimal~GMSB}$ $m_{h^0}~\lesssim~135\,{
m GeV}~{
m for}~m_{soft}\lesssim 2\,{
m TeV}$

 \Rightarrow can't have $h^0 \to \chi_1^0 \chi_1^0$ in minimal GMSB

 $(H^0,\,A^0 o \chi_1^0\chi_1^0 \,\, {
m is \,\, possible \,\, [Diáz-Cruz,Ghosh,Moretti\,\,'03]})$

But this is only the minimal case!
 Things can be much more complicated . . .

General Gauge Mediation and Beyond

• GGMSB parametrizes "all" possibilities.

[Meade, Seiberg, Shih '08]

- Assumptions:
 - 1. $m_{soft} \rightarrow 0$ as $g_{SM} \rightarrow 0$
 - 2. g_{SM} remains weakly coupled
- ullet Expand "blobs" in powers of g_{SM} .

Symmetries, SUSY lead to a finite set of basis functions.

• Gaugino Mass Blob:

Scalar Mass Blob:

- Basis functions $\{A_a, B_a\}$ depend only on the gauge group, and are mutually independent.
 - \Rightarrow 3 distinct complex B_a for gaugino masses
 - \Rightarrow 3 distinct real A_a for scalar masses
- Models can be constructed that span this set. [Buican et al. '09]

- ullet M_1 and $m_{\tilde{\ell}_R}^2$ are independent in GGMSB.
 - ⇒ can have a light neutralino and heavier sleptons
 - $\Rightarrow h^0 \rightarrow \chi_1^0 \chi_1^0$ could be possible
- High-scale GMSB: χ_1^0 is metastable
 - → invisible Higgs decays [Éboli+Zeppenfeld '00]
- Low-scale GMSB: $\chi_1^0 \to \tilde{g} \gamma$ promptly
 - → new signatures

LEP Bounds on a Light Neutralino

- LEP: e^+e^- with $\sqrt{s} \le 209 \, \text{GeV}$
- Main production modes:

- $\sigma(e^+e^- \to \chi_1^0 \chi_1^0 \to \gamma \gamma + E_T) < 10 fb$
- $BR(Z^0 \to \chi_1^0 \chi_1^0 \to \gamma \gamma + E_T) < 3 \times 10^{-6}$

 \Rightarrow need small neutralino couplings to gauge bosons.

Tevatron Bounds on a Light Neutralino

- Tevatron: $p\bar{p}$ with $\sqrt{s} = 1.96 \, \text{TeV}$
- Main SUSY Production Modes:

CDF GMSB search:

$$\sigma_{tot}(p\bar{p} \to \chi_i^{0,\pm} \chi_j^{0,\mp} \to X + \gamma \gamma + E_T) < 20 \, fb$$

 \Rightarrow need small neutralino couplings to gauge bosons.

Higgs Decays to Neutralinos

• LEP+Tevatron \Rightarrow light neutralino must be mostly Bino: \tilde{B}^0 doesn't couple directly to gauge bosons, $\tilde{H}_u, \, \tilde{H}_d, \, \tilde{W}^3$ do couple directly.

$$\chi_1^0 \simeq \tilde{B}^0 - \epsilon \tilde{H}, \quad \text{with} \quad \epsilon \sim s_\beta c_\beta \left(rac{v}{\mu}
ight)$$

Higgs-neutralino couplings come from

$$-\mathcal{L} \supset \pm \frac{1}{\sqrt{2}} g_Y \, \tilde{B}_0 \tilde{H}_i \, H_i^0$$

- $W^{\pm}/Z^0 \, \chi_1^0 \chi_1^0$ coupling $\propto \epsilon^2$
- $h^0 \chi_1^0 \chi_1^0$ coupling $\propto \epsilon$

$$\Rightarrow h^0 \rightarrow \chi_1^0 \chi_1^0$$
 can compete with $h^0 \rightarrow b\bar{b}$

Parameter Scans

- $BR(h^0 \to \chi_1^0 \chi_1^0) \simeq 0.15$ is possible. Maximal for small $\tan \beta$, $|\mu|$.
- Tevatron bounds limit $|\mu| \gtrsim 250 \, \text{GeV}$.

Neutralino Decays to Photons and Gravitinos

- Gravitino = mixture of the gravitino and the goldstino.
- Goldstino Equivalence Theorem: [Fayet '76] "longitudinal" s=1/2 goldstino components couple as 1/F "transverse" s=3/2 SUGRA components couple as $1/M_{\rm Pl}^2$
- Effective Goldstino Coupling:

$$\mathcal{L} \supset \frac{1}{4\sqrt{2}F} \bar{\lambda} \gamma^{\alpha} \sigma_{\mu\nu} \, \partial_{\alpha} \tilde{g} \, F^{\mu\nu} + \dots$$

• This leads to

$$c au(\chi_1^0 o ilde{g}\gamma) \simeq rac{48\pi}{c_W^2} rac{m_{3/2}^2 \, M_{
m Pl}^2}{m_{\chi_1^0}^5},$$

• $m_{3/2} \simeq 0.6 \, \mathrm{eV} \, (F \simeq 50 \, \mathrm{TeV})$ gives "prompt" decays:

• $D\emptyset$ ECAL can "point" photons to within 2cm. (CDF does slightly worse.)

Tevatron Higgs Searches

- $BR(h^0 \to \gamma \gamma) \simeq 2 \times 10^{-3}$ in the SM Tevatron searches limit $(\sigma BR) \lesssim 15 (\sigma BR)_{SM}$.
- $BR(h^0 \to \chi_1^0 \chi_1^0 \to \gamma \gamma E_T) \simeq 0.15$ is possible. A potential signal?
- Study Sample Point:

$$M_1=$$
 50 GeV, $\mu=$ 300 GeV, $aneta=$ 5.5, $m_{\tilde{t}}\simeq$ 2000 GeV, $A_t=$ 0, $m_{A^0}=$ 1000 GeV.

This is consistent with LEP+Tevatron and gives

$$BR(h^0 \to \chi_1^0 \chi_1^0) \simeq 0.11, \ m_{h^0} \simeq 114.7 \, {\rm GeV}, \ m_{\chi_1^0} \simeq 46.6 \, {\rm GeV}.$$

ullet Tevatron (DØ) search: $p_T^{\gamma} > 25 \ {
m GeV}$, $|\eta| < 1.1$

- This inclusive channel is swamped by background.
- Kinematic End-Point:

$$m_{\gamma\gamma} \leq \frac{2\,m_{\chi_1^0}^2}{m_h - \sqrt{m_h^2 - 4m_{\chi_1^0}^2}}$$

Tevatron (DØ) GMSB Searches

- ullet Cuts: $p_T^{\gamma} >$ 25 GeV, $|\eta| < 1.1$, $E_T >$ 30, 60 GeV.
- ullet With $ot\!\!\!/_T > 30 \, \text{GeV}$,

$$S \simeq 2.7/fb^{-1}, \quad B \simeq 10/fb^{-1}$$

- $\Rightarrow S/\sqrt{B} \simeq 3$ with $10 \, fb^{-1}$ of data
- \Rightarrow better than SM Higgs sensitivity for $m_h \lesssim 125\,\mathrm{GeV}$
- Could be improved with smarter cuts:

LHC Higgs Searches

- Inclusive $h^0 \to \gamma \gamma$ is the best LHC search mode for a SM Higgs with $m_{h^0} \lesssim 135\,{\rm GeV}.$
- Discovery requires about $15 fb^{-1}$ of data.
- With $h^0 \to \chi_1^0 \chi_1^0 \to \gamma \gamma E_T$ there are more photonic events.
- We study the same sample point as before:

$$BR(h^0 \to \chi_1^0 \chi_1^0) \simeq 0.11, \ m_{h^0} \simeq 114.7 \, {\rm GeV}, \ m_{\chi_1^0} \simeq 46.6 \, {\rm GeV}.$$

LHC Inclusive Diphotons

ullet ATLAS Inclusive Higgs: $p_T^{\gamma} >$ 40, 25 GeV, $|\eta| <$ 2.5

ullet Requiring 60 GeV $< m_{\gamma\gamma} <$ 90 GeV gives

$$S/\sqrt{B} = 1.1$$
 with $1 fb^{-1}$ $(S/B \sim 5 \times 10^{-4})$

 \Rightarrow 20 fb^{-1} needed for discovery (but systematics ...)

Exclusive
$$(W/Z) h^0 \rightarrow \gamma \gamma + n \ell$$

- ullet Requiring a lepton from the W/Z makes this channel clean.
- CMS Search: $p_T^{\gamma} = 35$, 20 GeV, $|\eta| < 2.5$, $N_{\ell} \ge 1$, ...
- \bullet With 20 GeV $< m_{\gamma\gamma} <$ 90 GeV we find (after cuts)

$$S \simeq 7 \, fb, \, B \simeq 28 \, fb \quad \Rightarrow S/\sqrt{B} \simeq 1.26 \quad \text{with } 1 \, fb^{-1}.$$

 \Rightarrow discovery with about $16 fb^{-1}$ of data

Unexpected New Physics

- $h^0 \to \chi_1^0 \chi_1^0 \to \gamma \gamma E_T$ is not a generic SUSY signal, but it is not so crazy either.
- Planned $D\emptyset$ searches for GMSB and ATLAS searches for $(W/Z) h^0 \to \gamma \gamma$ are potentially sensitive to this mode.
- CDF GMSB searches use a cut $H_T = \sum_i p_T^i + E_T > 200 \, {\rm GeV}$ which eliminates this signal.
- ullet ATLAS non-inclusive $h^0 \to \gamma \gamma$ searches apply $p_T^{\gamma_1} \gtrsim 50~{
 m GeV}$ which removes most of this signal.
- It is important to search broadly in LHC data!

Summary

- $h^0 \to \chi_1^0 \chi_1^0$ with $\chi_1^0 \to \gamma \tilde{g}$ promptly.
- This does not occur in minimal MSSM GMSB.
 It is possible in generalized GMSB scenarios.
- Could be visible at the Tevatron and the LHC.
- Future Directions:
 - Non prompt $\chi_1^0 \to \gamma \, \tilde{g}$ decays.
 - NMSSM #1: larger $BR(h^0 \to \chi_1^0 \chi_1^0)$ with smaller tan β .
 - NMSSM #2: $h^0 \to \chi_1^0 \chi_1^0$ with $\chi_1^0 \to a^0 \tilde{g}$ and $a^0 \to b \bar{b}, \tau \bar{\tau}$.
 - NMSSM #3: $h^0 \rightarrow \chi_2^0 \chi_2^0$ with $\chi_2^0 \rightarrow \chi_1^0 X$ and $\chi_1^0 \rightarrow \gamma \tilde{g}$.