Resistive MPGD Processes and problems

Rui de Oliveira 12/02/2020

CERN RD51 mini-week

Goal of resistive protections

- Make Sparks invisible
- Simplify the detector structure
- Reduce the cost
- Be large size compatible
- Aim to use only industrial processes
- Achieve performances competitive with best existing MPGDs
 - Rate
 - Space resolution
 - Time resolution
 - Energy resolution
 - Low mass

Type of resistive MPGDs

- Resistive Micro-Megas
 - Single resistive layer
 - 2 resistive layer
- Micro-Resistive-Well
 - Single resistive layer
 - 2 resistive layer protection
- Resistive GEM
- Resistive THGEM

DOCA (Distance Of Closest Approach)

A breakdown of the resistive layer means creating a low Ohmic channel in the layer

If DOCA is set correctly, the next damage (current instabilities) will come from electron/ion bombardment→ - temperature rising (joule effect) → material evaporation → material deposition

	Thermal conductivity W/mK	This effect can be reduced: -firstly by far, avoiding local repetitive sparks → get rid of contaminants like dust.
ss epoxy	0.2	-by increasing the melting point of materials \rightarrow higher the better for protection
	0.18	-by increasing the thermal conductivity of materials \rightarrow good thermal conductors & thicker layers
uminium	235	-by reducing the unburn of charges induced by the spark / by increasing the resistive value
opper	384	
<u>Natural</u> diamond	895–1350	

DOCA test

OV HV

-11 patterns \rightarrow DOCA ranging from 1.0mm down to 0.1 mm -Single hole test -DLC 60M/Sqr -4 sets have been tested (A,B,C,D)

Discussion on DOCA

- First observation, the voltage to see current is close to 800V in air!
 - We were expecting 650V for a 50um gap (like GEMs)
- Second , the current shape during overvoltage depends on DOCA distance
 - Smooth current increase with long DOCA
 - sudden increase to uA with small DOCA
- After 30 sec with 30nA in one hole we can observe a voltage drop
 - After several session of 30s , it stabilize in between 550V to 650V (0 current voltage)
 - No voltage breakdown , no visible damages on any structures.
- We want to look now at the "sparks" nature when operating in overvoltage mode.
 - We would like to study the single hole spark current shape and rate with a fast oscilloscope .
 - This is possible with DLC since we do not damage the device
- Preliminary results : with 60Mohms/Sqr DLC , the DOCA can be as low as 0.1mm without visible damages

DLC naming

Resistive measurements Probe calibration

|--|--|

DLC Film	Surface Resistivity (kΩ/□)	Surface Resistance From The Probe (kΩ)	Coefficient Factor	Error (%)
1	359	345	1.041	4
2	386	364	1.060	6
3	403	380	1.061	5

- 7cm x 7cm square of DLC
 - lateral silver connection to create
 1 Square
- Connect probe to Ohm-meter
- Compare probe measurement to silver connections measurement
- Error in the range of 5%
- We can directly read the value from the Ohm-meter

Different Resistive protection approach with Micro-Megas

Medium rate detectors

High rate detectors

Resistive Micromegas:

ATLAS NSW Strips 100k/Sqr 2m x 1m

ILC TPC 30cm x 15cm 3mm x 8mm pads 2M/Sqr sharing layer

32 T2K upgrade 40cm x40cm 1cm x 1cm pads 500K/Sqr sharing layer

20 LSBB 50cm x 50cm X/Y 1mm/1mm 30M/Sqr sharing layer

1 Demonstrator 5cm × 5cm 1mm × 3mm pads 2R layers 30M/sqr

5 ILC DHCAL 50cm diameter pads 1cm x 1cm 5M/Pad

2 Demonstrators 5cm × 5cm pads 1mm × 3mm 5 and 20M/pad

2 Printed layers

2 "DLC+" structure with SBU process Sequential Build Up

-100% compatible with STD PCB processes

DOCA: 3mm

Summary on R-MM

- We have now solutions for :
 - Large signal spreading
 - High rate
 - Small pads
 - Large size
- We need to improve the DLC/Cr/Cu deposit to propose a solution 100% compatible with industry (out of the BULK process).
- We need also to work on the DLC resistive value prediction with "DLC+" materials
- Resistive detectors need better cleanliness during production than STD ones
- DLC can be patterned

Different Resistive protection in µRwell

µRwells examples :

10cm x 10cm µRwell detector "study kit"

10cm x 10cm µRwell detector drill and fill And SBU

Large µRwell detector Like CMS GE21 module M4 120cm x 55cm

Classical µRwell

+ 1 gluing/1 patterning/1 etching Probably the simplest MPGD Single piece Flexible Delivered to : Stony Brook, Novosibirsk, Virginia ,China, Frascati Sizes from 10cm x 10cm up to 1.2m x 0.5m

Rui De Oliveira

-Extra Large DOCA

DOCA: 6mm

- -Any resistive value can be used
- -Adjustable evacuation point density VS rate
- -No major resistive change during production
- -Needs copper plated DLC+
- -possible layers miss-registration up to 0.5mm in large size
 - -Miss-registration critical above 0.5mm
- -100% compatible with STD PCB processes

0.7mm

Summary on uRwell

- We have now solutions for :
 - Large spreading
 - High rate
 - Small pads
 - Large size
- We need to improve the "DLC+" material to propose a solution 100% compatible with industry.
- We need also to work on the DLC resistive value prediction with "DLC+" materials
- DLC can be patterned

DLC Resistive GEM

FTM process

Minimizing distortions with sectored GEM electrodes

A.P. Marques^{a,b}, F.M. Brunbauer^{a,*}, H. Müller^a, R. de Oliveira^a, E. Oliveri^a, D. Pfeiffer^{a,c}, L. Ropelewski^a, J. Samarati^{a,c}, F. Sauli^a, L. Scharenberg^{a,d}, L. Shang^e, M. van Stenis^a, S. Williams^a, Y. Zhou^f

In progress Waiting for good base material

Resistive THGEM

Resistive LEM

- Quenching of discharges with resistive 50×50 cm² LEM :
- Made at CERN EP-DT-EF :
 - copper side facing readout anode
 - DLC on 50 μ m APICAL polyimide film (250 M Ω / \Box)
 - same geometry as CFR-35 (ProtoDUNE-DP)
 - no rims, no gold plating on copper face.
- Tests in progress at CEA/Irfu.
- R&D will continue in collaboration with CERN.

05/12/2019

LBNC Review Meeting

Problems with -DLC -DLC+

DLC uniformity

1m x 0.6m foils 500Kohms/square target

"DLC+" adhesion

Scalpel cut

After tape peeling

Adhesion	force estimation
100%	Base material
50%	HEIFEI 300 deg deposition
40%	ESS
30%	HEIFEI center of the foil
10%	HEIFEI outer Part

The DLC Value is always much lower after copper removal (HEIFEI but also ESS) by a factor of 4 to 10

"DLC+" : present adhesion is just at the acceptable level

conclusion

- We need to Improve the DLC+ and DLC++ materials
 - But robust solutions with simple DLC already exist
- We need to work on DLC uniformity
 - But the present uniformity is ok for a lot of applications
- DOCA study should be continued
 - Find the parameter to adjust material evaporation (design and materials)

Thank you

Questions?

Voltage versus current characteristics for neon gas at 1 <u>Torr</u> pressure between flat electrodes spaced 50 cm.

A-D dark discharge

A-B: non-self-sustaining discharge and collection of spontaneouslygenerated ions.

B-D: the <u>Townsend region</u>, where the cascade multiplication of carriers takes place.

D-I glow discharge

D-E: transition to a glow discharge, breakdown of the gas.

E-G: transition to a normal glow; in the regions around G, voltage is nearly constant for varying current.

G-I: represents abnormal glow, as current density rises

I-K arc discharge

Thin Solid Films Volume 595, Part A, 30 November 2015, Pages 171-175

Electrical insulation and breakdown properties of SiO_2 and Al_2O_3 thin multilayer films deposited on stainless steel by physical vapor deposition

Author links open overlay panel<u>JosuMartinez-</u> Perdiguero^{ab}LuciaMendizabal^bMaria C.Morant-<u>Miñana^{ac}IreneCastro-</u> Hurtado^{ac}AritzJuarros^{ab}RocíoOrtiz^{ad}AinaraRodriguez^{ac}

Material	Dielectric Strength (kV/cm)	Dielectric Constant	Thermal Conductivity (W/mK)	Electrical Resistivity (Ohm-cm)	Loss Tangent	Thermal Expansion Coefficient (10 ⁻⁶ per °C)
Diamond	10,000 typical (30,000 reported)	5.6 to 5.7	1800 to 2000	10 ¹³ to 10 ¹⁶	6 x 10 ⁻⁴ @ 40 Hz 0.2 x 10 ⁻⁴ @ 100 Hz 0.5 x 10 ⁻⁴ @ 145 GHz	1
Fused Silica (SiO2)	400	3.8	1.4	> 10 ¹⁰	0.2 x 10 ⁻⁴ @ 1 MHz	0.5
Aluminum Nitride (AlN)	170	8.5 to 9.7	170 to 220	> 10 ¹⁴	30 x 10 ⁻⁴ @ 8.5 GHz	3
Beryllium Oxide (BeO)	138	6.5 to 6.9	250 to 300	10 ¹⁴ to 10 ¹⁶	3 x 10 ⁻⁴ @ 8.5 GHz	6.5
Alumina (Al2O3)	134	8.5 to 8.9	20 to 30	> 10 ¹⁴	2 to 3 x 10 ⁻⁴ @ 1 MHz	2.6

figure 5. Dielectric, resistivity and thermal properties of diamond and other electrically

insulating material. Source: NIST, Manufacturers and R&D Literature

Properties	Polyetherimide	FPE	DLC	PTFE	Kapton
Operation					
temperature (C)	210	250	250	260	300
Dielectric constant	3.2	2.9	3.5	2.1	3.3
Loss at 1kHz					
(10 ⁻³) (25°C)	2	2.6	1	0.5	2
Dielectric strength					
(kV/mm)	430	400-550	650	296	420
Tensile strength					
(ksi)	14	9.5	-	3	17

figure 6. Capacitors dielectric materials comparison. Source: IEEJ Dielectric Materials for Capacitors