Resistive MPGD Processes and problems

Rui de Oliveira 12/02/2020
CERN RD51 mini-week

Goal of resistive protections

- Make Sparks invisible
- Simplify the detector structure
- Reduce the cost
- Be large size compatible
- Aim to use only industrial processes
- Achieve performances competitive with best existing MPGDs
- Rate
- Space resolution
- Time resolution
- Energy resolution
- Low mass

Type of resistive MPGDs

- Resistive Micro-Megas
- Single resistive layer
- 2 resistive layer
- Micro-Resistive-Well
- Single resistive layer
- 2 resistive layer protection
- Resistive GEM
- Resistive THGEM

DOCA

Breakdown of the resistive layer \longrightarrow No effect on the resistive layer

A breakdown of the resistive layer means creating a low Ohmic channel in the layer

The most critical damage in this protection system is the resistive material breakdown due to the voltage set by the spark.
-This BV is an intrinsic parameter of resistive material.
-Setting a good DOCA can prevent any breakdown of the resistive layer.
-This is first barrier, if it fails there is no control on the spark current.

If DOCA is set correctly, the next damage (current instabilities) will come from electron/ion bombardment \rightarrow

- temperature rising (joule effect) \rightarrow material evaporation \rightarrow material deposition

Material	Thermal conductivity W/mK
Glass epoxy	0.2
PI	0.18
Aluminium	235
$\underline{\text { Copper }}$	384
Natural $\underline{\text { diamond }}$	$895-1350$

This effect can be reduced:
-firstly by far, avoiding local repetitive sparks \rightarrow get rid of contaminants like dust
-by increasing the melting point of materials \rightarrow higher the better for protection
-by increasing the thermal conductivity of materials \rightarrow good thermal conductors \& thicker layers
-by reducing the amount of charges induced by the spark \rightarrow by increasing the resistive value

DOCA test

Discussion on DOCA

- First observation, the voltage to see current is close to 800 V in air!
- We were expecting 650 V for a 50 um gap (like GEMs)
- Second ,the current shape during overvoltage depends on DOCA distance
- Smooth current increase with long DOCA
- sudden increase to uA with small DOCA

- After 30 sec with 30 nA in one hole we can observe a voltage drop
- After several session of 30 s, it stabilize in between 550 V to 650 V (0 current voltage)
- No voltage breakdown, no visible damages on any structures.
- We want to look now at the "sparks" nature when operating in overvoltage mode.
- We would like to study the single hole spark current shape and rate with a fast oscilloscope
- This is possible with DLC since we do not damage the device
- Preliminary results : with $60 \mathrm{Mohms} / \mathrm{Sqr}$ DLC, the DOCA can be as low as 0.1 mm without visible damages

DLC naming

Resistive measurements
 Probe calibration

					$7 \mathrm{~cm} \times 7 \mathrm{~cm}$ square of DLC - lateral silver connection to create 1 Square - Connect probe to Ohm-meter - Compare probe measurement to silver connections measurement
$\begin{aligned} & \text { DLC } \\ & \text { Film } \end{aligned}$	Surface Resistivity (k』/■)	Surface Resistance From The Probe (k Ω)	Coefficient Factor	Error (\%)	
1	359	345	1.041	4	
2	386	364	1.060	6	
3	403	380	1.061	5	

Different Resistive protection approach with Micro-Megas

Medium rate detectors

- 1 DLC

High rate detectors

SBU

Mix

- MIX DLC and screen printed

Resistive Micromegas:

ATLAS NSW
Strips 100k/Sqr $2 m \times 1 m$

ILC TPC
$30 \mathrm{~cm} \times 15 \mathrm{~cm}$
$3 \mathrm{~mm} \times 8 \mathrm{~mm}$ pads $2 M /$ Sqr sharing layer

32 T2K upgrade $40 \mathrm{~cm} \times 40 \mathrm{~cm}$
$1 \mathrm{~cm} \times 1 \mathrm{~cm}$ pads 500K/Sqr sharing layer

20 LSBB
$50 \mathrm{~cm} \times 50 \mathrm{~cm}$
$X / Y 1 \mathrm{~mm} / 1 \mathrm{~mm}$
30M/Sqr sharing layer

1 Demonstrator
$5 \mathrm{~cm} \times 5 \mathrm{~cm}$
$1 \mathrm{~mm} \times 3 \mathrm{~mm}$ pads
$2 R$ layers $30 \mathrm{M} / \mathrm{sqr}$

5 ILC DHCAL
50 cm diameter pads $1 \mathrm{~cm} \times 1 \mathrm{~cm}$ $5 \mathrm{M} / \mathrm{Pad}$

2 Demonstrators
$5 \mathrm{~cm} \times 5 \mathrm{~cm}$ pads $1 \mathrm{~mm} \times 3 \mathrm{~mm}$ 5 and 20M/pad

2 Printed layers

PCB
-Extra Large DOCA
-Embedded Res should be less than 10KOhms/square - Large pads

- Accurate layers registration even in large size -No DLC needed
-High rate detectors
Coverlay gluing + drilling + via fill

Resistive paste resistors (10KOhms/square max)

Coverlay gluing + via fill + top resistive printing (100K max)
$1 \mathrm{~cm} \times 1 \mathrm{~cm} \mathrm{pad} \rightarrow$ Ok There is space to create 2 to 20 Mohms Resistor with $10 \mathrm{~K} /$ sqr paste
$1 \mathrm{~mm} \times 3 \mathrm{~mm}$ pad \rightarrow Bad result There is no space to create 2 to 20 Mohms Resistor with 10 k paste

2 "DLC+" structure with SBU process Sequential Build Up

DOCA: 3 mm

MIX method
PCB

- Any resistive value
- Maximized evacuation point location -No major resistive change during production -Needs simple DLC foils
-no problem with large size layers registration -the filling technic is not STD in PCB world -Ultra high rate detectors
DLC Gluing
DLC pattern

Drilling

'BULKage'

Summary on R-MM

- We have now solutions for:
- Large signal spreading
- High rate
- Small pads
- Large size
- We need to improve the DLC/Cr/Cu deposit to propose a solution 100% compatible with industry (out of the BULK process).
- We need also to work on the DLC resistive value prediction with "DLC+" materials
- Resistive detectors need better cleanliness during production than STD ones
- DLC can be patterned

Different Resistive protection in μ Rwell

High rate detectors

μ Rwell

- Single DLC layer

DF

SBU

μ Rwells examples:

$10 \mathrm{~cm} \times 10 \mathrm{~cm}$ μ Rwell detector "study kit"

$10 \mathrm{~cm} \times 10 \mathrm{~cm}$ μ Rwell detector drill and fill And SBU

Large μ Rwell detector Like CMS GE21 module M4
$120 \mathrm{~cm} \times 55 \mathrm{~cm}$

Classical μ Rwell

$+$
1 gluing/1 patterning/1 etching
Lateral current evacuation
Probably the simplest MPGD
Single piece
Flexible

Delivered to: Stony Brook, Novosibirsk, Virginia ,China, Frascati Sizes from $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ up to $1.2 \mathrm{~m} \times 0.5 \mathrm{~m}$

SG type:
 Silver or Cu Grid


```
-Really simple construction
- Low cost
- Any resistive value can be proposed -Adjustable evacuation line density VS rate
-Efficiency is design dependent
-No major resistive change during production
-Needs copper plated "DLC+"
-DOCA accuracy depends on mesh to line registration
-Subject to 0.5 mm line to mesh miss-registration in 1 m size
-Mesh to line miss-registration critical above 100um
-Needs an distortion scaling system to pattern the mesh
```


0.25 mm for 80 M
0.1 mm Cu line, 12 mm pitch
0.6 mm blind zone \rightarrow efficiency above 97%

DF Type

SBU type

Drill
Plate \& Etch

'Wellize'

Summary on uRwell

- We have now solutions for:
- Large spreading
- High rate
- Small pads
- Large size
- We need to improve the "DLC+" material to propose a solution 100\% compatible with industry.
- We need also to work on the DLC resistive value prediction with "DLC+" materials
- DLC can be patterned

DLC Resistive GEM

Resistive THGEM

Resistive LEM

- Quenching of discharges with resistive $50 \times 50 \mathrm{~cm}^{2}$ LEM :
- Made at CERN EP-DT-EF :
- copper side facing readout anode
- DLC on $50 \mu \mathrm{~m}$ APICAL polyimide film ($250 \mathrm{M} \Omega / \square$)
- same geometry as CFR-35 (ProtoDUNE-DP)
- no rims, no gold plating on copper face.
- Tests in progress at CEA/Irfu.
- R\&D will continue in collaboration with CERN.

Tests @ CEA/Irfu

DLC LEM

Problems with
-DLC
-DLC+

DLC uniformity

$1 \mathrm{~m} \times 0.6 \mathrm{~m}$ foils $500 \mathrm{Kohms} /$ square targe \dagger
"DLC+" adhesion

Scalpel cut
After tape peeling

Adhesion force estimation
100\% Base material
50\% HEIFEI 300 deg deposition
40\% ESS
30\% HEIFEI center of the foil 10\% HEIFEI outer Part

The DLC Value is always much lower after copper removal (HEIFEI but also ESS) by a factor of 4 to 10
"DLC+" : present adhesion is just at the acceptable level

conclusion

- We need to Improve the DLC+ and DLC++ materials
- But robust solutions with simple DLC already exist
- We need to work on DLC uniformity
- But the present uniformity is ok for a lot of applications
- DOCA study should be continued
- Find the parameter to adjust material evaporation (design and materials)

Thank you
Questions?

Courant

Voltage versus current characteristics for neon gas at 1 Torr pressure between flat electrodes spaced 50 cm .
A-D dark discharge
A-B: non-self-sustaining discharge and collection of spontaneouslygenerated ions.
B-D: the Townsend region, where the cascade multiplication of carriers
takes place.
D-I glow discharge
D-E: transition to a glow discharge, breakdown of the gas.
$\mathrm{E}-\mathrm{G}:$ transition to a normal glow; in the regions around G , voltage is nearly constant for varying current.
G-I: represents abnormal glow, as current density rises
I-K arc discharge
171-175

Electrical insulation and breakdown properties of SiO_{2} and $\mathrm{Al}_{2} \mathrm{O}_{3}$ thin multilayer films deposited on stainless steel by hysical vapor deposition

Author links open overlay panelJosuMartinez-
erdisueroabluciaMendizabalb Maria C Morant
Miñana ${ }^{\text {acl }}$ IreneCastro-
Hurtado ${ }^{\text {ac } A \text { AritzJuarros }}{ }^{\text {ab }}$ RocíoOrtizad AinaraRodriguezac

```
#- - \mp@subsup{\textrm{AO}}{2}{\prime}(2\mu\textrm{m})
\(-\mathrm{SiO}_{2}(2 \mu \mathrm{~m})\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}(2 \mu \mathrm{~m})\)
\(-\mathrm{Al}_{2} \mathrm{O}_{2}(1 \mu \mathrm{~m}) / \mathrm{SiO}_{2}(1 \mu \mathrm{~m})(2 \mu \mathrm{~m})\)
\(\left.\mathrm{Al}_{2} \mathrm{O}(0.5 \mu \mathrm{~m}) / \mathrm{SiO}_{2} 10.5 \mu \mathrm{~m}\right) \times 2(2 \mu \mathrm{~m}\)
\(-\mathrm{Al}_{2} \mathrm{O},(0.25 \mu \mathrm{~m}) \varphi \mathrm{SiO}_{2}(0.25 \mu \mathrm{~m}) \times 4(2 \mu \mathrm{~m})\) Annealed \(\mathrm{Al}_{2} \mathrm{O}_{3}(1 \mu \mathrm{~m}) \mathrm{siO} \mathrm{O}_{2}(1 \mu \mathrm{~m})(2 \mu \mathrm{~m})\) - Annealed \(\mathrm{Al}_{2} \mathrm{O}_{3}\left(0.25 \mu \mathrm{~m} / / \mathrm{SiO}_{2}(0.25 \mu \mathrm{~m}) \times 4(2 \mu \mathrm{~m})\right.\)
```

Material	Dielectric Strength (kV/cm)	Dielectric Constant	Thermal Conductivity (W/mK)	Electrical Resistivity (Ohm-cm)	Loss Tangent	Thermal Expansion Coefficient (10^{-6} per ${ }^{\circ} \mathrm{C}$)
Diamond	10,000 typical (30,000 reported)	5.6 to 5.7	1800 to 2000	10^{13} to 10^{16}	6×10^{-4} @ 40 Hz	1
					$0.2 \times 10^{-4} @ 100 \mathrm{~Hz}$	
					$0.5 \times 10^{-4} @ 145 \mathrm{GHz}$	
Fused Silica (SiO2)	400	3.8	1.4	$>10^{10}$	$0.2 \times 10^{-4} @ 1 \mathrm{MHz}$	0.5
Aluminum Nitride (AIN)	170	8.5 to 9.7	170 to 220	$>10^{14}$	$30 \times 10^{-4} @ 8.5 \mathrm{GHz}$	3
Beryllium Oxide (BeO)	138	6.5 to 6.9	250 to 300	10^{14} to 10^{16}	$3 \times 10^{-4} @ 8.5 \mathrm{GHz}$	6.5
Alumina (Al2O3)	134	8.5 to 8.9	20 to 30	$>10^{14}$	2 to 3×10^{-4} @ 1 MHz	2.6

figure 5. Dielectric, resistivity and thermal properties of diamond and other electrically insulating material. Source: NIST, Manufacturers and R\&D Literature

Properties	Polyetherimide	FPE	DLC	PTFE	Kapton
Operation temperature ${ }^{\circ} \mathrm{C}$)	210	250	250	260	300
Dielectric constant	3.2	2.9	3.5	2.1	3.3
$\begin{aligned} & \text { Loss at } 1 \mathrm{kHz} \\ & \left(10^{-3}\right)\left(25^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	2	2.6	1	0.5	2
Dielectric strength (kV/mm)	430	400-550	650	296	420
Tensile strength (ksi)	14	9.5	-	3	17

figure 6. Capacitors dielectric materials comparison.
Source: IEEJ Dielectric Materials for Capacitors Source: IEEJ Dielectric Materials for Capacitors

