The Timepix4 design parameters

X. Llopart,
On behalf of the Medipix4 Collaboration
11th February 2020
Medipix4 Collaboration (from 2016)

CEA, Paris, France
CERN, Geneva, Switzerland,
DESY-Hamburg, Germany
Diamond Light Source, Oxfordshire, England, UK
IEAP, Czech Technical University, Prague, Czech Republic
JINR, Dubna, Russian Federation
NIKHEF, Amsterdam, The Netherlands
University of California, Berkeley, USA
University of Houston, USA
University of Maastricht, The Netherlands
University of Canterbury, New Zealand
University of Oxford, England, UK
University of Geneva, Switzerland
IFAE, Barcelona, Spain

Timepix4: A 4-side tillable large single threshold particle tracking detector chip with improved energy and time resolution and with high-rate imaging capabilities

15 members
Timepix4 applications

• Data-Driven applications:
 • HEP:
 • Very high rate pixel telescope
 • Sensor studies (high speed)
 • Beam gas interaction (PS SPS/LHC?)
 • AeGIS/ASACUSA
 • ATLAS background rad monitor and TRD detector
 • MOEDAL
 • GEMPIX / large area TPC
 • Test vehicle for next gen LHCb-VELO with tens of ps time resolution
 • Time-of-flight mass spectrometry
 • Neutron time-of-flight imaging
 • Radiation monitors
 • Electron microscopy
 • X-ray and powder diffraction
 • Compton camera for medical diagnostics
 • Sub-pixel resolution imaging
 • Gamma and neutron imaging for nuclear industry and Homeland Security

• Frame-based imaging applications:
 • X-ray imaging in synchrotrons with extreme high rates > 10^9 particles/mm2/s

• 20th Anniversary Symposium on Medipix and Timepix
 • https://indico.cern.ch/event/782801/
Timepix4 main requirements

• Use of a commercial 65nm CMOS process

• Build a 4-side buttable “as large as possible” pixel array

• Particle identification and tracking (Data-driven and zero suppressed)
 • Sub-ns time binning
 • Improve the energy resolution

• Imaging (frame based with CRW sequential readout)
 • Increase particle count rate

• Designers:
 • CERN: R. Ballabriga, T. Poikela, E. Santin, V. Sriskaran, N. Egidos and X. Llopart
 • Nikhef: V. Gromov and A. Vitkovskiy
 • IFAE: R. Casanova
Timepix3 → Timepix4

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>130nm – 8 metal</td>
<td>65nm – 10 metal</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>55 x 55 µm</td>
<td>55 x 55 µm</td>
</tr>
<tr>
<td>Pixel arrangement</td>
<td>3-side buttable 256 x 256</td>
<td>4-side buttable 512 x 448</td>
</tr>
<tr>
<td>Sensitive area</td>
<td>1.98 cm²</td>
<td>6.94 cm²</td>
</tr>
<tr>
<td>Readout Modes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data driven</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Tracking)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event Packet</td>
<td>48-bit</td>
<td>64-bit</td>
</tr>
<tr>
<td>Max rate</td>
<td>0.43×10⁶ hits/mm²/s</td>
<td>3.58×10⁶ hits/mm²/s</td>
</tr>
<tr>
<td>Max Pix rate</td>
<td>1.3 KHz/pixel</td>
<td>10.8 KHz/pixel</td>
</tr>
<tr>
<td>Frame based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Imaging)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>PC (10-bit) and iTOT (14-bit)</td>
<td>CRW: PC (8 or 16-bit)</td>
</tr>
<tr>
<td>Frame</td>
<td>Zero-suppressed (with pixel addr)</td>
<td>Full Frame (without pixel addr)</td>
</tr>
<tr>
<td>Max count rate</td>
<td>~0.82 × 10⁹ hits/mm²/s</td>
<td>~5 × 10⁹ hits/mm²/s</td>
</tr>
<tr>
<td>TOT energy resolution</td>
<td>< 2KeV</td>
<td>< 1Kev</td>
</tr>
<tr>
<td>TOA binning resolution</td>
<td>1.56ns</td>
<td>195ns</td>
</tr>
<tr>
<td>TOA dynamic range</td>
<td>409.6 µs (14-bits @ 40MHz)</td>
<td>1.6384 ms (16-bits @ 40MHz)</td>
</tr>
<tr>
<td>Readout bandwidth</td>
<td>≤5.12Gb (8x SLVS@640 Mbps)</td>
<td>≤163.84 Gbps (16x @10.24 Gbps)</td>
</tr>
<tr>
<td>Target global minimum threshold</td>
<td><500 e⁻</td>
<td><500 e⁻</td>
</tr>
</tbody>
</table>
Timepix4 floorplan arrangement

- 512 x 448 of 55 x 55 µm pixels

- 3 “hidden” peripheries with TSV (Through-Silicon-Vias):
 - TOP Edge: Data Readout & Slow Control
 - 147 TSVs/WBs: 106 POWER/GND and 41 IO
 - BOTTOM Edge: Data Readout & Slow Control:
 - 147 TSVs/WBs: 106 POWER/GND and 41 IO
 - CENTER: Slow Control and Analog Blocks (DACs, ADC, Band-Gaps...)
 - 147 TSVs: 124 POWER/GND and 23 IO

- On-chip bump to pixel redistribution layer (RDL)

- Chip size:
 - With WB (wirebonds extenders): 29.96 mm x 24.7 mm
 - >93.7% active area (28.16mm x 24.64mm)
 - Without WB (TSV Only): 28.22 mm x 24.7 mm
 - >99.5% active area (28.16mm x 24.64mm)

- Control architecture allows to operated Timepix4 from any of the 3 peripheries:
 - i2C protocol
 - Custom Slow Control protocol
 - Interface to DAQ:
 - Through 3xTSVs
 - Through 2xWB

- Fast readout requires at least 1 serial link enabled in each edge periphery:
 - Serial links are highly configurable 40MBps → 10GBps
Target to build **large area detectors** by combining smaller modules.

The through-silicon vias (TSVs) is the key technology for this paradigm shift.
Expected Timepix4 Yield

Based in the foundry yield model for perfect dies
Timepix4 Pixel Schematic

Front-end
- Input pad
- Preamp
- TestBit
- MaskBit
- 2.5fF
- ~50mV/ke⁻
- 3fF
- Global threshold
- TpA TpB

Front-end
- 5-bit Local Threshold
- Leakage Current compensation
- Preamp

Counters & Latches
- ADDR: 9 bits
- ToA: 16 bits
- ufToA_start: 4 bits
- ufToA_stop: 4 bits
- fToA_rise: 5 bits
- fToA_fall: 5 bits
- ToT: 11 bits
- Pileup: 1 bit

Synchronizer & Clock gating
- Time stamp
- OP Mode
- Control voltage

Super pixel
- Sync Readout
- VCO @640MHz
- Data out to EOC

SPG
- Clock local

ADB
- 8-bit

32 pixels

8 pixels

1 pixel
Pixel Operation in TOA & TOT [DD]

T_peak < 25ns

- Preamp Out
- Disc Out
- ClkRef (40MHz)
- Global TOA (16-bit)
 - 65533
 - 65534
 - 65535
 - 0
 - 1
 - 2
 - 3
 - 4
- VCO Clk (640MHz)
- TOA (16-bit)
 - X
 - 65534
 - TOA (16 bits) = 65534
- TOT Clk (40MHz)
- UFTOA_Start (4-bits)
 - X
 - 0
- UFTOA_Stop (4-bits)
 - X
 - 8

- FTOA_RISE (4 bits) = 7
- FTOA_FALL (4 bits) = 11
- TOT (10 bits) = 4
The Timepix4 chip front-end has to be versatile in order to be used:

- With different types of sensors:
 - Bipolar detection and <10nA leakage currents (high-Z materials)
- In tracking and as well in imaging:
 - Imaging at high rates (e.g. synchrotrons) imposes a minimum pulse width. In order to be at the state of the art in terms of rate capability, the dead time of the front-end should be smaller than ~200ns.
 - Tracking applications impose an input jitter in the front-end below 50 ps\textsubscript{rms} (time bin 195 ps)

- FE architecture follows the “classic” Medipix approach (Krummenacher FE)
 - Gain adjustment (log gain in hole collection)
 - Improved for low jitter and fast count-rate when required → power

\[Q_{in} = 2.2 \text{ke}^{-} \]
\[I_{KRUM} = 20 \text{nA} \]
Timepix4 Slow control and Readout

• Timepix4 has separated readout and control data paths

• Slow control (SC):
 • Protocols:
 • I2C protocol
 • Custom serial slow control protocol (< 40 MHz)
 • Slow control operation can be done from any of the 3 available peripheries
 • Registers:
 • Pixel matrix configuration > 2 Mb (8-bit/pixel + 24-bit/spgroup)
 • Peripheral registers (DAC settings, operation modes, e-fuses,)

• Data readout (DAQ):
 • Each half matrix readout through its correspondent edge periphery
 • 8 serializers in each periphery with < 81.92 Gbps
 • Uses a 64/66b standard protocol
 • Zero-suppressed and data driven readout → 64-bit data packet/hit
 • TOA/TOT mode
 • 24b data-driven Photon Counting (PC) mode
 • Full frame with Continuous-Read-Write (CRW):
 • 8-bit or 16-bit Photon Counting (PC) mode
Timepix4 Readout Modes: Data-Driven

- Zero-suppressed continuous data-driven
 - Output bandwidth from 40 Mbps (2.6 Hz/pixel) to 160 Gbps (10.8 KHz/pixel)
 - Uses 64b/66b standard encoding communication protocol

Diagram

- **Acquisition time**
 - **Shutter**
 - **Qin**
 - **DataOut**
 - **64bit**

Table: SPEC: Packet specifications ToA/ToT

<table>
<thead>
<tr>
<th>Name</th>
<th>Width</th>
<th>MSB</th>
<th>LSB</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>1</td>
<td>63</td>
<td>63</td>
<td>[63:63]</td>
</tr>
<tr>
<td>EoC</td>
<td>8</td>
<td>62</td>
<td>55</td>
<td>[62:55]</td>
</tr>
<tr>
<td>SP</td>
<td>6</td>
<td>54</td>
<td>49</td>
<td>[54:49]</td>
</tr>
<tr>
<td>Pixel</td>
<td>3</td>
<td>48</td>
<td>46</td>
<td>[48:46]</td>
</tr>
<tr>
<td>ToA</td>
<td>16</td>
<td>45</td>
<td>30</td>
<td>[45:30]</td>
</tr>
<tr>
<td>uToA_start</td>
<td>4</td>
<td>29</td>
<td>26</td>
<td>[29:26]</td>
</tr>
<tr>
<td>uToA_stop</td>
<td>4</td>
<td>25</td>
<td>22</td>
<td>[25:22]</td>
</tr>
<tr>
<td>fToA_rise</td>
<td>5</td>
<td>21</td>
<td>17</td>
<td>[21:17]</td>
</tr>
<tr>
<td>fToA_fall</td>
<td>5</td>
<td>16</td>
<td>12</td>
<td>[16:12]</td>
</tr>
<tr>
<td>ToT</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td>[11:1]</td>
</tr>
<tr>
<td>Pileup</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>[0:0]</td>
</tr>
</tbody>
</table>

- **Address:** 18 bits
- **Time:** 29 bits

Energy: 21 bits
Timepix4 Readout Modes : Frame-based

• Full frame readout with continuous read-write (CRW):
 • No zero-suppressed → no pixel address sent
 • 8-bits or 16-bit counter depth
 • Uses 64b/66b standard encoding communication protocol
 • Frame rate limited by bandwidth:
 • 16-bit @ 8Ghits/mm²/s > 1.28 Gbps → ~370 fps up to 44.6 Kfps @ 163.84 Gbps
 • 8-bit @ 1Ghits/mm²/s > 20.48 Gbps → ~11.8 Kfps up to 89.2 Kfps @ 163.84 Gbps

<table>
<thead>
<tr>
<th>Name</th>
<th>Width</th>
<th>MSB</th>
<th>LSB</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel 3/7</td>
<td>16</td>
<td>63</td>
<td>48</td>
<td>[63:48]</td>
</tr>
<tr>
<td>Pixel 2/6</td>
<td>16</td>
<td>47</td>
<td>32</td>
<td>[47:32]</td>
</tr>
<tr>
<td>Pixel 1/5</td>
<td>16</td>
<td>31</td>
<td>16</td>
<td>[31:16]</td>
</tr>
<tr>
<td>Pixel 0/4</td>
<td>16</td>
<td>15</td>
<td>0</td>
<td>[15:0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Width</th>
<th>MSB</th>
<th>LSB</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel 7</td>
<td>8</td>
<td>63</td>
<td>56</td>
<td>[63:56]</td>
</tr>
<tr>
<td>Pixel 6</td>
<td>8</td>
<td>55</td>
<td>48</td>
<td>[55:48]</td>
</tr>
<tr>
<td>Pixel 5</td>
<td>8</td>
<td>47</td>
<td>40</td>
<td>[47:40]</td>
</tr>
<tr>
<td>Pixel 4</td>
<td>8</td>
<td>39</td>
<td>32</td>
<td>[39:32]</td>
</tr>
<tr>
<td>Pixel 3</td>
<td>8</td>
<td>31</td>
<td>24</td>
<td>[31:24]</td>
</tr>
<tr>
<td>Pixel 2</td>
<td>8</td>
<td>23</td>
<td>16</td>
<td>[23:16]</td>
</tr>
<tr>
<td>Pixel 1</td>
<td>8</td>
<td>15</td>
<td>8</td>
<td>[15:8]</td>
</tr>
<tr>
<td>Pixel 0</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>[7:0]</td>
</tr>
</tbody>
</table>
On-pixel TDC simulations \rightarrow TOA resolution

- Threshold set at 500 e$^-$ and FE with ENC 60 e$^{-}$ rms

\begin{align*}
\text{Timepix3} & \quad \text{Timepix4} \\
\sim 451 \text{ ps}_{\text{rms}} \left(\frac{25}{16+\sqrt{12}} \right) \\
\sim 56 \text{ ps}_{\text{rms}} \left(\frac{25}{128+\sqrt{12}} \right)
\end{align*}

- Timepix4 TOA resolution limited by TDC when Qin $> \sim 10$ ke$^-$
On-pixel TDC simulations ➔ TOT resolution

- Qin = 1.2 Ke⁻, RZ=25ns/ Ke⁻ and FE with ENC 60 e⁻rms

- Timepix4 TOT measurement dominated by ENC and not by sampling error:
 - ~700 e⁻ FWHM in Si Sensor @ENC 60 e⁻rms
Digital (dynamic) Power Consumption [data-driven]

- Simulated power consumption density to be ~20 % less of Timepix3:
 - Digital power consumption 25% less
 - Improved pixel matrix clock distribution (DDLL)
 - 130nm → 65nm
 - Analog consumption is ~5% more
 - Minimize jitter → < 50ps$_{\text{rms}}$
 - Compensate increase in input capacitance

![Graphs showing power consumption vs. pixel hit rate for Timepix3 and Timepix4](graphs.png)
Timepix4 (2019)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel size</td>
<td>55 x 55 µm</td>
</tr>
<tr>
<td>Array</td>
<td>512 x 448</td>
</tr>
<tr>
<td>Pixels</td>
<td>229376</td>
</tr>
<tr>
<td>APLL</td>
<td>19</td>
</tr>
<tr>
<td>ADLL</td>
<td>16</td>
</tr>
<tr>
<td>10 Gbps serializers</td>
<td>16</td>
</tr>
<tr>
<td>On-pixel VCO</td>
<td>28672</td>
</tr>
<tr>
<td>dDLL Columns</td>
<td>448</td>
</tr>
<tr>
<td>Biasing DACs</td>
<td>13</td>
</tr>
<tr>
<td>ADC</td>
<td>1</td>
</tr>
<tr>
<td>Transistors in pixel</td>
<td>~6000</td>
</tr>
<tr>
<td>Transistors in chip</td>
<td>~1.5 bn</td>
</tr>
</tbody>
</table>

Figure showing a schematic of the Timepix4 chip layout.
• 6 wafers received at the end of January
• First diced chips available last week
• First in the coming days in Nikhef
Conclusions

• Timepix4 is the new particle-tracker and photon counting hybrid pixel detector designed with the support of the Medipix4 collaboration:
 • Large area hybrid pixel detector with 6.93 cm² sensitive area
 • 4-side buttable with <0.5% dead area (not sensitive)
 • TOA: 23-bit dynamic range (1.6ms) with 195 ps LSB
 • TOT: 15-bit dynamic range with 60-100 e- LSB
 • PC: 8-bit or 16-bit CRW up to 8*10⁹ hits/mm²/s
 • Very configurable architecture to accommodate a large number of different applications

• Total design time of ~3 years with 9 engineers → ~13 year FTE

• Timepix4 was submitted to fabrication on the 7th of November

• First tests in the coming days @ Nikhef
Thank you!

- More detailed information in: https://indico.cern.ch/event/788037/
- http://medipix.web.cern.ch/
Analog (static) power supply distribution

<table>
<thead>
<tr>
<th>Power Mode</th>
<th>Total I (chip)</th>
<th>1 WB</th>
<th>2 WB</th>
<th>3 TSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Analog Power</td>
<td>~2300 mA</td>
<td>68 mV</td>
<td>19.6 mV</td>
<td>6.9 mV</td>
</tr>
<tr>
<td>[10 µA/pixel]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{drop} [max-min]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{max} pad</td>
<td>118 mA</td>
<td>60 mA</td>
<td>57 mA</td>
<td></td>
</tr>
<tr>
<td>Low Analog Power</td>
<td>~230 mA</td>
<td>6.8 mV</td>
<td>1.96 mV</td>
<td>0.69 mV</td>
</tr>
<tr>
<td>[1 µA/pixel]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{drop} [max-min]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{max} pad</td>
<td>11.8 mA</td>
<td>6 mA</td>
<td>5.7 mA</td>
<td></td>
</tr>
</tbody>
</table>

Images of power distribution for 1 WB, 2 WB, and 3 TSV.