

Universidade de São Paulo

Integration of the SAMPA in the SRS frontend

Status of the project for the SAMPA ASIC in the SRS ecosystem

Marco Bregant IFUSP – São Paulo

RD51 MiniWeek

WG5 - Electronics for MPGD

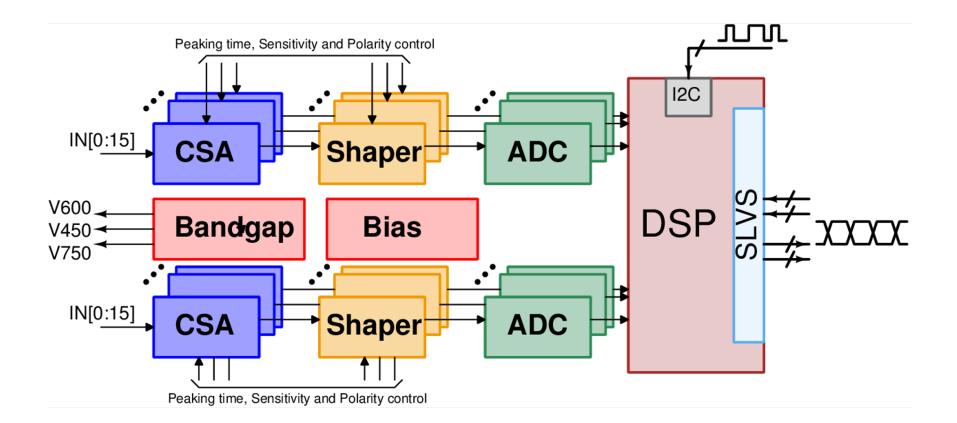
10th February, 2020

SAMPA Design Specifications Summary

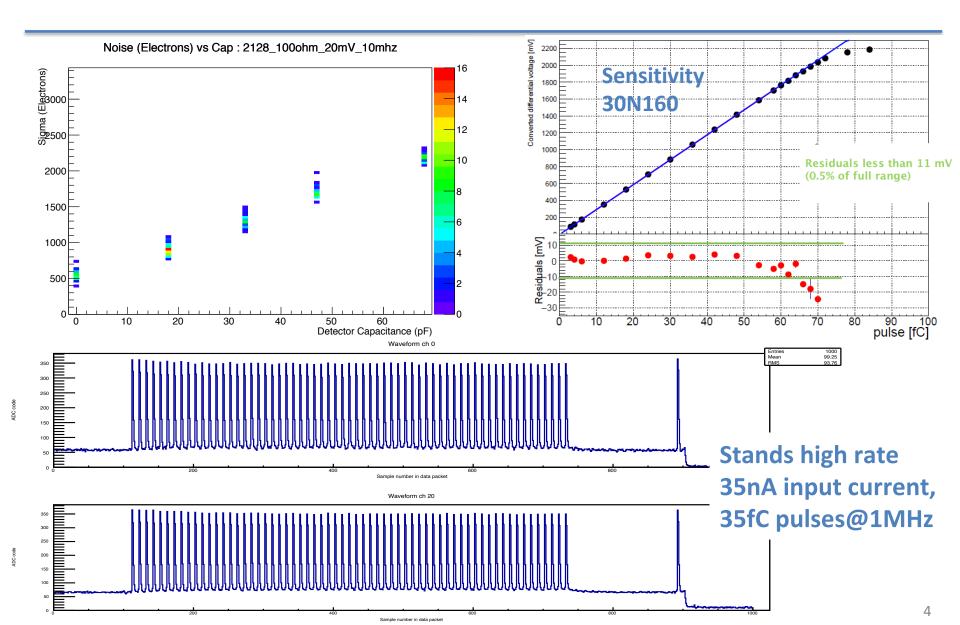
SAMPA is an ASIC developed for the readout of ALICE TPC and MCH detectors:

- TSMC CMOS 130 nm, 1.25V technology
- 32 channels, Front-end + ADC + DSP
- package size $\leq 15 \times 15 \text{ mm}^2$ (total footprint)
- ADC: 10-bit resolution, 10MS/s, ENOB>9.2

- DSP functions: pedestal removal, baseline shift corrections, zero-suppression
- Data transmission: up to 11 e-link at 320 Mbps to GBTx, SLVS I/O
- Power < 32 mW/channel (Front End + ADC) V4, typical configuration, usually 20mW/ch or less.


	TPC Mode	MCH Mode				
	 Negative Input charge Sensor capacitance: 12 – 25 pF 		Positive input charge Sensor capacitance: 40–80 pF			
	 Sensitivity: 20mV/fC & 30mV/fC 		Sensitivity: 4mV/fC			
	 Noise: ENC ≤ 580 e⁻ @ 18.5pF Peaking time: ~160 ns 		Noise: ENC ≤ 950 e- @ 40pF 1600 e- @80pF			
	 Baseline return: <500 ns 		Peaking time: ~300 ns Baseline return: <550 ns			
A m	nodified version with 80/160 ns shaping, 2	0/30) mV/fC gain, 20MSps ADC, has been des	igned		

First full-size prototype fabricated, we will receive and start testing it in a few weeks from now 2


GEM **MWPC**

(Alice TPC is eventually using: 5MS/s, to keep BW requirement in the readout chain lower)

SAMPA Block Diagram

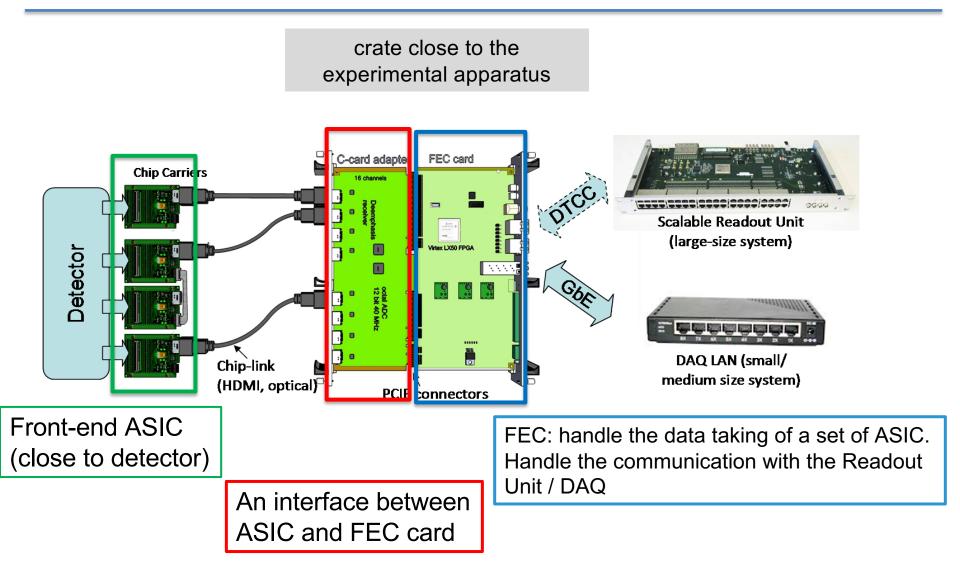
SAMPA works well

Functionalities overview

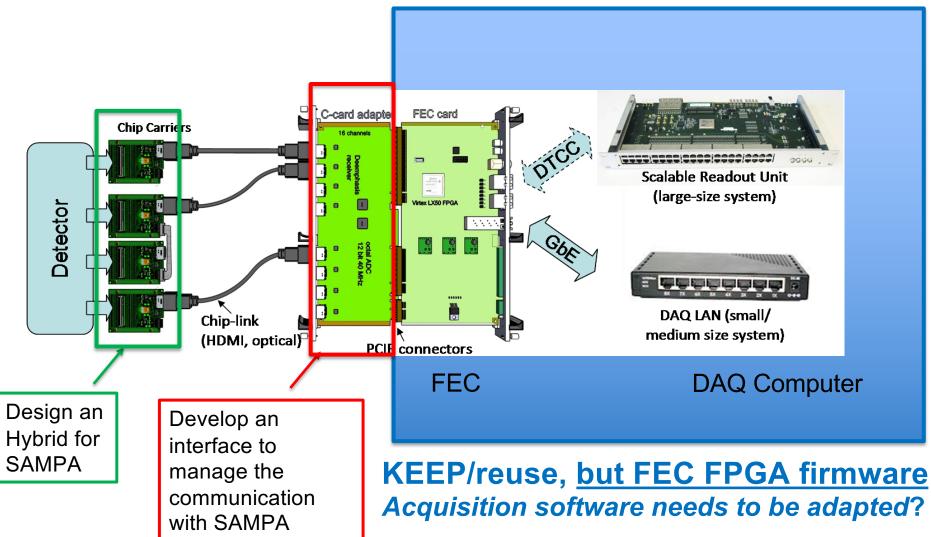
Top Level Functionality

- 4 primary filter blocks
 - Individual correction per channel
 - Baseline correction
 - 1 FIR filter
 - 1 Slope based filter
 - 1 IIR filter
 - Lookup table correction(Pedestal Memory) f(t);f(din)
 - Conversion f(din)
 - Fixed correction
 - -Tail cancellation
 - 1 IIR filter
- Configuration
 - Configurable through I2C
 - 1 global register unit, 32 sets of channel registers
- Radiation tolerant
 - -TMR on almost all flip-flops
 - •except on part of data path
 - Hamming protected headers

Compression

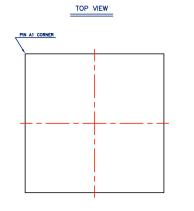

- -Zero suppression with run length encoding
 - •Forward linked list for easier decoding
- -Cluster sum
 - •Uses zero suppression with run length encoding , but sums cluster into 20bit word
- —Huffman
 - •Differential encoded data
 - •Programmable table of codes for +17 to -17
 - •Values outside table have special Huffman code prepended to raw 10bit value
- Design for test
 - JTAG boundary scan
 - Built in memory tester
 - Scan chain (on >98% of digital block flops)

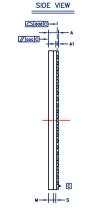
Readout


- Selectable number of serial links up to 11
 - 320/160/80Mbps
 - Channels divided among links, no load sharing
 - Which channel goes to which link and in which order can be selected
 - Data is packet based (header + payload)
 - One packet per channel per event
- Event modes
 - Triggered
 - Continuous
 - Selectable event length up to 1024 samples
 - 192 pre-trigger samples
- Event buffer per channel
 - 6144(6K) words of compressed samples
 - 256 words of headers
 - Header still created if data memory goes full

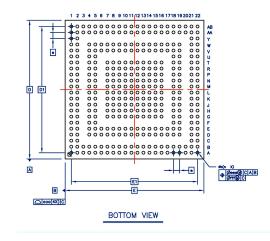
- Daisy chain
 - Multiple devices can share a single serial link to readout unit
 - 2K word buffer in the receiving side
- Direct ADC serialization
 - Data serialized directly from ADC at 32xADC speed over 10 links
 - Raw data, no filtering, no headers
 - Sync pattern on startup, receiver should maintain sync after that
 - 2 modes
 - 10 bits is sent consecutively for channel 0-31 each 32xADC cycle
 - 5 lower bits, then 5 higher bits consecutively for channel 0-15 is sent on link 0-4 and for channel 16-31 on link 5-9
 - Clockgate the rest of the system to save power

The SRS idea




What's needed for SAMPA in SRS

SAMPA Package


- TFBGA package
- 15 mm x 15 mm body size
- 1.2 mm thickness
- 0.65 mm ball pitch.
- 372 balls
 - 4-substrate layers

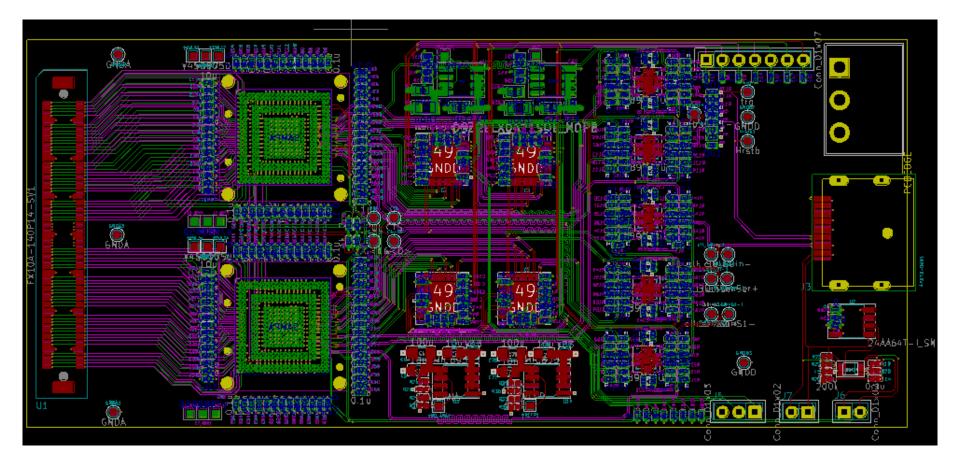
			Common Dimensions					
		Symbol	MIN.	NOM.	MAX.			
Package :		TFBGA						
Body Size:	y Size: X			15.000 15.000				
Ball Pitch :	Y D			0.650				
Total Thickness :		٨	-	-	1.200			
Mold Thickness :	old Thickness :			0.530 Ref.				
Substrate Thickness :	ubstrate Thickness :			0.360 Ref.				
Ball Diameter :	II Diameter :			0.300				
Stand Off :		A1	0.160	-	0.260			
Ball Width :	il Width :		0.270 –		0.370			
Package Edge Tolerance :	ackage Edge Tolerance :			0.100				
Mold Parallelism :	ccc	0.100						
Coplanarity:	ddd	0.150						
Ball Offset (Package) :	000	0.150						
Ball Offset (Ball) :	fff	0.080						
Ball Count :	n	372						
Edge Ball Center to Center :	I Center to Center : X E1 13.650 Y D1 13.650							

ASE 🚾	2 in.		SCALE	``	\times	PROJ	•		
TITLE				DWG. NO.					
PACKAGE OUTLINE			AAA14628					Α	
770	372 L TFBGA 15.000×15.000×1.200			SHEET				SIZE	
372 L IFBG				1 OF 2			A4		
UNIT	TOLERANCE		REFERENCE DOCUM						
UNII	DIMENSION	ANGLE	REFERENCE DOCUME					PIN I	
мм									

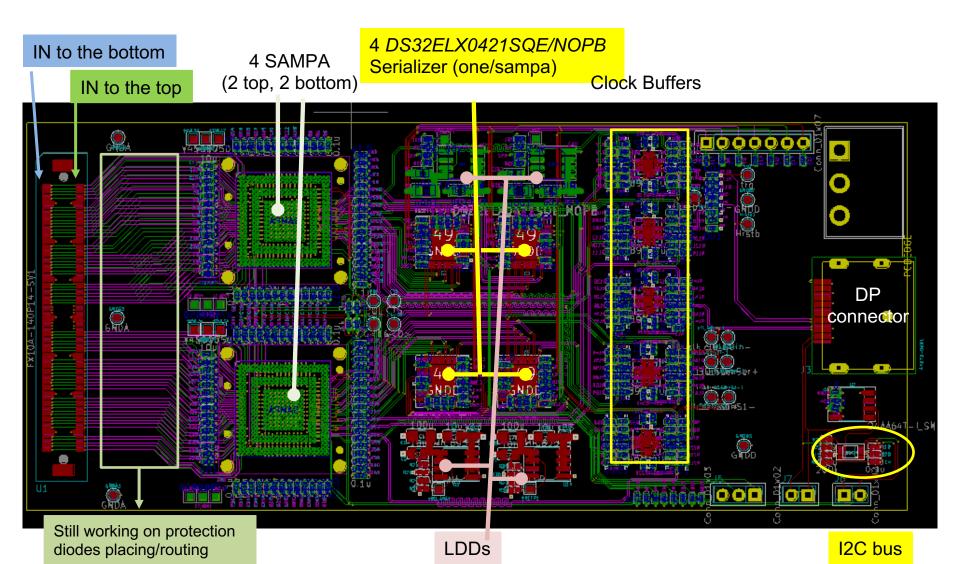
Our Planning for an SRS frontend

- SAMPA designed locally, good knowledge, quick and full access to the original designers (important here, the digital ones)
- Two mains challenges
 - 1. Firmware for the FPGA linking SAMPA to SRS backend
 - 2. Design of high density, multilayer, low crosstalk ranging & analogdigital), etc., board to host 4 SAMPAs (to provide 128chs hybrid)
- First steps
 - Study both in simulations and with an assembly "SAMPA_testboard" <-> "FPGA developing board" the coupling and the communication btw SAMPA and target FPGA (w/o hybrid)
 - Start already design of hybrid board
- FPGA firmware engineer already contracted;
- Board design specialist candidate being evaluated right now.

Design strategy


- Hybrid compatible with present SRS standards
 - HRS input connector
 - Reading 128 Chs => 4 SAMPAs
 - "Slim" (two hybrids should be mounted side by side on the detector)
 - SAMPA is packaged in 15x15 mm² BGA, max 2 SAMPA side by side
 - Design the hybrid "almost" specular double face, top side reads even channels, bottom side reads odd channels
- Handling, at least partially, the SAMPA output bandwidth
- Avoiding FPGA in the hybrid
- Single "input" power connector, then each power domain served by dedicated LDO
 - SAMPA-analog
 - SAMPA-digital
 - SAMPA-ADC-reference
 - auxiliary circuits on the hybrid

Output connector


- SRS uses HDMI cables, 19 pins
- Hybrid connects with adapter card in the crate, which is also ASIC specific
- Choose to go for DP port (20 pins), to route so all needed signals
- 4 DP main lanes used to transport output data
 - DP supports >2Gbps/lane already in it version 1.0 (so any DP cable does)
 - Each SAMPA has a dedicated lane
 - SAMPA uses up to 11 SLVS link at 320 Mbps
 - This signal cannot travel over long distances... should be converted in any case
 - Use a Serializer to convert 4 SLVS @320 Mbps to 1 LVDS@1280 Mbps
- Remaining DP pins used to transfer triggers and I2C signals

Development prototype physical layout (almost final)

Compatible with the use of a socket to simplify the board production... and to allow "mistakes"

Development prototype physical layout (almost final)

Present Status

- Hybrid card design, full prototype, almost ready
- Schematic of Interface card ready, physical layout work in progress
- FEE_v6 FPGA code studied in depth
- SAMPA testboard + adaption patch-board used to make a test-connection between one SAMPA and the FPGA.
 - Successfully provided control signals to SAMPA and sent the SAMPA data stream up to FPGA
- FEC FPGA firmware under development

Conclusions

- Designed a set "Hybrid + Adapter_card" to integrate SAMPA into SRS
- Fabrication of a prototype of the hybrid planed in some weeks from now.
- Prototype design quite close to the final goal (few minor compromises)
 - 128 channels hybrid
 - All control signals already routed via I2C (but back-up pins are still provided)
 - Not yet 50 mm wide to allow the placing of some extra test points (either pins or pads), and the use of a socket during the first debugging
 - Protection diodes network not yet included
- Debugging and extensive test of FPGA firmware with real object

I look forward to coming back with (good!) news in some months from now.