VMM hybrid firmware development

Marek Hracek
RD51 Mini-Week
About me

• Czech Republic

• Microelectronics at Brno University of Technology

• Part of GDD as associate member from Institute of Experimental and Applied Physics (Czech University of Technology)
VMM hybrid board

Note: translucent Globtop only on prototypes
VMM3a hybrid block diagram

From detector

64 channels

J1

64 channels

U2
VMM3a
VMM-1, ch0-63

U3
VMM3a
VMM-2, ch64-127

ADC
I2C

ADC
I2C

U1
Spartan FPGA

ADC
I2C

U9 (Flash)
AT45DB161E

ID chip EEprom

J10

J4

J3

J2

HDMI-D (micro)

DTCC link

M/S (J2=0)

M/S (J2=1)

1 x P1

2x P2

CLK

Data0

Data1

I2C

TRG/Config

R47

OR

R44

10k

12k

VAUX

Vaux=2V5

TMS(4)

VAUX(2)

TCK(6)

TDO(8)

TDI(10)

SDA(7)

SCL(9)

P1 (3V)

0.2A

P2 (1V8)

~ 1.6A

10/02/2020

Marek.hracek@cern.ch
Spartan firmware

“Light-DTCC” protocol with one particularity: Configuration and DAQ are mutually exclusive.
Larger system overview loop: FEC <-> DVM <-> HDMI<->VMM

K28.x symbols
Clk & Phase to VMM

Virtex 6
Xilinx code
FSM link phaser

FEC card

Link Status 1..4

VMM hybrid

Spartan 6
Xilinx code
FSM link phaser

HDMI cable Link

cable
5 or 2 m

LVDS transceiver

TX (Cfg)

Rx(data)

Data from VMM

Data lines to FEC

Data from VMM

LVDS transceiver

GND

HDMI-A

other channels

HDMI-D

VMM

1

VMM

2

Data lines to FEC

Data from VMM

Data from VMM

VMM 1

VMM 2

Cfg.to VMM

10/02/2020
Marek.hracek@cern.ch
DTCC protocol (Data trigger clock and controls)

- LVDS links (low voltage differential signaling)
- 8b10b encoding
- Trading overhead for:
 - Link control and word delimiting
 - Better electrical properties of transmission
8b/10b control words

VMM <-> FEC synchronization

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K28.0</td>
<td>1</td>
<td>000 11100</td>
<td>001111 0100</td>
<td>110000 1011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K28.1</td>
<td>1</td>
<td>001 11100</td>
<td>001111 1001</td>
<td>110000 0110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K28.2</td>
<td>1</td>
<td>010 11100</td>
<td>001111 0101</td>
<td>110000 1010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K28.3</td>
<td>1</td>
<td>011 11100</td>
<td>001111 0011</td>
<td>110000 1100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K28.4</td>
<td>1</td>
<td>100 11100</td>
<td>001111 0010</td>
<td>110000 1101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K28.5</td>
<td>1</td>
<td>101 11100</td>
<td>001111 1010</td>
<td>110000 0101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K28.6</td>
<td>1</td>
<td>110 11100</td>
<td>001111 0110</td>
<td>110000 1001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K28.7</td>
<td>1</td>
<td>111 11100</td>
<td>001111 1000</td>
<td>110000 0111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K23.7</td>
<td>1</td>
<td>111 10111</td>
<td>111010 1000</td>
<td>001001 0111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K27.7</td>
<td>1</td>
<td>111 11011</td>
<td>110110 1000</td>
<td>010001 0111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K29.7</td>
<td>1</td>
<td>111 11101</td>
<td>101110 1000</td>
<td>010001 0111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K30.7</td>
<td>1</td>
<td>111 11110</td>
<td>011110 1000</td>
<td>100001 0111</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Link FEC to VMM
- IDLE VMM to FEC
- VMM DATA header
- FEC ACQ mode
- FEC Config header
- VMM ART header
FEC-VMM link status state machine

0. LOS
 any input
 Link code

1. SAP
 Link code

2. Align
 RX is aligned
 Link code

3. Link
 Idle code
 Link code

4. Idle
 cfg data or Idle code
 Acq enable

5. Acq
 Acq or Idle code

6. Acq
 VMM data

7. Acq
 Idle code

8. Acq
 Acq code

9. Acq
 VMM data

1. Init
 PHY sync
 Link codes

2. CheckLink
 Link code

3. Link
 not Link code
 Link code

4. CheckIdle
 Idle code

5. Idle
 Idde code
 Acq data or Idle code

6. Idle
 Acq or Idle code

7. Idle
 VMM data

8. Idle
 Acq code

9. Idle
 VMM data

10. Idle
 Acq or Idle code
Spartan Firmware enhancement list

- Clean up the code and document it
- Configuration readback
- EEPROM – ID number, default configuration for VMMs, also for testing
- HDMI connector selection on reset
- Utilization of Powerbox – Master-Slave mode, FastOR through ART
- Other schemes: e.g. Atlas-like mode, spill-buffer mode
- Improving and stabilizing readout speed from VMMs to Spartan

Patrick Schwäbig

10/02/2020
Marek.hracek@cern.ch
VMM3a hybrid block diagram

Update V4.0 -> V4.1 in green

From detector

64 channels

J1

64 channels

J10

U2
VMM3a
VMM-1, ch0-63

ADC
I2C

U1
Spartan FPGA

U3
VMM3a
VMM-2, ch64-127

ADC
I2C

J4

ID chip
EEprom

DTCC link

10/02/2020

Marek.hracek@cern.ch
Testing, configuration

1.) Unique 128 bit ID for VMMhybrids
2.) Default VMM configuration at Power up
3.) ADC outputs

uPython board PYBv1 used as I2C master

3V power*
2.5V AUX
SCL, SDA 2.5V
GND

New small programming adapter PCB

ID chip

I^2^C-Compatible (2-wire) Serial EEPROM with a Unique, Factory Programmed 128-bit Serial Number
1-Kbit (128 x 8), 2-Kbit (256 x 8)
Thank you for your attention!

Questions?