Automated Quality Tests of the VMM-Hybrid

Finn Jaekel

Physikalisches Institut Universität Bonn

February 10, 2020

Contents

1 Context

- The SRS-VMM Project
- My Project
- 2 Planned Setup Overview
- 3 Elements of testing
 - The Scalable Readout System
 - VMM Slow Control
 - Power Supply
 - Firmware Programmer
 - External Connection

4 Project Status

5 Plans

The SRS-VMM Project

- VMM developed since 2012 for ATLAS NSW Upgrade
- VMM-Hybrid integrated into SRS
- multiple Prototypes
 - VMM2 (5 Hybrids)
 - VMM3 (7 Hybrids)
 - VMM3a (52 Hybrids)
- 2020: Production of ~1000 Hybrids planned
- First O(100) expected next months
- At the moment: Manual testing $(\sim 1 \text{ h/Hybrid})$
- New batch needs automated testing

My Project

- Developement and Setup of a "Testing Station" for the VMM-Hybrids
 - Measure properties of Hybrids (Computer controlled)
 - Noise, pedestal, etc...
 - Evaluate measurements and classify Hybrids
 - Upload Hybrid quality results to database

VMM Hybrid

 $5 \, / \, 15$

The Scalable Readout System (SRS)

The Scalable Readout System (SRS)

- Readout System for gaseous detectors
 - Compatible with multiple frontends (APV25, TimePix, VMM [1])
- Handles data from VMM
- Transmits data via Ethernet to computer
- Forwards control sequences to Hybrid

VMM Slow Control

VMM Slow Control

- Controls Hybrids and SRS
- Is used for:
 - Configuring Hybrids
 - Read monitoring ADCs of both VMM
 - Read data output of VMM to SRS
 - Calibrating Hybrids
- Different functions (Calibration or Hybrid Control) in separate "modules"
- Additional testing module
 - GUI for results and start of tests

Open Communication	Cervis Abanad	, NMI							
NRA.	3M FEC P	1914	Labort 1						
desi.	DKIDAD F								
	Patrecitio		UNM	10081 10092					
hotminp	20 0 0 2			General Settings Add	avoid Teleps		Channel Settings		
			81.81	top.t.charge.potanty	teptive			10	120006 KJOR6 K
v.				Anity (Darret) litrate	Temperature server			C 188 18 200 - 198	
91			Prebox	finite trait	11400			I I I (mm + I)) = = + + = = = = = = = = = = = = = = =
D1			Acc 2 1					Cet - C	
			Patter	ne ostrotino	64.15				1 2 40 - 2 40 - 2 4
			933D 2	PERKEN (0)	201 41			U U tes I U	1 100 1 114 1 11
				Read/DC	400 mm.	0		U U Cell + U	1 2 40 4 2 44 4 2 4
- H			00	SAIT INVE	Firster Million				
			Compropriet and an						
	The 194								ant a be a be
				weben reflected	Linear Access				and y and y an
			Sec.12	ANKOTHERE	Sub-Hymorian		10 0 0	D D Cet - D	1.07 * 1.0 * 1.0
	Tener Arminites		66					0 0 tex + 0	8 804 7 8 88 7 8 8
T merida	Contraction of the second		0/X In *	ABC			200		
	Be othered	×1	rane has note					0 0 0 cmt + 0	
	201 [2] ACO 260		40 x 21 71 x	A6,8,5	B-DECOMPANY			🛢 🖬 🖬 ent + 🖬	
	(VIM)R and one		and a second	139.4CC 20014	< 85.KCC 285%			E E E E E E E	
			(ALC 18.96.1	In Los					2 2 10 1 2 2 10 1 2 2 2
#00.0n	81 2 TrOney		D/3C skee					UU ten + U	
	a 10 000		0.00 *	Over Deck			<u> </u>	U U Cel + U	1 247 + 248 + 24
800.04	V Parent		N Pulses Period				899		1 2 10 - 2 10 - 2 1
	Antra Marra at Antra at			Date Dool NPT Date	Data Data Dua Chek	0.06	20 0 0	U U tet t U	
with the			2 0 494 0						1 100 - 100 - 100
	C 100000 81		Text/bite						
	mining #55 pts.						200		Latin Later a La
			2004 (BU X.)	Themas DAC 300	2 205-48 114		800	0 0 tet • 0	8 my 7 8 m 7 8 m
	#00		with .				800	B D D Cet + D	1 mil + 1 m + 1 m
-			THOM -	recover the	[4] 200.42 Mill			D D Let + D	Lov - Lo - Lo
	1000		Polarity				800	0 0 ten + 0	
0.00	factor of the		Poster +		in of 1989.		Nº CI CI	D D Patral D	
	800								
344	01 04		Griditytein	1	A FUSA				

Power Supply VMM Hybrid JTAG Programmer SRS Crate Multiplexer PCB . . . Power Supply Computer Signal Generator VMM Slow Control

Power Supply

- USB or RS232 to PC
- PyVISA
- SCPI Commands
- Task
 - Measure 3V and 2V currents
 - Monitoring during tests possible
- Status
 - Preliminary tests with DMM in supply circuit
 - No communication with power supply yet
 - Remote controllable power supply needed
 - GPD-3303 from GW-Instek

 \rightarrow Quality criterion: proper power consumption

Firmware Programmer

Firmware Programmer

- Flash Firmware onto Spartan-FPGA on Hybrid if not programmed yet
- Needs JTAG programmer and Dongle Adapter
- Use terminal (2 possibilities)
 - 1 using Xilinx Impact
 - use impact script for programming (impact -batch scriptname.cmd)
 - Flash memory programming easy once setup works
 - 2 using xc3sprog (command line utility)
 - Difficult or not possible to program Hybrid flash memory
 - FPGA temporary programmable → useful for VTC project?

External Connection VMM Hybrid JTAG Programmer SRS Crate 1.678A Multiplexer PCB . . . Power Supply Computer Signal Generator

VMM Slow Control

External Connection

- "Simulates" a connected Detector
 - External test pulses from signal generator for individual channels
 Multialayer DCP
 - Multiplexer PCB
 - 1 16-Channel MUX + 16
 8-Channel MUX controlled by
 7-bit counter
 - Distributes pulses onto single channels
 - "Clock" from signal generator advances Channel
 - Check if pulses were received with Slow Control
- Signal Generator controlled via USB with SCPI & PyVISA

External Connection II

Status

- PCB ordered
- Remote controllable Signal Generator on hand
- Signal Generator programmed

Project Status

- Most testing elements Work in Progress
- Two tests working

- I Implementation of more tests & Definition of quality criteria
- 2 Automatic upload to database
 - if possible also upload plots/measured data
- 3 Tests with real detectors
- 4 Coordination with VTC-project (open for discussion)

References

M. Lupberger et al. "Implementation of the VMM ASIC in the Scalable Readout System".

In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 903 (2018), pp. 91-98. ISSN: 0168-9002. DOI: https://doi.org/10.1016/j.nima.2018.06.046. URL: http://www.sciencedirect.com/science/article/pii/S016890021830768X.

Questions...?