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1. Background & Motivation - X-ray imaging with Glass GEM 2
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» In MPGD2011 we first introduced GEM made
with glass substratel! 2]

» Why Glass GEM?

- Robust - tolerant against discharges

- Rigid - self-supporting structure, easy to handle

- High gas gain — up to 90,000 with single Glass GEM!3!

- High spatial resolution — minimize charge spread

[1] T. Fujiwara, et al., MPGD2011 . .
[2] H. Takahashi, et al., NIM A, vol. 724, pp. 1-4, (2013) Discharges ruins the electrodes
[3] T. Fujiwara, et al., JINST, vol. 9, pp. 11007 - 11007, (2014) ©Takeshi Fujiwara, AIST



2. The new Glass GEM fabrication process at AIST

1. Glass Substrate /_ uv
L el Photo Mask

2. UV exposure (1st_exp)
Cr.ystal portion
3. Crystal formation H/ (Li,0-Si0,)
(heat treatment) Via
4. Via etching AAdAdididld HF etching
(Hydrogen Fluoride wet etching)
v v v v v v v Cr sputter

5. Poison Metallization DDDDDDDE
Grinder
f ( Remove Cr in surface
6. Remove metal except in via ﬂ|_||_| | | (remains in via)

Metallize Cu

o
7. Metallization process Il (Cu) — 1| Il I[ Il 11 Il |l (inside via also)

Selectively remove
Cr remains in via

8. Selectively etch metal in via

Optimizing the time
and temperature

9. Ultrasonic bath

[4] T. Fujiwara, et al., NIM A, 878 (2018)

©Takeshi Fujiwara, AIST



2. The new Glass GEM fabrication process at AIST

Old process The New process

Smooth electrode: Uniformity of the electric field improves, and the GEM'’s stability improves




2. The new Glass GEM fabrication process at AIST 5
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Improved process
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Pulse height spectra of 5.9 keV
Energy resolution 22%, gas gain =3,000

Discharge rate < 1/hour

©Takeshi Fujiwara, AIST



DOSE IMAGER FOR HADRON THERAPY



1. Background and motivation — what is the issue for dosimetry? 7

Conventional detector 1: lon chamber o ST 3 .
3 Peak-to-Plateau ratio

» Standard in clinical use 3.7 160 MeV Proton

» Sharp Bragg peak is achievable 2 L 4 2 ~ 5 O

» Peak-to-Plateau ratio up to 4~5. § o B . .

» Spatial resolution is not enough (5mm) e N Proton/Carbon beam

» Takes time for each measurement Depth (5mm pixel)
Plateau Bragg peak

s , , , i — lon chamber

Conventional detector 2: Solid detectors 2 o 8 it | Difference Peak-to-Plateau ratio
= ‘0 oL — Calculation ]

» Great spatial resolution (films, imaging plates, o ¥ 5olid detector

.. . I B 1 ~NJ
scintillator screens, semi-conductors) R 1 : 3 3 : 2

» Radiation hardness would be an issue < 0'0_

» Saturated in Bragg Peak " pepth 1 Proton/Carbon beam
Solid detectors has a quenching effect in high-LET radiation.
- Energy deposition density at Bragg Peak is larger than the density of

luminescense center.

MPGDs have very little quenching effect and high spatial resolution

©Tlakeshi Fujiwara, AIST



Detector construction (side view) 8
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. Dark box
Glass Epoxy

Gas chamber

/
Fujinon 25 mm F0.85 Hamamatsu ORCA Flash 3.0

Updated to Brighter lens, high sensitive camera and shorter camera mount.
©Takeshi Fujiwara, AIST



Experiment 9

Hadron beam
=== ' U
L At HIMAC (Clinical Beam)
l | - Intensity: 1.8*10° particles/sec
S
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| A : | Control depth of the measurement
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The pixel value of obtained image from ————
CCD camera is plotted for each depth. " L

©Takeshi Fujiwara, AIST



290 MeV/u Carbon spot scanning treatment 10

Carbon beam

Wobbler magnet

scattering plane Spot-scanning treatment

Tumor

High speed dose imaging demonstration m E!J ‘

Carbon beam

Real-time imaging of 290 MeV/u Carbon beam
« 3Hz Scanning beam with Wobbler magnet.

The high dose spots are scanned one after the other over the whole tumor volume

©Takeshi Fujiwara, AIST



First real-time dose imaging of spot-scanning technique 11

Succeed in taking real-time dose

imaging of active hadron therapy
A treatment example of prostate cancer (50ms/frame)

©Takeshi Fujiwara, AIST



Bragg-Edge Neutron Imaging Detector



Micro-structured Boron detector

Thin layer

penetrate

Reaction possibility -> Low
Self absorption -> Low

Self absorption

Thick layer

Reaction possibility -> High
Self absorption -> High

B-10 are low price neutron converter

Detect the charge from ionized o/Li particle
Self absorption of the particle is an issue
Charged particle cannot escape to counting gas

Low

Trade offs

Self absorption
Reaction possibility

High
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Micro-structured Boron detector 14

Neutron

A
Increase the reaction

Effective thickness possibility

towards beam d

direction an

keep the particle’s escape
possibility

v

Boron Iayer / . Thin enough layer for the particle escapement

Slanting the absorber layer towards the incoming beam

Grazing incident angle allows a larger proportion of neutrons to be
absorbed in the first few microns of the layer

» It results secondary particles have a higher probability of escaping into the
counting gas.

» This leads to increase neutron detection efficiency.

©Takeshi Fujiwara, AIST




Micro-structured Boron detector 15

15° to 20° Neutron Aluminum substrate
\

Boron 10 Layer
2~ 4 um thick

RS

Li or o
particle

I

e e e

Increase the reaction
possibility and keep the
particle’s escape
possibility

Micro-structure B-10 Converter
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©Takeshi Fujiwara, AIST



Micro-structured Boron detector 16

Picture of the micro-structure converter Glass GEM

©Takeshi Fujiwara, AIST



Readout design

Faraday cage

FE2007 daughter bo

FPGA board\ _

Connected cables and tubes are:
Low voltage (£5 V) X 1
High voltage X 1

j TO signal X 1
Analog output X 1
Ethernet X 1

Access side for cables

Chamber gas (input and output) X2

17
128ch
ASIC
A A K A\ J Yy ¥ ¥ ¥ ¥ ¥y Yy Yy Y VY VY V@Y (FE2009)
128ch
ASIC
(FE2009)

©Takeshi Fujiwara, AIST



First neutron beam test at AIST 18
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Summary 19

» Introduced the new fabrication process of Glass GEM
» Proposed a new application of gaseous detector
- Dose imaging detector for hadron therapy

- Neutron Bragg-edge imaging detector

» Glass GEM is now open to everyone, and collaborators are always welcome

Thank you for your kind attention.

©Takeshi Fujiwara, AIST



BACKUP SLIDES
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3. Initial experiment : 55Fe (5.9keV X-rays) & PMT 7] 21
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[7] T. Fujiwara, et al.,Jpn. J. Appl. Phys., vol. 55, no. 10 (2016) Emits 85,000 phtons/keV @gas gagﬁa?egg?gm Ler




1. Background and motivation — what is done in hadron therapy? 22

Hadron therapy

Personalized 3D dose formation is made
with Collimator and Bolus for each
patient.

)
0

Collimator Bolus (moderator)

Hadron beam
(Proton/Carbon)

VVYVYVYYVYYVYY

Quality assurance

(1) X-ray CT (2) Treatment plan (3) Evaluation with dosimetry (4) Treatment

lon chamber
~

Before the treatment, quality assurance of treatment is done with precise dose measurement.
Personalized dose is measured and must be confirmed that has good enough agreement with the treatment plan.

©Takeshi Fujiwara, AIST



