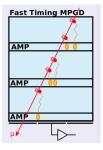
New laser setup in Bari for MPGD gain measurements

RD51 mini-week

Antonello Pellecchia, Antonio Ranieri, Piet Verwilligen February 11, 2020 INFN


University and INFN Bari

Outline

- Laser setup requirements for the FTM
- The laser specifications and optical setup
- Characterization of a triple-GEM prototype in the laser box

Requirements for the characterization of the FTM

Fast Timing MPGD

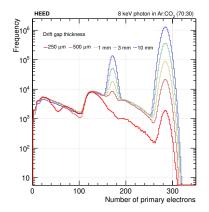
Working principle and time resolution

 $\sigma_t = \lambda / N v_{\rm drift}$

 $\lambda = {\rm ionization}$ mean free path

N = number of stages

1. Signal pickup by external readout: **only** resistive electrodes


Gain calibration with non-monochromatic sources is made difficult: no copper electrode for fluorescence conversion

2. Tiny drift gaps (250 µm)

Cannot perform gain calibration by conventional sources (X-rays)

New small-size ($\sim 4 \times 4\,\text{cm}^2)$ prototype currently under tests in Bari

X-ray photon conversion in gas mixture

No distinct peak at gaps $<500\,\mu m\to$ X-ray energy loss is subjected to large fluctuations

Laser specifications and optical setup

- Photons in lasers have too low energy (~ 4.7 eV @ 266 nm) to ionize typical counting gas molecules (13-15 eV)
- Common mixtures contain some ppm impurity molecules with low ionization potential (\sim 9 eV) \rightarrow laser ionization is possible by **multi-photon processes**:

$$\frac{R}{V} = N\sigma^{(n)}\phi^n$$

 ${\sf R}/{\sf V}=$ ionization date density ${\sf N}=$ molecule concentration $\sigma^{(n)}=$ n-photon cross-section equivalent $\phi=$ beam flux

• At low intensities, two-photon ionization dominates:

$$\frac{R}{V} = \left(\frac{\lambda}{hc}\right)^2 N\sigma^{(2)}I^2$$

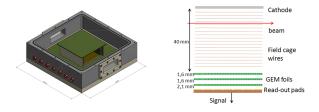
Primary current in detector is proportional to square of laser pulse energy

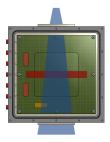
Specifications of the laser setup

Pulse energy	51 µ J	can provide a MIP-like
		energy deposit
Waist radius	400 µm	low angular divergence
Wavelength	$266\mathrm{nm}/4.7\mathrm{eV}$	two-photon ionization
		of hydrocarbons
Pulse duration	1 ns FWHM	lower than triple-GEMs
		time resolution
Spatial mode	TEM ₀₀	gaussian beam
		beam quality ${<}1.5$

Optical setup preparation

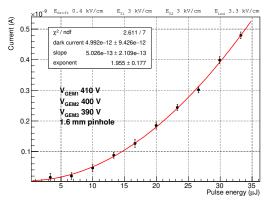
Collimated setup


Focused setup



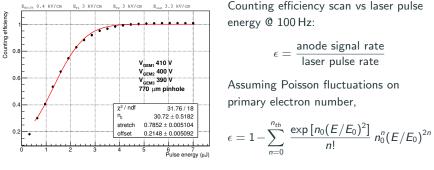
	Collimated	Focused
Waist radius	1500 µm	23.4 µm
Angular divergence	0.06 mrad	\sim 5 mrad
Beam intensity	$34 \mu J/mm^2$	$3 imes 10^4\mu J/mm^2$
	Optical filter $+$	Point-like
	Pinhole to reduce	primary ionization
	pulse energy	

Characterization of a triple-GEM detector in the laser box


The time projection GEM prototype

- 40 mm drift gap, suitable for benchmarking of the laser setup
- beam passes throught **quartz windows** (transparent to UV)
- signal readout on 2 rows of 60 pads ($6 \times 2 \text{ mm}^2 \text{ each}$)
- the small instrumented area compared with the total gas volume complicates the gain calibration with X-rays

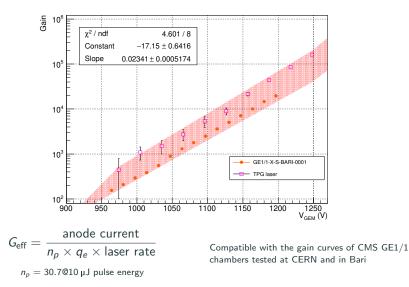
Observation of multi-photon ionization


- collimated setup (low intensity)
- anode current \propto primary ionization rate
- ionization rate \propto (pulse energy)^m for m-photon absorption

 $m = 1.96 \pm 0.18$, compatible with two-photon absorption

Estimation of primary ionization rate

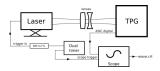
Problem How to determine the number of primaries created by a single laser pulse?



 E_0 = reference pulse energy n_0 = primary electrons per laser pulse at E_0 n_{th} = n. of primary electrons corresponding to the discriminator threshold

 $n_0 = 30.7 \pm 0.5$ electrons at 10 μ J in the active gas volume

Waiting for confirmation from: primary ionization current, single-electron spectrum


Gain curve measurement

Timing measurements

 $(1.63\pm0.42)\times10^{-6}\,cm^2/V\cdot ns \label{eq:electron}$ electron mobility in Ar:CO2 (70:30)

- optical setup in focused configuration: point-like ionization
- laser pulse emission triggered by external clock
- detector digital signals acquired by a scope
- the average signal arrival time is plotted at different ionization positions in the drift gap
- electron drift velocity is given by a linear fit

 $2.36 \times 10^{-6} \, \text{cm}^2/\text{V} \cdot \text{ns}$ from a Magboltz simulation

Setup for the characterization of small-gap MPGDs

- Validation with triple-GEM chamber
- Collimated low intensity setup for gain calibration
- Focused high intensity setup for timing measurements

Future development

- Comparison with other gain calibration techniques with lasers
 - direct primary current measurement
 - single-electron response
- The UV laser bench is ready for the characterization of the FTM
- Femtosecond laser for time resolution measurements on the FTM