Current DLC production centers – JAPAN – Atsuhiko Ochi Kobe University

DLC workshop/RD51 mini-workshop 13/02/2020

DLC production in JAPAN

- We have already use industrial process
- Be-Sputter Co, Ltd., (Industrial company)
 - Their sputtering chamber is made by themselves
 - The sputtering equipment is very large
 - There are several sputtering chambers
 - Usually, they are work on metal sputtering
 - For electronics devices, optical devices, surface treatment ...
 - Usually, they have not used carbon for sputtering
 - We have collaborated with Be-Sputter for preparing carbon target and improving C sputter quality.

Sputtering facility in Be-Sputter

- Large size sputtering is available.
 - 4.5m X 1m
- Two layer stack sputtering is available
 - Using two separated target
- Very good uniformity
 - Less than nm size difference, using their special technology

Product of Be–Sputter

- ITO transparent conductive film
- Faraday cage on plastic

For micro patterning of DLC

- We need industrial company with PCB process
 - Photo lithography process is needed for making mask of DLC
- In our case, we used RAYTECH co. ltd. for patterning.

Large resistive strip foil for ATLAS MM prototype

425.3mm

Enlarged picture of resistive strip foil

10 mm

MM with DLC for charge spread

- DLC MM for ILC-TPC / T2K-TPC readout (P. Colas, D. Attie)
 - The RC continuous circuit evenly spreads the charge, allowing sharing between neighbouring pads

$$ho(\mathbf{r},t) = rac{\mathrm{RC}}{2t} \exp[-rac{-\mathrm{r}^2\mathrm{RC}}{4t}]$$

R- surface resistivity C- capacitance/unit area

P. Colas, May. 2019

TPC field cage for PANDA X-III

XeSat 2018 T. Simantathammakul, Sep. 2018

ALTERNATIVE FIELD SHAPING DESIGNS

From this design, there are amount of wasted xenon
 To solve this problem, we proposed DLC sputtered on acrylic cylinder

- This design can minimize amount of wasted xenon
- ► DLC properties
 - High resistivity
 - High Hardness
 - Low friction coefficient
 - Large area is available
- But DLC sputtered on acrylic is not homogenous

Design of DLC pattern for field cage

T. Simantathammakul, Sep. 2018

DLC for surface electrodes in μ -PIC

Fine patterning ... µ–PIC with resistive cathode (2013 – now)

The problem in liftoff method

- The etching for remained resist is effected only from side
- For large area (> 5mm) of masked area, those mask cannot be removed
 - \rightarrow DLC remained

00000

00

00

Etching the resist from side

Substrate (polyimide)

Manufacturing process of resistive m-PIC (2017-2018)

18. Gluing to the rigid board with readout strips

Signals with / without zigzag connection (HV bias)

Summary

- DLC for MPGDs are produced in JAPAN using industrial companies (Be-Sputter)
- Large size (maximum 1m x 4.5m) DLC foils can be produced
- Fine patterning of DLC is also available using liftoff method
 - By using resist or metal etching
- Large resistive DLC foils are provided (almost) commercially. It cost around 3k EUR / 1batch.
 - The costs will be reduced for multi batch in one time.