

EUROPEAN SPALLATION SOURCE

ESS Detector Coatings Workshop Linköping Sweden

PRESENTED BY CHUNG-CHUAN LAI CHUNG-CHUAN.LAI@ESS.EU

2020-02-13

1 Background: ESS and B₄C

- 2 Detector Coatings Workshop in Linköping
- 3 Production Development
- 4 Research Development
- 5 DLC Related Works

Background: ESS and B₄C

Up: ESS Technical Design Report (2013) Down: APS POPA Report (2016)

Towards ¹⁰B-based *n*-detectors

Towards ¹⁰B-based *n*-detectors

Chemical compound: **boron-carbide** (B₄C)

- Non-toxic
- Chemically stable
- Relatively high B-stoichiometry (20 at.%)
- Commercially available

Deposition technique: magnetron sputtering

- Established process
- Commercially available
- Low temperature process possible

B₄C powder and target

Magnetron sputtering machine from CemeCon

2

Detector Coatings Workshop in Linköping

Process development for B₄C coatings

Prof. Jens Birch Thin Film Physics LiU

Dr. Carina Höglund Former-Colleague ESS

Process development for B₄C coatings

Requirements to B₄C thin films as neutron converter:

- Good adhesion to substrates
- 1- or 2-side coating possible
- Large area possible
- High density
- Low impurity level
- Controllable thickness and uniformity
- Neutron radiation hard
- Cheaper or at least similar to pre-2009 ³He price **TEM**

- ✓ No significant influence on physical properties or compositions.
 - Low ¹⁰B atoms
 consumption within a
 flux of 10⁸ n/cm²/s

nd et al., Rad. Phys.

SEM <u>~3 μm ¹⁰B₄C</u>

- ✓ Good adhesion on Ti, Al, Si
- ✓ Uniform thickness
- Robust with increased thickn. and temperature
- ✓ No clear difference between $^{nat}B_4C$ and $^{10}B_4C$

<2 at.% of impurity (H, O)

- 96-97 % ¹⁰B enrichment
- ✓ Results are consistent
- Special thanks to LiU and the Tandem Lab in Uppsala University for setting up measurements.

UPPSALA UNIVERSITET

C.Höglund et al., Rad. Phys. Chem. 113 (2015) 14 C.Höglund et al., J. Appl. Phys. 111 (2012) 104908

S.Schmidt et al., J. Mat. Sci. 51 (2016) 10418

2020-02-13 ESS DETECTOR COATINGS WORKSHOI

Process development for B₄C coatings

Workshop in Linköping and Chewbacca Chewbacca CC800/9 Custom

2014: Setup ESS Detector Coatings

2017 Apr.: Move to

current site

2017 Aug.: Lai joined in ESS

3

Production Development

NSS Neutron Instrument positions

ESS Lead Partners for instrument construction

Multigrid detectors

Candidate technology for CSPEC and TREX in ESS.

- Prototype 1 (2010)
- Prototype 2 (2011) 2 m segment detector
- IN6 Segment (2012) side-by-side comparison with ³He
- IN5 Segment (2014) full size production
 (0.8 * 3 m² detection area, >100 m² coated area)
- MG.CNCS (2016) side-by-side comparison with ³He
- MG.SEQUOIA (2017-18) thermal neutron detection
- MG.SEQUOIA 2 (2018-19)
- MG.300 (2019) real CSPEC size, 1 vessel (2 detectors)

• CSPEC = 54 detectors = 7560 grids = <u>180,000+ blades</u>

13

Multigrid detectors

Mass production + engineering challenges!

Technology for ESTIA and FREIA in ESS: <u>The Multi-Blade project</u>

Multiblade detectors

High counting rate capability

High spatial resolution A single Boron layer inclined at 5 degrees

```
Efficiency <5% at 2.5Å Efficiency 45% at 2.5Å
```


F. Piscitelli et al., J. Inst. 12, P03013 (2017)F. Piscitelli et al., Proc. R. Soc. A 472 (2016)

UNIVERSITÀ DEGLI STUDI DI PERLIGIA

wisner 🛄

LUND UNIVERSITY

 $\theta = 5 \text{ degrees}$

4

Research Development

Temperature sensitive substrates

- Max. 4.5 µm done.
- Scratch proof.
- B_4C and Cu done.
- (soft) PCBs, Sidiodes...

Very challenging

Mechanically soft substrates

• **Bending**: partly coated soft substrate, e.g. 1-side coated Al

 $5 \mu m B_4 C \text{ on } 1 \text{ mm Al}$

- Buckling: physical constrain to thermal expansion, e.g. masks
 - ✓ Lower temperature preferred

50 um Al-foil

Our material 'tool box'

Substrate materials

- Metals: Al, Ti, Ni, Nb, Au, Cu, Gd
- Ceramics: Si, Si₃N₄, SiO_x (thermal silica), object glass, SiC-Si₃N₄ composite, AIN, DLC
- Others: PCBs (G10 and FR4), Pyralux

Coating materials

- Non-metal: B₄C
- Metals: Al, Ti, Cu

5

DLC Related Works

As received samples

- 4 DLC/Cu-Kapton foils received.
- Packed and separated by paper we like that!
- Stains and scratches found on the surfaces when received. See red circles to the right.

ON

R1013

- Sample cut into 1/8 size and masked with Al.
- (1) Cu coated onto the sample without problem. No spontaneous delamination observed.
- (2) Scratch test with tweezers can peel off the Cu layer. However the delamination did not propagate to a larger area → OK adhesion.
- (3) After isopropanol spray to the surface, the Cu layer stayed without apparent change.

EUROPEAN SPALLATION SOURCE

R1014

- Sample cut into 1/8 size and masked with Al.
- (1) Cu coated onto the sample without problem. No spontaneous delamination observed.
- (2) Cu layer can only be scratched off with hard force on the tweezers, that is enough to damage the foil. The Cu layer was scratched off in spots instead of big flakes as in R1013, and no further propagation → much better adhesion.
- (3) After isopropagal spray to the surface the

EUROPEAN SPALLATION SOURCE

R1015

- Test with larger sample size: a 1/4-size and a full-size sample.
- Same process as in R1014.
- The full-size sample was drilled with holes to be mounted in the mask.
- Cu deposition was done with no problem.
- Scratch test done on 1/4-size sample and show no difference with R1014.

R1016

- 2 full-size sample mounted. Same process as in R1014 but aimed for higher thickness.
- Samples were drilled with holes to be mounted in the masks.
- Cu deposition was done with no problem.
- The stains and scratches found on as-received samples can still be seen on the surfaces. See red circles to the right.

DLC deposition?

- First try in Feb. 2020.
- Highest resistivity achieved $\sim 8 10 \text{ k}\Omega/\text{sq}$.
- Other characterization, including thickness measurements, has not been done.

Thanks for your attention!

Contact: Chung-Chuan.Lai@ess.eu