

MEG II実験陽電子タイミングカウンターの 位置較正及び時間分解能に与える影響の評価

Alignment and Effect Evaluation on the timing resolution of Positron Timing Counter in the MEG II Experiment

2020 / 2 / 16

第26回 ICEPP シンポジウム @ 志賀レークホテル

米本拓(ICEPP,東京大学)

Contents

- Introduction
- MEG II experiment
- Pixelated Timing Counter
- pTC alignment
- Alignment
- Instruments
- Analysis flow
- Scan data
- Results
- Conclusion

- MC study
- TOF from reconstructed track
- Results
- Conclusion
- Summary & Prospect

Contents

- Introduction
- MEG II experiment
- Pixelated Timing Counter
- pTC alignment
- Alignment
- Instruments
- Analysis flow
- Scan data
- Results
- Conclusion

- MC study
- TOF from reconstructed track
- Results
- Conclusion
- Summary & Prospect

MEG II experiment

- Upgrade of the MEG experiment
- The search for $\mu^+ \rightarrow e^+ + \gamma$ (cLFV) μ^+ : most intense beam at PSI (10⁸ μ^+ /s)
 - $\gamma~$: detected by LXe
 - e^+ : bent by COBRA magnet,
 - detected by pTC & CDCH
- expected sensitivity:

 $\mathcal{B}(\mu^+ \rightarrow e^+ + \gamma) \sim 6 \times 10^{-14}$

MEG II - Pixelated Timing Counter

- a highly segmented (256 tiles \times 2) scintillation counter, consists of two semi-cylindrical super-modules.
- 120mm × 40mm (50mm) × 5mm plastic scintillator (BC422).
- read by 6 SiPMs on each PCB attached to both side of the scintillator.
- overall time resolution $\sim 38 \text{ ps}$ assuming 9 hits (average hits for signal e⁺)

pTC alignment

e⁺ trajectory

Real values of pixel positions are critical to

- e^+ detection efficiency
- Time-of-Flight
- for a first pixel \rightarrow global timing
- among hit pixels \rightarrow pTC time calibration for multiple hits of e⁺.

-R (cm)

<u>Contents</u>

- Introduction
- MEG II experiment
- Pixelated Timing Counter
- pTC alignment
- Alignment
- Instruments
- Analysis flow
- Scan data
- Results
- Conclusion

- MC study
- TOF from reconstructed track
- Results
- Conclusion
- Summary & Prospect

Instruments - 3D scanner

3D Scanner (FARO Edge ScanArm HD)

- Accuracy $\pm 25 \mu m$
- Scan rate : 560,000 points/sec
- · Cited from https://www.faro.com/resource/faro-edge-scanarm-hd/

Analysis flow

*Every time we install TC, we will restart from 2

3D scan by FARO 3D scanarm

① Scan pixels and get the following

data (✔ Mar. 2019).

- scan data
- reference points

Laser survey by Leica laser tracker

② Survey in piE5 (**√** 3rd Sep. 2019).

• reference points in global coordinates

Calculate transform matrix by reference points

(3) 3D scanner coordinates \rightarrow global coordinates.

Designed position in global coordinates (now used in MEG II software)

Get counter positions in global coordinates

(4) Measure deviations from designed position.

Scan data - overview

- Scan data are available as an array of (x,y,z) points
- Data is lacking because the light of 3D scanner could not reach
- 77 pixels from 512 pixels are excluded from analysis due to

x:y:z

good

0 -10-20-30-40-50-60-70-80-90100 90 80 70 60

30-20-

Scan data - handling

- Designed angles and center position are used for translating pixels to local x-y-z
- Estimated center of pixel is calculated: $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} (x_{max} + x_{min})/2 \\ (y_{max} + y_{min})/2 \\ (z_{max} + z_{min})/2 \end{pmatrix}$
- Top side widths are used as parameters for data selection.

Results of alignment

- Mean value of deviations are in 1.1mm
- All σ of deviations are $\sim 1 \text{ mm}$
- All the deviations are in $\sim 5 \text{ mm}$

value	dx (US)	dy (US)	dz (US)	dx (DS)	dy (DS)	dz (DS)
mean	0.15 mm	0.65 mm	1.1 mm	-0.35 mm	0.43 mm	-0.33 mm
Std_dev	0.75 mm	0.86 mm	0.88 mm	1.0 mm	1.1 mm	1.2 mm

Conclusion of alignment

- The results contain effects of alignment, construction and installation of pTC.
- Accuracy of this alignment can be estimated from $\sigma \sim 1 \text{ mm} > \sigma_{alignment}$

* Outlier

- Pixels which show larger deviations than 3mm are visually confirmed to be deviated (\rightarrow)

Contents

- Introduction
- MEG II experiment
- Pixelated Timing Counter
- pTC alignment
- Alignment
- Instrumentes
- Analysis flow
- Scan data
- Results
- Conclusion

- MC study
- TOF from reconstructed track
- Results
- Conclusion
- Summary & Prospect

TOF from reconstructed track

- Geometry changes affect on reconstructed track and Time of Flight (TOF) of particles.
- 1mm difference makes 3 ps difference for particle at light speed.
- TOF of background e⁺ is used for TC time calibration.

• In the past, no study on effects by geometrical deviations

 \rightarrow MC study for deviated geometry

- 3 types of TC geometry configuration
- 1. Designed geometry (No deviations)
- 2. Geometry with random deviations $(0 \sim 5 \text{mm})$
- 3. Geometry with measured deviations from alignment

Results (1) No deviations

- Designed geometry
- Reconstruction with the same geometry
- Red: TOF from MC Truth

Blue: TOF from reconstructed track

 \rightarrow Well reconstructed

Results (2) Random deviations

Entries

- Randomly deviated from design
 - $(|dx_i| < 5 \text{ mm})$ Red: TOF from MC Truth
- Reconstruction with 2 types of geometry
 1. Adjusted geometry (Green)
 - 2. Design geometry (Blue)
 - \rightarrow Well reconstructed by the adjusted geometry

Results (3) Deviations from alignment

Entri

Deviated with measured value from •

3D scan

- **Red**: TOF from MC Truth •
- Reconstruction with 2 types of geometry ٠

1. Adjusted geometry (Green)

- 2. Design geometry (Blue)
- \rightarrow Well reconstructed by the adjusted geometry except for pattern 1.

Conclusion of MC study

- If every pixel has randomized 5mm deviation, the TOF distribution is apparently changed.
- On the other hand, measured deviations seems not affect so much.
- \rightarrow Pixels with large deviations are rarely hit?
- TOF changes can be properly calculated with precise alignment.
- \rightarrow Track reconstruction can be corrected by alignment.

Summary

- Alignment for pixelated timing counter was done in 1mm accuracy with 3D scanner and laser tracker.
- The present alignment can improve track reconstruction.

Prospect

- Develop a method to measure direction angles for each pixel.
- More study for geometry change effects on event reconstruction.

Back up

$Mu^+ \rightarrow E^+ + Gamma \ decay$

(a) $\mu^+ \to e^+ \gamma$ (b) $\mu^+ \to e^+ \nu_{\mu} \nu_{e}$ (Michel decay) γ (photon from RMD, bremsstrahlung or AIF) () $\mu^+ \to e^+ \nu_{\mu} \nu_{e}$ (D $\mu^+ \mu^+ \nu_{e}$)

(c) $\mu^+ \rightarrow e^+ \nu_{\mu} \nu_e \gamma$ (Radiative Muon Decay (RMD))

In order to distinguish signal events from these background expected 4 times more than MEG, resolution of each detector should be totally upgraded.

Results (4) TC timing calibration

• Y indicates: (calibration result) – (MCtrue time offset)

Black: reconstruction with designed geometryRed://with adjusted geometry

• Timing calibration is improved by adjusting geometry for (2), but not for (3)

Effect on pTC time resolution

- Standard setup 4cm pixel: 27.3 ps 5cm pixel: 35.1 ps
- Random deviations (< 5mm)

default analysis (not know the deviations) – 4cm pixel: 27.1 ps 5cm pixel: 35.0 ps

custom analysis (know the deviations) – 4cm pixel: 27.1 ps 5cm pixel: 35.0 ps