J-PARC KOTO実験の Cslカロリメータ両読み手法による 中性子背景事象削減能力の評価

2020/02/17 ICEPPシンポジウム 大阪大学 山中卓研究室 博士前期課程2年 大杉 真優

 $K_{I} \rightarrow \pi^{0} \nu \bar{\nu}$ の探索

- CP対称性を破る
- 標準理論で予測される分岐比→3×10⁻¹¹と小さい
- 理論的不定性が小さい

分岐比が標準理論からずれている →<u>新物理へのてがかり</u>

KOTO検出器

中性子背景事象

分岐比の小さい事象の探索 → 背景事象の抑制が重要

信号事象($K_L \to \pi^0 \nu \bar{\nu}$) 中性子背景事象

中性子背景事象

分岐比の小さい事象の探索 → 背景事象の抑制が重要

信号事象($K_L \to \pi^0 \nu \bar{\nu}$) 中性子背景事象

相互作用の深さで識別

放射長(2cm)に従い相互作用 **上流で相互作用**

相互作用長(40cm)に従い相互作用 **下流で相互作用**

Cslの両読み手法

CsIカロリメータの改良:上流面に光検出器(MPPC)を取り付ける

半導体光検出器 (MPPC)

インストール

2018年9月~12月: Cslカロリメータの約2700個の結晶に4080個MPPCを取り付け 読み出し回路への配線

2019年2月~4月:ビームを受け,データ取得 ↑このデータを用いて解析

<u>ΔTによる中性子背景事象削減能力を見積もる</u>

先行研究と異なる点

• <u>初測定</u>

<u>Cslカロリメータ改良後にKOTO実験で取得したデータ</u>

• 中性子背景事象を削減する他のカットとの相関

削減能力評価の流れ

- 評価に用いたサンプルの選び方、妥当性の評価
 - γ線サンプル:信号事象($K_L \rightarrow \pi^0 \nu \bar{\nu}$)に対する性能評価
 - 散乱中性子サンプル:中性子背景事象に対する性能を評価
- ΔTによる中性子削減能力の評価
 - ΔTによるカット単体の場合
 - 既存の中性子カットとの相関を考慮した場合

信号事象は二つのクラスターを持つ → 2 クラスター単位の解析

y線サンプル

- <u> γ 線サンプル</u> $K_L \rightarrow 3\pi^0 (\rightarrow 6\gamma)$ のデータ 終状態が γ 線のみ 分岐比が大きい (20%)
- 事象の妥当性

事象選別後に K_L の質量を再構成 $K_I \rightarrow 3\pi^0$ を選べた 再構成された K_L の質量

 $\rightarrow \pi^0 \rightarrow 2\gamma \ \delta \gamma \ \& \ \forall \nu \ \mathcal{I} \nu \ \& \ \mathcal{I} \nu \ \mathcal{I} \nu \ \& \ \mathcal{I} \nu \ \mathcal{I} \nu \ \& \ \mathcal{I} \nu \ \& \ \mathcal{I} \nu \ \mathcal{I$

散乱中性子サンプル

 <u>散乱中性子サンプル</u>

 特別なランを行なってサンプルを取得

 検出器上流にアルミ板を置く→ビーム中の中性子を積極的に散乱

<u>より削減能力の高い、</u> <u>∆T が大きい方のクラスターを使ってカットする</u>

ATカットの削減能力

ΔTが大きい方のクラスターのΔT分布

要求性能 (0.1倍)を達成

他のカットとの相関

- 他に中性子背景事象を削減するカット
- これまでの説明

→ 多くの中性子サンプルを用いるために使わなかった

波形カットとの相関

波形カットをかけた後

波形カットをかける前

 ΔT → ト単体での中性子の削減性能 (2.1±0.1)×10⁻²倍 (4.0±0.6)×10⁻²倍 (w/90%γ線サンプル) (w/90%γ線サンプル)

クラスター形状カットとの相関(1)

クラスター形状カットは削減能力が高い~10-5 →カット後に残る中性子サンプル~1事象 →相関を求めるには不足

戦略: ΔT分布を前半後半に分ける 前半後半でクラスター形状カットの性能が違うか?

エネルギーが大きい方のクラスターのΔT分布

16

クラスター形状カットとの相関(2)

<u>ΔTカットとクラスター形状カットとの相関はない</u>

信号事象数に対する背景事象数

ΔTカットなし
 中性子背景事象数→信号事象数の<u>10倍</u>予測

ΔTカットあり
 中性子背景事象数→信号事象数の<u>0.5倍</u>予測

信号事象数に対する背景事象数

- ΔTカットなし
 中性子背景事象数→信号事象数の<u>10倍</u>予測
 0.05倍
 ~(中性子削減能力)×(信号事象の削減)
 ~0.04×(1/0.9)
- ΔTカットあり
 中性子背景事象数→信号事象数の<u>0.5倍</u>予測
- ・中性子背景数をΔTがなかった時に予測された値と比較して
 <u>0.05倍に削減した</u>

- CsIカロリメータの上流に光検出器を取り付け、カロリメータを 両読みにする作業を行なった。
- ΔTによって中性子背景事象は(2.1±0.1)×10⁻²倍
- ・中性子背景事象を削減する他のカットとの相関を考慮
 →<u>削減能力は(4.0±0.6)×10⁻²倍</u>
 →目標性能(0.1倍)を達成
- 予測される、信号事象数:中性子背景事象数=1:0.5
 ΔTカットがない場合に予測された値から0.05倍に削減した
- <u>中性子背景事象を十分に削減した</u>

KOTO実験 検出器

MPPCの仕様

MPPC (S13360-6050CS)

有効受光面サイズ	$6 \times 6 \ \mathrm{mm^2}$
ピクセル数	14400
ピクセルピッチ	$50~\mu{ m m}$
ダークレート (>0.5 photo electrons)	2 MHz (typ.)
感度波長範囲	270 - 900 nm
増幅率	$1.7 imes 10^6$
降伏電圧(VBR)	$(53 \pm 5) { m V}$
推奨動作電圧	$(V_{\rm BR} + 3) { m V}$
推奨動作電圧の温度計数 $\Delta TV_{ m OP}$	$54 (mV/^{\circ}C)$

窓材がシリコーン樹脂のため、 エポキシ樹脂のMPPCと比較して 短波長にも感度がある

波長 (nm)

使用したMPPC 窓材がエポキシ樹脂のMPPC

インストール後の物質量

MPPC表面が窪んでいるので 石英板に接着

治具を使ってCsl表面に接着

24

MPPCの回路

項目	直列接続	ハイブリッド接続	並列接続
基板実装	容易	並列回路よりも複雑	複雑
印加電圧	高い	低い	低い
パイルアップ確率	低い	低い	低い
時間分解能	小さい	小さい	大きい
放射線損傷によるゲインの不揃い	発生しない	発生しない	発生しない

MPPCへの 配線

解析手法

① 検出器に囲まれた領域で崩壊する

② ν が運動量を持ち去る $\rightarrow \pi^0$ の P_t が比較的高い →信号領域を定義

宇宙線測定で得た物理量

28

POT

波形解析

ペデスタル:64点ある波形のデータ点のうち、最初の10点と最後の10点のうち標準偏差の小 さい方の平均

時間:波形の立ち上がり部分で、波高の1/2の高さに対応する時間。

MPPCへの印加電圧

データ取得前の暗電流~0µA

時間較正

10000

5000

-20

-15

-10

-5

0

5

Time [ns]

of Events

5000

0 -20

-15

-10

-5

0

Time [ns]

中性子背景事象

散乱中性子サンプル

ΔTが大きい方のクラスター

34

中性子背景事象に対する削減能力

∆ T (ns)

ΔT分布の幅

分布の幅~6.5 ns + 結晶ごとの伝搬速度の違いなど

ATカットで残った事象に対する分布

min dt remain

残った事象の小さい方の△T分布

ΔTカットでカットできなかった散乱中性子サンプルは、 小さい方のΔT分布でもカットできない

ΔTのクラスター間の相関

両方のクラスター共に~30ns

エネルギーの低いクラスターは ΔTが小さくなりがち

エネルギーとΔTの相関

赤枠内のみ使用

事象数=5511

事象数=27120

40

カット後の事象

時間分解能

時間分解能

 $\Delta T_{\text{E.W.}}$: エネルギーで加重平均した時間 $\Delta T_{\text{M.E.}}$: 最も高いエネルギーが落とされた結晶の時間

時間分解能の時間変化

時間分解能の時間変化は誤差の範囲内だった

上下流の位置分解能の差

シャワーの発展方向と光子の伝搬方向が逆 →時間分解能が悪化

ΔTカットのEfficiency

ΔTが大きい方のクラスターのΔT分布

Gamma Efficiency

0.8

0.6

 $\Delta T_{\text{M.E.}}$: 最も高いエネルギーが落とされた結晶の時間 $\Delta T_{\text{E.W.}}$: エネルギーで加重平均した時間

信号事象に対する中性子背景事象の数

① 波形カット、クラスター形状カット、ΔTカットによる 削減能力を見積もる

2 Δ T

(a)blind region内の事象数を見積もる

(b) blind region内の探索感度を見積もる

③ 探索感度が(3×10⁻¹¹)での事象数を見積もる

- 波形カット、クラスター形状カットの削減能力 (3.1±3.1)×10-5
 - カット後に残る事象数=1
 - 散乱中性子でなく散乱K_Lの寄与による事象数=1.1
 - 合計の事象数 = 27120
 - Feldman-Cousin法を使って計算
- ΔTカットの削減能力(4.0±0.6)×10⁻²倍
- 波形カット、クラスター形状カット、ΔTカットによる削減能力 (1.2±1.2)×10⁻⁶

(1) (a)

G *(1.2 ± 1.2) × 10⁻⁶ = (7.7 ± 7.7) × 10⁻³

信号事象に対する中性子背景事象の数

(1) (b) 1 SES =(検出器領域に入社したKLの数)×P_{decay}×A_{signal} 金標的に陽子を当てた数(POT)に比例する $\rightarrow 4.2 \times 10^7 / (2 \times 10^{14} \text{ POT})$ Asignalはいくつかの要素に分けられる $A_{signal} = A_{geom} \times A_{kine cuts} \times A_{veto} \times A_{neutron cuts}$ $P_{decay} \times A_{geom.} \times A_{kine cuts} \times A_{veto} = 4.9 \times 10^{-8}$ Aneutron cuts = $0.8 \times 0.89 \times 0.9$ $SES = 1.9 \times 10^{-9}$

標準理論感度での背景事象数

2015年データの結果から予測:(10±7)事象 標準理論感度での背景事象数は2015年の0.05倍

散乱中性子サンプル中のK, 混入

信号事象と見分けがつかない可能性

カット後の散乱 K_L 事象(MC)

散乱中性子サンプル中への混入 (1.1±0.2)事象

データの35倍の統計のMC

信号事象 $(K_L \rightarrow \pi^0 \nu \bar{\nu})$ の Δ T分布

エネルギーによって、 Δ T分布の幅は変わる $K_L \rightarrow \pi^0 \nu \bar{\nu}$ の Δ T分布をを $K_L \rightarrow 3\pi^0$ をエネルギー加重平均をして求めた

 $K_{I} \rightarrow \pi^{0} \nu \bar{\nu} \bar{\nu} c$ 対する性能評価

54

MPPCとPMTの平均時間(2)

$$T_{\rm inv}^1 - T_{\rm inv}^2$$
 (1:highE, 2:lowE)

散乱中性子サンプルでは、 クラスター間の**TOF**を表す

55

MPPC時間差とPMT時間差

クラスター間の時間差

MPPCとPMTの平均時間

$\Delta T \ge \Delta T_{inv}$ による削減能力

ΔTカットとΔ*T*_{inv}削減能力:<u>(1.6±0.1)×10⁻²倍</u> ΔTカットのみ 削減能力:<u>(2.1±0.1)×10⁻²</u>

ΔT_{inv} vs クラスター間の時間差

