ICEPP Symposium, 17th/February/2020)

Yosuke ASHIDA (Kyoto University)

Supernova Explosion

- A Star which is more than ~8 times heavier than the Sun ends its life by an explosion.
 - kinetic energy: ~10⁵¹ erg (1 erg = 1×10^{-7} J = 6.2×10^{11} eV)
 - luminosity: ~galaxy
 - rate: 1–3/century/galaxy
- <u>Classification by spectral characteristics</u>
 - Ia, Ib, Ic, II
- <u>Classification by explosion mechanism</u>
 - thermonuclear (= Ia)
 - **core-collapse** (= Ib, Ic, II)
 - \rightarrow neutrino emission

Crab Nebula by NASA

Neutrinos from Core-Collapse Supernovae

- *Experiment* There is only one observation of neutrinos from a supernova ("SN1987A" in the Large Magellanic Cloud).
- *Theory* There are many numerical simulations about CCSNe, but the explosion mechanism is not completely revealed.

Supernova Relic Neutrinos

- Neutrinos from all past CCSNe are accumulated to form an integrated flux.
 - = Supernova Relic Neutrinos (SRNs)
- Various factors affect the SRN flux on Earth.
 - Neutrino oscillation (mass hierarchy)
 - Galactic evolution (star formation rate, initial mass function, etc)
 - Black hole formation rate (metallicity, equation-of-state, etc)
 - etc

Supernova Relic Neutrinos

- There is nearly an order of magnitude difference in the flux depending on the model.
- Detecting SRNs would provide valuable information about the explosion mechanism as well as the star formation history.

Status of SRN Searches

- Signal in experimental search = inverse beta decay $(\overline{v}_e + p \rightarrow e^+ + n)$
- The most sensitive searches have been performed in Super-Kamiokande and KamLAND.

6

• <u>Search at SK</u>

•

- SK-I/II/III (spectrum analysis): spectrum fitting to $E_v > 17.3$ MeV
- SK-IV (neutron tagging analysis): tagging efficiency $\sim 20\%$
- K. Nakazato et al., ApJ 804, 75 (2015) Search at KamLAND Delayed coincidence 100 • Kaml Max(Inverted (tagging efficiency $\sim 100\%$) Min(Normal) $dF(E_v)/dE_v[cm^{-2}s^{-1}MeV^{-1}]$ 10 0.1 minimum 0.01 10 30 15 20 25 35 5 E, [MeV]

Super-Kamiokande Detector

- A water Cherenkov detector located 1,000 m under the mountain.
- Fiducial volume: 22.5 kton
- Inner detector: 11,129 20-inch PMTs
- Outer detector: 1,885 8-inch PMTs, used for cosmic-ray muon veto
- Operated since 1996 in five periods.

- Inverse beta decay of electron antineutrinos $(\overline{v}_e + p \rightarrow e^+ + n)$ is searched.
 - Larger than the other mode by >2 orders of magnitude.
 - Search region = [7.5, 29.5] MeV in visible energy ($E_v = [9.3, 31.3]$ MeV)
- Signal: "β+n" events
 - Prompt signal = β
 - Delayed signal = 2.2 MeV γ from neutron capture

Background (1): Muon Spallation

Isotope	Half-life	Decay mode	Yield	Primary process
	[sec.]		$\times 10^{-7} \text{muon}^{-1} \text{g}^{-1} \text{cm}^2$	
n			2030	
¹⁸ N	0.624	β^{-}	0.02	$^{18}\mathrm{O}(n,p)$
^{17}N	4.173	$\beta^{-}n$ low energy	gy 0.59	${}^{18}{ m O}(n,n+p)$
^{16}N	7.13	$\beta^{-}\gamma$ (66%), β^{-} (28%)	18	(n,p)
$^{16}\mathrm{C}$	0.747	$\beta^{-}n$ low energy	gy 0.02	(π^-, np)
$^{15}\mathrm{C}$	2.449	$\beta^{-}\gamma$ (63%), β^{-} (37%)	0.82	(n,2p)
^{14}B	0.0138	$\beta^-\gamma$	0.02	(n, 3p)
¹³ O	0.0086	β^+	0.26	$(\mu^{-}, p + 2n + \mu^{-} + \pi^{-})$
¹³ B	0.0174	β^{-}	1.9	$(\pi^-, 2p+n)$
^{12}N	0.0110	β^+	1.3	$(\pi^+, 2p + 2n)$
^{12}B	0.0202	β^{-}	12	$(n, \alpha + p)$
^{12}Be	0.0236	β^{-}	0.10	$(\pi^-, \alpha + p + n)$
¹¹ Be	13.8	$\beta^{-} (55\%), \beta^{-} \gamma (31\%)$	0.81	$(n, \alpha + 2p)$
¹¹ Li	0.0085	$\beta^{-}n$ very sho	r 0.01	$(\pi^+, 5p + \pi^+ + \pi^0)$
⁹ C	0.127	β^+ lifetime	0.89	$(n, \alpha + 4n)$
⁹ Li	0.178	$\beta^{-}n$ (51%), β^{-} (49%)	1.9	$(\pi^-, \alpha + 2p + n)$
٥B	0.77	β^+	5.8	$(\pi^+, \alpha + 2p + 2n)$
°Li	0.838	β^{-}	13	$(\pi^-, \alpha + {}^2\mathbf{H} + p + n)$
°He	0.119	$\beta^{-}\gamma$ (84%); $\beta^{-}n$ (16%)	0.23	$(\pi^-, {}^{\mathfrak{s}}\mathbf{H} + 4p + n)$
¹⁵ ()		low energ	y <u>351</u>	(γ, n)
¹⁵ N			773	(γ, p)
¹⁴ ()			13	(n,3n)
¹⁴ N	\checkmark		295	$(\gamma, n+p)$
14C	Not dive	at ha alignarin da in SV	64 10	(n, n+2p)
¹³ N	not aire	ct backgrounds in SK	19	$(\gamma, {}^{\circ}\mathrm{H})$
¹³ C	• stab	le (no decay)	225	$(n, {}^{2}\mathbf{H} + p + n)$
11 C	• long	lifetime	792 105	(γ, α)
U 11 D	• •	, 111 villiv	105	$(n, \alpha + 2n)$
10 C	• invis	sible decay	1(4	$(n, \alpha + p + n)$
	• very	v low energy	1.0 77	$(n, \alpha + 3n)$
10 D	U		11	$(n, \alpha + p + 2n)$
9 ₂₀			24 28	$(n, \alpha + 2p + n)$
De			2015	$(n, 2\alpha)$
sum			0110	

Background (2): Atmospheric Neutrinos

- **NCQE** Interactions •
 - " γ +n" mimics " β +n".
 - Constrained by the recent T2K results. ٠ K. Abe et al. (T2K Collaboration), PRD 100, 112009
- **Other Interactions** •
 - CC-induced muons, pion production, etc ٠
 - These form a Michel spectrum then are estimated ٠ using the sideband region (>30 MeV).

Background (2): Atmospheric Neutrinos

- NCQE Interactions
 - " γ +n" mimics " β +n".
 - Constrained by the recent T2K results.
 K. Abe et al. (T2K Collaboration), PRD 100, 112009
- Other Interactions
 - CC-induced muons, pion production, etc
 - These form a Michel spectrum then are estimated.

Background (2): Atmospheric Neutrinos

Background (3): Reactor & Accidental Events

Reactor neutrinos

- Electron antineutrinos from reactor plants.
- IBD reaction is an irreducible background.
- Accidental background events
 - "True": β -like + neutron (due to muon spallation)
 - "Fake": β -like + neutron-like (due to PMT noise, radioactive γ , etc)

3σ Sensitivities

- SK-Gd J. Beacom and M. Vagins, PRL 93, 171101 (2004)
 - $\sim 90\%$ neutron tagging efficiency with the Gd.
 - ~8 MeV γ -rays are emitted, then the search does not suffer from accidental backgrounds.
- Hyper-Kamiokande K. Abe et al. (HK Proto-Collaboration), arXiv:1109.3262
 - ~8.4 times larger fiducial mass.
 - Better photosensors and more coverage lead to doubled neutron tagging efficiency.

Let's work forward to discovery!!

BACKUP SLIDES

Neutrinos from Core-Collapse Supernovae

Table 1.1: Best-fit values of the neutrino oscillation parameters from PDG2018 [22]. NH and IH represent the normal and inverted neutrino mass hierarchy, respectively.

Oscillation parameter	Best-fit value
$\sin^2 heta_{12}$	0.307 ± 0.013
$\sin^2 \theta_{23}$ (NH, Octant I)	$0.417\substack{+0.025\\-0.028}$
$\sin^2 \theta_{23}$ (NH, Octant II)	$0.597\substack{+0.024\\-0.030}$
$\sin^2 \theta_{23}$ (IH, Octant I)	$0.421_{-0.025}^{+0.033}$
$\sin^2 \theta_{23}$ (IH, Octant II)	$0.592\substack{+0.023\\-0.030}$
$\sin^2 heta_{13}$	$(2.12 \pm 0.08) \times 10^{-2}$
Δm^2_{12}	$(7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$
$\Delta m_{32}^2 \ (\mathrm{NH})$	$(2.51 \pm 0.05) \times 10^{-3} \text{ eV}^2$
$\Delta m_{32}^2 (\mathrm{IH})$	$(-2.56 \pm 0.04) \times 10^{-3} \text{ eV}^2$

$$R_{\text{CCSN}}(z) = \zeta_{\text{CCSN}} \dot{\rho}_*(z),$$

$$\zeta_{\text{CCSN}} = \frac{\int_{M_{\min}}^{M_{\max}} \Psi_{\text{IMF}}(M) dM}{\int_{0.1M_{\text{sun}}}^{100M_{\text{sun}}} M \Psi_{\text{IMF}}(M) dM},$$

Figure 2. CSFRD as a function of redshift. Dashed, solid and dotted lines correspond to the models in HB06, DA08 and K13, respectively. Plots are calculated from the data in Tables 1 and 2 in DA08.

BH Formation Criteria

Mass Hierarchy Effect

$$\begin{aligned} \frac{dN_{\bar{\nu}_e}}{dE_{\nu}} &= |U_{e1}|^2 \frac{dN_{\bar{\nu}_1}}{dE_{\nu}} + |U_{e2}|^2 \frac{dN_{\bar{\nu}_2}}{dE_{\nu}} + |U_{e3}|^2 \frac{dN_{\bar{\nu}_3}}{dE_{\nu}} \\ &= \cos^2 \theta_{12} \cos^2 \theta_{13} \frac{dN_{\bar{\nu}_1}}{dE_{\nu}} + \sin^2 \theta_{12} \cos^2 \theta_{13} \frac{dN_{\bar{\nu}_2}}{dE_{\nu}} + \sin^2 \theta_{13} \frac{dN_{\bar{\nu}_3}}{dE_{\nu}} \\ &\sim 0.68 \cdot \frac{dN_{\bar{\nu}_1}}{dE_{\nu}} + 0.30 \cdot \frac{dN_{\bar{\nu}_2}}{dE_{\nu}} + 0.02 \cdot \frac{dN_{\bar{\nu}_3}}{dE_{\nu}}, \end{aligned}$$

$$\Rightarrow \quad \frac{dN_{\bar{\nu}_e}}{dE_{\nu}} \sim 0.68 \cdot \frac{dN_{\bar{\nu}_e}^0}{dE_{\nu}} + 0.32 \cdot \frac{dN_{\bar{\nu}_x}^0}{dE_{\nu}}.$$
 Normal Hierarchy

22

Figure 4. Neutrino number spectra of supernova with $30M_{\odot}$, Z = 0.02 and shock revival times of $t_{revive} = 100$ ms (dotted), 200 ms (solid), and 300 ms (dashed). The left, central, and right panels correspond to u_{ℓ} , \bar{u}_{ℓ} , and u_{χ} ($=u_{\mu} = \bar{u}_{\mu} = \bar{u}_{\ell} = \bar{u}_{\ell}$), respectively.

Figure 6. Neutrino number spectra for black hole formation with $30M_{\odot}$, Z = 0.004 and Shen EOS (solid) and LS EOS (dotted). The left, central, and right panels correspond to u_{ℓ} , \bar{u}_{ℓ} , and u_{χ} ($=u_{\mu} = \bar{u}_{\ell} = \bar{u}_{\ell} = \bar{u}_{\ell} = \bar{u}_{\ell}$), respectively.

Redshift Dependence

Figure 10. Total fluxes of SRNs (solid) and contributions from various redshift ranges for the reference model. The lines except for the solid line correspond, from top to bottom, to the redshift ranges 0 < z < 1, 1 < z < 2, 2 < z < 3, 3 < z < 4, and 4 < z < 5, for $E_{\nu} > 10$ MeV. The left and right panels show the cases for normal and inverted mass hierarchies, respectively.

Redshift

26

Normal Mass Hierarchy Inverted Mass Hierarchy **CSFRD** EOS for BH 18-26 10 - 1810-26 MeV 18-26 10 - 1810-26 MeV Figure 12 t_{revive} **HB06** 100 ms Shen 0.286 0.704 0.990 0.375 0.832 1.207 • • • LS 0.227 0.635 0.863 0.351 0.806 1.156 • • • 200 ms Shen 0.361 0.833 1.193 0.429 0.920 1.349 . . . LS 0.302 0.764 1.066 0.404 0.893 1.297 . . . 300 ms Shen 0.432 0.938 1.370 0.463 0.967 1.431 Maximum LS 0.374 0.869 1.242 0.439 0.941 1.379 ... **DA08** 100 ms Shen 0.219 0.515 0.734 0.286 0.598 0.885 . . . LS 0.178 0.464 0.642 0.269 0.578 0.847 . . . 200 ms Shen 0.274 0.604 0.879 0.326 0.660 0.986 Reference LS 0.233 0.554 0.787 0.308 0.640 0.948 ... 0.326 0.677 0.350 300 ms Shen 1.003 0.694 1.044 . . . LS 0.285 0.627 0.911 0.333 0.674 1.007 . . . 0.203 0.645 0.264 0.505 0.769 K13 100 ms Shen 0.443 . . . LS 0.252 0.171 0.410 0.581 0.492 0.744 Minimum 200 ms 0.252 0.514 0.767 0.298 0.554 0.853 Shen ... LS 0.221 0.482 0.703 0.286 0.542 0.827 . . . 0.298 0.570 0.868 0.319 0.580 0.899 300 ms Shen . . . LS 0.266 0.537 0.804 0.306 0.568 0.874

Table 3SRN Event Rates in Various Ranges of Positron Energy in Super-Kamiokande Over 1 yr (i.e., per 22.5 kton yr) for Models With Metallicity Evolution of DA08+M08

NCQE Background

- At $E_v > \sim 200$ MeV, neutrinos are likely to knock-out a nucleon in the NC interaction. = NC quasielastic nucleon knock-out ("NCQE")
- This mimics the SRN signal (IBD) and becomes a background (mainly $E_v = 12-20$ MeV). So far the background was estimated by the simulation based on theories.
- A 100% uncertainty was assigned to this channel because of little experimental data.
- Previous measurements about this channel
 - SK: large uncertainty, mixture of neutrinos and antineutrinos
 - T2K: large uncertainty, only for neutrinos K. Abe et al. (T2K Collaboration), PRD 90, 072012 (2014)

L. Wan et al. (SK Collaboration), PRD 99, 032005 (2019)

T2K Experiment

- Bunched proton beams (8 bunch per spill) are injected on the graphite target to produce hadrons (pions and kaons).
- Hadrons are focused by magnetic fields and decay to produce neutrino beams.
- Beam polarity (neutrino or antineutrino) is changed by the magnetic field direction.
- Neutrinos are detected at 295 km away Super-Kamiokande.

T2K Experiment

- Bunched proton beams (8 bunch per spill) are injected hadrons (pions and kaons).

RHC (antineutrino mode): 16.35 × 10²⁰ protons-on-target

NCQE Cross Sections in T2K

 $\langle \sigma_{\nu\text{-NCQE}} \rangle = 1.70 \pm 0.17 (\text{stat.})^{+0.51}_{-0.38} (\text{syst.}) \times 10^{-38} \text{ cm}^2/\text{oxygen},$ $\langle \sigma_{\bar{\nu}\text{-NCQE}} \rangle = 0.98 \pm 0.16 (\text{stat.})^{+0.26}_{-0.19} (\text{syst.}) \times 10^{-38} \text{ cm}^2/\text{oxygen},$

Phase	SK-I	SK-II	SK-III	SK-IV	SK-V
Start	Apr., 1996	Oct., 2002	Jul., 2006	Sep., 2008	Jan., 2019
End	Jul., 2001	Oct., 2005	Aug., 2008	May., 2018	$(\mathrm{running})$
Live time [days]	1496	791	548	2970	-
Number of ID PMTs	11,146	$5,\!182$	$11,\!129$	$11,\!129$	$11,\!129$
ID PMT coverage	40%	19%	40%	40%	40%
Number of OD PMTs	$1,\!885$	$1,\!885$	$1,\!885$	$1,\!885$	$1,\!885$
PMT protection	No	Yes	Yes	Yes	Yes
Neutron tagging	No	No	No	Yes	Yes
Threshold [MeV]	4.5	6.5	4.0	3.5	3.5

Trigger Type	Threshold	Time Window $[\mu s]$
SLE	$34 \rightarrow 31$ (after May of 2015)	[-1.5, +1.0]
LE	47	[-5, +35]
HE	50	[-5, +35]
SHE	$70 \rightarrow 58$ (after September of 2011)	[-5, +35]
OD	22 (in OD)	[-5, +35]
AFT	SHE + no OD	[+35, +535]
T2K	Beam on	[-500, +535]

Event Reconstruction in SK

- SK low energy fitter is used to reconstruct events.
 - **Vertex** ← PMT hit timing information
 - **Direction** ← Cherenkov ring pattern of hit PMTs
 - Energy ← Number of hit PMTs
 - **Cherenkov angle** ← Pattern of hit PMTs
- Fitter performance is checked by various calibrations.
- Important variables = { E_{rec} , *dwall*, *effwall*, *ovaQ*, θ_C }.

 $ovaQ = g_{vtx}^2 - g_{dir}^2$ $g_{vtx} : \text{Quality of reconstructed vertex}$ $g_{dir} : \text{Quality of reconstructed direction}$

Cross Sections Results

 $\langle \sigma_{\nu\text{-NCQE}} \rangle = 1.70 \pm 0.17 (\text{stat.})^{+0.51}_{-0.38} (\text{syst.}) \times 10^{-38} \text{ cm}^2/\text{oxygen},$ $\langle \sigma_{\bar{\nu}\text{-NCQE}} \rangle = 0.98 \pm 0.16 (\text{stat.})^{+0.26}_{-0.19} (\text{syst.}) \times 10^{-38} \text{ cm}^2/\text{oxygen},$

Discussion

- The measured cross sections are the most precise results to date.
- The antineutrino result is the first measurement of this channel.
- Currently the dominant error source is the primary-/secondary- γ emission model.
- <u>Secondary-γ emission model</u>
 - Neutron experiment to measure γ -rays from the neutron-oxygen reactions.
 - The first beam test using an 80 MeV neutron beam was performed to $\sim 20\%$ precision.
 - Measurements with the similar sized precision over neutron energies would improve the current 13% uncertainty to <5%.
- <u>Neutron information</u>
 - Relation between neutrons and secondary- γ 's
 - Event counting in the 2D E_{rec} — θ_C phase space with the neutron tagging \rightarrow direct estimation of the SRN background
 - These are more plausible with higher statistics in SK-Gd and Hyper-Kamiokande.
 - >1000 events are expected in the SRN signal region with the neutron tagging.

Discussion

- The measured cross sections are The antineutrino result is the fine •
- •
- Currently the dominant error sour •
- <u>Secondary-y emission model</u>
 - Neutron experiment to measur ٠
 - The first beam test using an 80 ٠
 - Measurements with the simila • current 13% uncertainty to <5'
- Neutron information •
 - Relation between neutrons and •
 - Event counting in the 2D E_{rec} - θ_C phase space with the neutron tagging ٠
 - → direct estimation of the SRN background
 - These are more plausible with higher statistics in SK-Gd and Hyper-Kamiokande.
 - >1000 events are expected in the SRN signal region with the neutron tagging.

Search Overview

• Data set

- Run 61525 77958 (2790.1 live days)
- SHE+AFT events for relic candidates: >8(10) MeV before(after) Run 68670
- HE+OD muons for spallation cut tuning

Software

- nuebar MC: new package made by Sonia (to be released)
- atmospheric-v MC: ATMPD production apr16 (no reduction)
- reconstruction: lowfit_sk4 (w/o PMT gain correction), mufit_sk4
- neutron tagging: new BDT package

Start Date	End Date	Live time	SHE threshold	AFT window length
6th, Oct., 2008	22nd, Nov., 2008	$25.0 \mathrm{~days}$	70 hits	$350~\mu{ m s}$
22nd, Nov., 2008	9th, Sep., 2011	$869.8 \mathrm{~days}$	70 hits	$500 \ \mu \mathrm{s}$
9th, Sep., 2011	31st, May., 2018	$2075.3 \mathrm{~days}$	58 hits	$500 \ \mu s$

Cross Section of IBD on Free Proton

Atmospheric Neutrino Flux (HKKM2011)

Lithium-9

Reactor Neutrino Flux

SK-Gd

Hyper-Kamiokande

