
Argonne Jamboree January 2010

Esteban Fullana (revised and presented by R. Yoshida March
2010)

AOD example analysis

Introduction

2

• What I am going to do
– This is sort of continuing with the starting with Athena talk
– What I’ll do now is to go into the details of the implementation, i.e. have a

look at the entrails of the code
– I will propose several exercises (with the solutions) for you to get familiar

with Athena
– I will be here to help you and answer any questions/problems you may have
– This include both MC and data examples

Outline

• General comments about AODs
– What we can do with them and what we cannot do with them

• The Plain_Analysis package
– How it is organized and other important things

• The DragonflyAlg algorithm
– A brief explanation of what it does and how it does it

• Proposed exercises
– With some extra material to solve them

General comments about AODs

AODs in a nutshell

• An AOD is an object in evolution. The amount and organization of the information
is Athena-release-dependent.

• However, the AOD was designed to be a final analysis object:
– Useful to plot differential cross sections, applied cuts, trigger efficiencies: i.e. physics

analysis
– Limited to understand jet reconstruction/calibration.

• Objects (jets, tracks, etc.) are stored in collections, each collection has a different
key that allow us to access the elements of the collection

• For example in a jet collection, each jet contains:

and some information regarding its constituents (basically b-tagging information
and energy per layer).

The Jet collection keys

But to be sure please check the twiki:

https://twiki.cern.ch/twiki/bin/view/Atlas/AODClassSummary

Basic things about ESDs, AODs, DPDs(*)

AOD or ESD ?
Only use ESD if you really needed, ESD will only be stored at the Tier 1
(BNL) and the processing time is slower

Do I need ESDs?
Yes if you want to run recalibration, build your own jet collection from
reconstruction objects: in one sentence: if you need to understand your
detector.
No if you want to measure cross sections, plot invariant masses, trigger
efficiencies, etc; AOD is fine for that.

What is a DPD?
The DPD concept in changing to dESD or dAOD which are derived versions
of the main ESD or AOD adapted for each physics and performance group.

The Plain_Analysis package

The cmt package structure
• The Plain_Analysis package is located here:

– /users/torregrosa/tutorial/Plain_Analysis.tgz
– Copy it into your ~/testarea/15.6.6/ directory and execute:

• tar –zxvf Plain_Analysis.tgz

• Inside the main directory, these are the subdirectories you should worry about:
– Plain_Analysis/cmt this is where the makefile and requirements file is.

– Plain_Analysis/src this is where the .cxx files are
– Plain_Analysis/Plain_Analysis this is where the .h files are
– Plain_Analysis/run this is where the .py files are and you run your local jobs

Plain_Analysis/cmt

• Inside it you can find:
– requirements : here you tell what Athena packages you are going to use

• You don’t need to touch it, I only wanted to know where to do it if you want to add extra
functionality in the future

– Change_Version.sh this is a script that helps you to change the version of the DragonflyAlg
algorithm. There are six versions:

• V1.0 and v2.0 : forget about them, these are working versions
• V3.0 : This is the default (and the basic) version, you must start with this one
• V4.0, v5.0 and v6.0 : These versions contain the solutions to the exercises, have a look at them if

you are lost while doing the exercises
• V3.1, v6.1 and v7.1 are adapted versions to analyze data

– Display_Version.sh this script displays the current version and gives information about it.
You can read this information in the file readme.txt

Plain_Analysis/src

• Inside it you can find:
– Several files like DragonflyAlg.cxx_vi.0, each one contains the source for each version of

the Dragonfly algorithm

– DragonflyAlg.cxx is only a symbolic link to one of the files above

Plain_Analysis/Plain_Analysis

• Inside it you can find:
– Several files like DragonflyAlg.h_vi.0, each one contains the header for each

version of the Dragonfly algorithm
– DragonflyAlg.h is only a symbolic link to one of the files above

Plain_Analysis/run

• Here is where you have to run athena.
• The only thing you should worry about here are the job options file.

– These are Plain_Analysis_topOptions_vi.0.py

• Later on I’ll explain several things you must know about them

–Plain_Analysis/cmt where you have to compile : gmake
–Plain_Analysis/src where the source files are
–Plain_Analysis/Plain_Analysis where the header files are
–Plain_Analysis/run where you have to run athena

…in summary:

The DragonflyAlg algorithm

General things about the DragonflyAlg algorithm

• The goal is simply: read reconstructed objects (jets, electrons, etc.) from an AOD;
analyze them and dump the result into an ntuple (root file) to make plots, i.e. it is
basically an implementation of the analysis skeleton.

• The output ntuple format is CBNT_AthenaAware
– I only mention it because it conditions the methods to define (see next slides)
– It is used by the e/gamma group for their customized ntuples
– It has limited functionality (e.g. you cannot store TLorentzVector) only singled valued

variables or arrays (as vectors).

• At the end of the road DragonflyAlg algorithm is only a c++ class with a header
file to define the methods and variables and a source file to write down the code
for each method

– I’ll show you the methods of v3.0 that is our starting version

The DragonflyAlg algorithm: compulsory
methods

• The constructor :
– DragonflyAlg::DragonflyAlg(const std::string& name,ISvcLocator* pSvcLocator) :

CBNT_AthenaAwareBase(name, pSvcLocator),
m_trigDec("TrigDec::TrigDecisionTool")

– The important thing to remember is that here you define the properties of the
algorithm: i.e. a set of variables that you can set in the job Options e.g.:
declareProperty("JetCollection",m_JetContainerName="ConeTowerJets");

• CBNT_initializeBeforeEventLoop()
– It is executed only once
– This is where I initialize the athena tool (e.g. TrigDecisionTool in v4.0 or v4.1) :

The DragonflyAlg algorithm: compulsory
methods

• CBNT_initialize : Again executed only once

The first line initializes the
output text stream. The second
line makes use of it

These lines initializes the
StoreGate (aka Event Store) .
The Storegate is where all the
things we want are stored

These lines initializes the
histogram service

The DragonflyAlg algorithm: compulsory
methods

• CBNT_initialize : Again executed only once

These lines define the branches of the
output root file. Line 1 defines a single
integer, lines 2,3,4 defines three vector
branches. Line 5 defines a single double

These lines define the
histograms to be stored in
the output file. I hardly
use them but I wanted you
to know how do define
them.

These lines just check that
everything was fine

The DragonflyAlg algorithm: compulsory
methods

• CBNT_finalize and CBNT_clear : Again executed only once

This method is executed at the end of the
loop over all the events. Useful to print
out e.g. counting information

This method is important. If
you want your arrays to be
stored in the output root
file. You MUST clear them
in this method

The DragonflyAlg algorithm: compulsory
methods

• CBNT_execute: Executed in every event

These lines calle the getMissingEt
method that’s takes care of getting the
Missing Et and dump it into the ntuple.

These lines calle the getJetInfo
method that’s takes care of getting the Jet
collection and dump it into the ntuple. See
next slides

The DragonflyAlg algorithm: non compulsory
methods

• getJetInfo

Jets are stored in collections. There is
a collection for each event. Line 1 gets
a pointer to a jet collection. Line 2
links the just defined pointer to the
storegate container through its key
(m_JetContainerName). The
following lines is to check that
everything was fine and the last two
lines get the number of jets in the
event (size of the collection) and puts
this information into the ntuple
(m_aan_njets)

The DragonflyAlg algorithm: non compulsory
methods

• getJetInfo

This lines prepare the start of the loop

The collection is sorted by Pt. The first jet
is the hardest, these lines gets its Pt, eta
and phi

Here is where the loop takes place. For
each Jet in the collection we get the Pt,
phi and eta and we put into into the
vector that is stored in the ntuple:
m_aan_Jetxxx

These lines only fill the histograms of the
leading jet magnitudes

Should my code be different for data and for MC?

• Everything explain so far is equivalent for data and for MC
• Only if you use MC truth in MC you have to be careful not to use it with data but

you can configure using it or not in the job options
• The job options is the code in PYTHON that steers athena. It is there where the

main differences are found

The job options for MC

These lines define the input
files

These lines tell Athena that we want
to use the algorithm

These lines set the properties
(options) of our algorithm

The output file

Number of events : 10 is 10; -1 is all

The job options for data

These lines define the input
files

Here we load the algorithm library
and configure it, but we DO NOT
include it in the algorithm sequence

The output file

Number of events : 10 is 10; -1 is all

The job options for data
When we are running over data it is important to run over the run good list. It is basically an xml file
that selects the runs and the lumi blocks that are tagged as good:

And now you add your algorithm to the sequence

Proposed exercises

Exercise 0
• Get the PlainAnalysis package coping it from:

/users/torregrosa/tutorial/Plain_Analysis.tgz to your $home/testarea/15.6.1/
directory and execute:

– tar –zxvf Plain_Analysis.tgz

• Setup Athena (if not done yet):
– http://atlaswww.hep.anl.gov/asc/ASC_working/index.php?n=Main.SettingUpAccount

• Go to the cmt directory and compile it :
– cmt config
– source setup.sh (or source setup.csh)
– gmake

• Go to the run directory and run athena
– athena Plain_Analysis_topOptions_v3.1.py

• Check the output ntuple. Have a look at the code:
– src/DragonflyAlg.cxx and Plain_Analysis/DragonflyAlg.h

• Ask me any questions you may have about any part of it, get familiar with it

Substitute procedure

• cd your_test_area
• cp –r ~ryoshida/asc/testarea/15.6.6/Plain_Analysis/ Plain_Analysis

Data files in the options python files are
real data: … options_Vn.1.py
• PoolAODInput=glob.glob("/export/share/data/users/test_user/data09_900GeV/Mi

nBias.merge/AOD/r988/AOD.*.pool.*")
mc: …optionsVn.0py files
• PoolAODInput=glob.glob("/export/share/data/users/test_user/mc09_900GeV/105

001.pythia_minbias/AOD/e500_s674_s675_d272_r1043/AOD.*.pool.* “)

Exercise 1 (*)
• Add new information into the output ntuple. My proposal is

– A vector that stores the mass of each jet in the collection
– The invariant mass on the two leading jets
– The Cos(θ)* of the event

• I solve it making use of the CLHEP library. Have a loot at the Jet.cxx class. You
can get a HepLorentzVector out of each jet. Then is just question to use the
proper methods of the HepLorentzVector class

• Have a look in the code where everything related with the ntuple is coded
(both header and source file; the variables use to start with m_aan) just do
the same for the new variables

• If you are lost, go to the cmt directory and do:
– ./Change_Version.sh v5.0
– and have a look again at

• src/DragonflyAlg.cxx and Plain_Analysis/DragonflyAlg.h

– Compile it (as before) and execute it:
• athena Plain_Analysis_topOptions_v5.0.py

Exercise 2 (*)

• One step further : create a new method that gets the jet and the track collection.
Then for each jet loops over all the tracks and counts the number of tracks that
match each jet (ΔR lower than some threshold). The store the number of tracks
matched to each jet in a vector into the output ntuple.

• The track collection class is: Rec::TrackParticleContainer the key that I use is :
TrackParticleCandidate

• You can find information about this c++ class here
– http://reserve02.usatlas.bnl.gov/lxr/source/atlas/Reconstruction/Particle/?v=head

• There is a function that help you to do the matching:
– DeltaR(double eta1, double phi1, double eta2, double phi2)

• Again if you are lost, look at the solution doing exactly the same as in the exercise
one but now : ./Change_Version.sh v6.0

– Or ask me questions about it!!

Exercise 3(*)

• Now it comes the trigger issue: triggerSkeleton makes use of the TrigDecisionTool. I
would like you to get familiar with it and to modify the triggerSkeleton method to
count:

– Events that passed L1_J70, L1_J120 trigger and L2_J150 triggers independently

– Events that passed L1_J70 and L2_J150 triggers together
– Events that passed L1_J120 and L2_J150 triggers together
– Events that passed L1_J70 and L1_J120 triggers together

• It is not trivial, look carefully the TrigDecisionTool documentation:
– https://twiki.cern.ch/twiki/bin/view/Atlas/TrigDecisionTool15

• Again if you are lost, look at the solution doing exactly the same as in the exercise
one but now : ./Change_Version.sh v4.0

Exercise 4

• Solution to Exercises 1, 2, and 3 work for MC. Could you make them working for
data?

– The code does not involve use of MC truth, so only the job options must be changed
– I don’t have the solution for the exercises 1, and 2, but I have the solution for exercise 3,

please have a look by doing ./Change_Version.sh v4.1 and using
Plain_Analysis_topOptions_v4.1.py

Exercise 5

• Could you include the photon collection, take the two hardest reconstructed photons
and calculate the invariant mass?

– The solution can be browsed by ./Change_Version.sh v7.1

