Argonneé

NATIONAL LABORATORY

AOD example analysis

Argonne Jamboree January 2010

Esteban Fullana (revised and presented by R. Yoshida March
2010)

"A U.S. DEPARTMENT OF
() ENERGY

Introduction

e Whatlam going to do

— This is sort of continuing with the starting with Athena talk

— What I'll do now is to go into the details of the implementation, i.e. have a
look at the entrails of the code

— | will propose several exercises (with the solutions) for you to get familiar
with Athena

— | will be here to help you and answer any questions/problems you may have
— This include both MC and data examples

Outline

General comments about AODs
— What we can do with them and what we cannot do with them

The Plain_Analysis package
— How it is organized and other important things

The DragonflyAlg algorithm
— A brief explanation of what it does and how it does it

Proposed exercises
— With some extra material to solve them

General comments about AODs

AODs in a nutshell

e An AOD is an object in evolution. The amount and organization of the information
is Athena-release-dependent.

 However, the AOD was designed to be a final analysis object:

— Useful to plot differential cross sections, applied cuts, trigger efficiencies: i.e. physics
analysis

— Limited to understand jet reconstruction/calibration.

* Objects (jets, tracks, etc.) are stored in collections, each collection has a different
key that allow us to access the elements of the collection

 For examplein a jet collection, each jet contains:

Pm pyapz: m: mzﬁpzpza '}"}!3 y (.f): E E_zp_zp:1z

cos(¢), sin(¢), cos(0), sin(#), cot(H), tan(#)

and some information regarding its constituents (basically b-tagging information
and energy per layer).

The Jet collection keys

Jets

In 15.3.0 and onward

Container Location Data Access Key
Class
JetCollection NIHsEA "Cone4H1Topolets", "ConedH1 Towerlets", "Coned TruthJets", "Cone7H1 Towerlets”, "AntikKt4H1TopoJets”,
AOD "AntikKidH1 Towerldets", "AntiKt4 TruthJets”, "AntikKieH1 TowerJets"”
. Jet

In 14.2.10 and onward

Container Class Location Data Access Key
Dol |G ESD & AOD "ConedH1Topodets”, "Coned4H1 Towerlets”, "ConedTruthJets", "Cone7H1 Towerlets"
. Jet

In 14.1.0 and onward

Container Location Data Access Key
Class
JetCollection FSSvEA "Cone4H1TopoJets", "ConedH1 TowerJets", "Coned TruthJets", "Cone7H1TopoJets", "Cone7H1 TowerJets", "Cone7 TruthJets",
AOD "Kt4H1Topodets”, "KidH1 Towerdets”, "Kid TruthJets". "Ki6H1TopoJets”, "Ki6H1 Towerdets”, "KisTruthJets"
. Jet
In 14.0.1
Container Class Location Data Access Key

ParticleJetContainer fXels] "Cone4H1TopoParticlelets", "Cone4H1TowerParticlelets", "ConedTruthParticlelets", "Cone7H1TopoParticlelets”,
"Cone7H1TowerParticleJets”, "Cone7 TruthParticleJets", "Kt4H1TopoParticleJets", "Ki4H1TowerParticlelets",
"KtdTruthParticleJets", "KteH1TopoParticlelets”, "Ki6H1 TowerParticlelets”, "Ki6 TruthParticleJets"

But to be sure please check the twiki:

https://twiki.cern.ch/twiki/bin/view/Atlas/AODClassSummary

Basic things about ESDs, AODs, DPDs(")

AOD or ESD ?
Only use ESD if you really needed, ESD will only be stored at the Tier 1
(BNL) and the processing time is slower

Do | need ESDs?
Yes if you want to run recalibration, build your own jet collection from

reconstruction objects: in one sentence: if you need to understand your
detector.

No if you want to measure cross sections, plot invariant masses, trigger
efficiencies, etc; AOD is fine for that.

What is a DPD?

The DPD concept in changing to dESD or dAOD which are derived versions
of the main ESD or AOD adapted for each physics and performance group.

The Plain_Analysis package

The cmt package structure

 The Plain_Analysis package is located here:

— [users/torregrosa/tutorial/Plain_Analysis.tgz

— Copy it into your ~/testarea/15.6.6/ directory and execute:

e tar —zxvf Plain_Analysis.tgz

* Inside the main directory, these are the subdirectories you should worry about:

Plain Analysis/cmt thisis where the makefile and requirements fileis.
Plain Analysis/src thisis wherethe .cxx filesare

Plain Analysis/Plain Analysis thisis wherethe .h filesare

Plain Analysis/run thisiswherethe .py filesare andyou run your local jobs

Plain Analysis/cmt

Inside it you can find:

requirements : here you tell what Athena packages you are going to use
* You don’t need to touch it, | only wanted to know where to do it if you want to add extra
functionality in the future
Change_Version.sh this is a script that helps you to change the version of the DragonflyAlg
algorithm. There are six versions:
* V1.0andv2.0: forget about them, these are working versions
* V3.0: This is the default (and the basic) version, you must start with this one

* V4.0, v5.0 and v6.0 : These versions contain the solutions to the exercises, have a look at them if
you are lost while doing the exercises

* V3.1, v6.1 and v7.1 are adapted versions to analyze data

Display_Version.sh this script displays the current version and gives information about it.
You can read this information in the file readme.txt

Plain Analysis/src

* Inside it you can find:

— Several files like DragonflyAlg.cxx_vi.0, each one contains the source for each version of
the Dragonfly algorithm

— DragonflyAlg.cxx is only a symbolic link to one of the files above

Plain_ Analysis/Plain_Analysis

* Inside it you can find:

— Several files like DragonflyAlg.h_ wvi.O0, each one contains the header for each
version of the Dragonfly algorithm

— DragonflyAlg.h isonlyasymboliclink to one of the files above

Plain Analysis/run

Here is where you have to run athena.

The only thing you should worry about here are the job options file.
— Theseare Plain_Analysis_topOptions_vi.O0.py

Later on I'll explain several things you must know about them

...1n summary:

-Plain_Analysis/cmt where you have to compile : gmake
-Plain_Analysis/src Wwhere the source files are
-Plain_Analysis/Plain Analysis where the header files are
-Plain_Analysis/run where you have to run athena

The DragonflyAlg algorithm

General things about the DragonflyAlg algorithm

 The goal is simply: read reconstructed objects (jets, electrons, etc.) from an AOD;
analyze them and dump the result into an ntuple (root file) to make plots, i.e. it is
basically an implementation of the analysis skeleton.
 The output ntuple format is CBNT_AthenaAware
— lonly mention it because it conditions the methods to define (see next slides)
— Itis used by the e/gamma group for their customized ntuples

— It has limited functionality (e.g. you cannot store TLorentzVector) only singled valued
variables or arrays (as vectors).

e At the end of the road DragonflyAlg algorithm is only a c++ class with a header
file to define the methods and variables and a source file to write down the code
for each method

— I'llshow you the methods of v3.0 that is our starting version

The DragonflyAlg algorithm: compulsory
methods

* The constructor :

— DragonflyAlg::DragonflyAlg(const std::string& name,ISvcLocator* pSvcLocator) :
CBNT_AthenaAwareBase(name, pSvcLocator),
m_trigDec("TrigDec::TrigDecisionTool")

— The important thing to remember is that here you define the properties of the
algorithm: i.e. a set of variables that you can set in the job Options e.g.:
declareProperty("JetCollection",m_JetContainerName="ConeTowerlets");

 CBNT initializeBeforeEventLoop()

— Itis executed only once
— Thisis where | initialize the athena tool (e.g. TrigDecisionTool in v4.0 or v4.1) :

(m doTrigger) {
sc = m_trigDec.retrieve();
{ sc.isFailure()){
ml.og << MSG::ERBRCR << "Can't get handle on TrigDlecisionTool" << endreq;
1 } {

mLog << M5G: :DEBUG << "Got handle on TrigDeciszionTool"™ << endredq:;

it

The DragonflyAlg algorithm: compulsory

methods
 CBNT_initialize : Again executed only once
StatusCode DragonflyRlg::CBNT initialize() {
MzgStream mlog|(mes=szageService(), name ()}):

mlLog << MS5G: :DEBUG << "Initializing Dragonflyilg™ << endredq:

/%% get a handle of S5toreGate for access to the Event Store */

StatusCode sc = gervice ("StoreGateSve", m storeGate) !
(2c.isFailure()) {
mLog << MS5G: :EERCE
<< "Unable to retrieve pointer to StoreGateSwe™
I << endredq:
3c;
}

J*% get a handle on the NITuple and histogramming service */ N

gc = gervice ("THistSvc", m _thistSvc);
(2c.isFailure()) {1
mLog << MS5G: :ERRCE
<< "Unakle to retrieve pointer to THistSwvc®

>

<< endredq:;
2Cr

\

The first line initializes the
output text stream. The second
line makes use of it

These lines initializes the
StoreGate (aka Event Store) .
The Storegate is where all the
things we want are stored

These lines initializes the
histogram service

A

The DragonflyAlg algorithm: compulsory

methods
CBNT _initialize : Again executed only once

addBranch ("HJ=t=s",
addBranch ("Jet=zEta"
addBranch ("JetsPc"™
addBranch ("JetsPhi"™

BT

addBranch ("MissingET",

m aan njets, "HJets/1i");
(m_aan JetEta);
,m_aan JetPt):
M _aan JetPhi):
m_aan ptMiss,

4 ROOT histogram=

f dJets —
m h jet_eta = THIF("jet_eta", "Leading jet_eta",50,-5
sc = m_thistSvc-rregHistc ("/RRNT/Jet/jet_eta”,m_h jet eta)

m h jet phi =

g2c = m_thistSve-»>regHistc ("/LLANT/Jet/Jjet _phi",m h jet phi);
m h jet pt = TH1F("jet_pt","Leading jet_pt",500,0.,600000.) ;
sc = m_thistSvc-»regHistc ("/RRNT/Jet/jet_pt",m h jet pt):

fFAF missing ET

"MissingET,/d™}:

TH1F("jet_phi", "Leading jet phi",50,-3.

These lines define the branches of the
output root file. Line 1 defines a single
integer, lines 2,3,4 defines three vector
branches. Line 5 defines a single double

2,3.2):

These lines define the

histograms to be stored in
the output file. | hardly

> use them but | wanted you

to know how do define

m pxMis = THIF ({"Mi=ssingPFx", "MissingPx",200,-500.0%GeV,500.*%GeV) ; ﬂ1ern
sc = m_thistSve->regHistc ("/AANT/MissingET/MissingPx", m pxMis=) ;)
m pyMis = THIF ({"Mi=ssingPFy", "MissingPFy", 200, -500.0%GeV, S00. *GeV) ;
gc = m thisctSvce->regHistc ("/LRANT/MissingET/Mis=singPy", m pyMi=):
m ptMis = THI1F ("Mi=z=singPFt", "Mi=zsingPFL",100,0.0,500.*%GeV) ;
sc = m_thistSvc-rregHist ("/ARANT/HMissingET/MissingPt", m ptMis):)
(sc.isFailure({})) { H H
mLog << MS5G: :ERROR <« "ROOT Hist registration failed" << endredq; These Il_nes JUSt _CheCk that
sc: everything was fine

f end ROOT Histogram=

The DragonflyAlg algorithm: compulsory
methods

e CBNT_finalize and CBNT_clear : Again executed only once

/f/ Finalize - delete any memory allocation from the heap
StatusCode DragonflyRlg:::CENT finalize() { ThIS methOd IS exeCUted at the end Of the
MsgStream mLog(messageService(), name()); loop over all the events. Useful to print
StarusCode: : SUCCESS: out e.g. counting information
H
}}}.ﬁ;égg.;.giégg.ﬁéﬁf.ﬁéﬁhégé
StatusCode DragonflyRlg::CENT clear() f{ \

f/7 For Athena-Aware NTuple

m aan_niets=0; This method is important. If
m_aan_JetEta-»clear () ; you want your arrays to be
m_san_JerProrolear(): stored in the output root
m aan JetPhi-»clear(): .

file. You MUST clear them

in this method

m aan ptMiss = -1.;

StatusCode: : SUCCESS; j

The DragonflyAlg algorithm: compulsory
methods

CBNT_execute: Executed in every event

J*% get missing Et information */f

gc = getMizsingET ()

2C

[2c.isFailure()) {
mLog << M5Z: :WARNING
<< "Failed to retri

<< endredq:;
StatusCode: : 5SUCCESS;

BT

* get Jet information */

= getdJetInfol():
{ sc.isFailure()) {
mlog << MS5G: :WARNING
<< "Failed to retrieve
<< endredq:;
StatusCode: : SOCCESS;

StatusCode: : 5SUCCESS;

e

N

N

found in

found in

TDS"

TDS"

These lines calle the getMissingEt
method that’s takes care of getting the
Missing Et and dump it into the ntuple.

These lines calle the getJetInfo

method that’s takes care of getting the Jet
collection and dump it into the ntuple. See
next slides

The DragonflyAlg algorithm: non compulsory

methods
« getletinfo

/ Jet info object
StatusCode Dragonflylflg::getJetInfo() {

M=gStream mlog (messageService (), name());
mlog << MS5G::DEBUG <« "getJetInfo()}" << endreq;

Statu=sCode =c = Statu=sCode: :5UCCESS;

/ EFT retrieving the Jet collection from the =storegate \

JetCollection* PartJetCont = 0;
I sc = m _storeGate->retrieve | PartJetCont, m JetContainerName };

| sc.isFailure () | 1 'PartJetCont) {

mlog << MS5G: :ERRCER
<< "HNo LOD Particle Jet Container found in TDS"
<< endredq;

StatusCode: : 5UCCESS;

//EFT Getting the =ize of the reco collection
PartJetCont-»size () ;

int Humber of reco jets = (int)

m _zan njets = Number of reco jets: J

Jets are stored in collections. There is
a collection for each event. Line 1 gets
a pointer to a jet collection. Line 2
links the just defined pointer to the
storegate container through its key
(m_JetContainerName). The
following lines is to check that
everything was fine and the last two
lines get the number of jets in the
event (size of the collection) and puts
this information into the ntuple
(m_aan_nijets)

The DragonflyAlg algorithm: non compulsory
methods

J/EFT Starting

getletinfo

JetCollection: 1cons
JetCollection: 1cons

double lsad jet pt = (*Jetltr)->pti():
double lsad jet _sta = (®*Jetltr)-»etal()
double lesad jet phi = (*Jetltr)->phi ()
{z JetItxr '= JetItrE; ++Jetltr)
i
double loczal pt = (®*Jetltr)->pt():
double local eta = (*Jetltr)->eta():
double local phi = (*Jetltr)->phi():

m zan JetEta->push back(local eta):
m zan JetPhi->push back(local phi):
m =zan JetPt->push back(local pt):

H

"
-

"
-

the loop owver the jet collection

PartJetCont->begin() :

PartJetCont-»end () :

J

This lines prepare the start of the loop

The collection is sorted by Pt. The first jet
is the hardest, these lines gets its Pt, eta
and phi

Here is where the loop takes place. For
each Jet in the collection we get the Pt,
> phi and eta and we put into into the
vector that is stored in the ntuple:
m_aan_JetXXX

AFF £ill missing jet histograms with the leading jet
m nh jet eta->Fill (lead jet eta):
m h jet pt->Fill(lead jet pt):

m h jet phi->Fill (lead jet phi):

2Cr

These lines only fill the histograms of the
leading jet magnitudes

Should my code be different for data and for MC?

* Everything explain so far is equivalent for data and for MC

* Onlyif you use MC truth in MC you have to be careful not to use it with data but
you can configure using it or not in the job options

e Thejob options is the code in PYTHON that steers athena. It is there where the
main differences are found

The job options for MC

glob
'PoolAODInput!

at diri():
PoolAODInput

glob.glob ("mc/A0D0. *.

| S L]

lizt of the algorithms to be executed at run time

Plain Analysis.Plain AnalysisConf
topSequence.CBNT Athenafware += Dragonflvhlgl()
Dragonflvilg = Dragonflyilgl()

Dragonflvilg

FEFFHFFEE4F4%¥F The properties of the Dragonflyilg Algorithm
DragonflyAlg.MissingETObject = "MET RefFinal"
Dragonflyilg.DeltaBMatchCuat 0.2

Dragonflyvilg.MaxDeltaR = 0.9999

Eragnnflyﬂlg.HissingETCut 20.0%GeV
Dragonflyvalg.CutputlLevel INFOC

ServiceMgr.THistSvo.Cutput = ["ALNT DATAFILE='Dragonflyihlg.

AiNTupleStream.Cutputlame =

|

Number of Events to process
thedpp.EvtMax = -1
fthelpp.EvtMax = 10

Number of events : 10 is 10;

These lines define the input
files

These lines tell Athena that we want
to use the algorithm

These lines set the properties
(options) of our algorithm

The output file

-1 is all

The job options for data

glob . . .
' PoolAODInput " dir () : These lines define the input
PoolACDInput = glob.glob("data/datalf 500GeV.= . ROD.=") files
li=t of the algorithms to ke executed at run time
Flain Analysi=z.Plain AnalysisConf Dragonflyilg

Eragnnflyhig = Dragonflyilg()

FEEFEE444444F The propertiez of the Dragonflvilg Algorithm Here we Ioad the algorlthm Ilbrary
DragonflyAlg.MissingETObject = "MET EefFinal"” } and Configure It bUt we DO NOT
DragonflyAlg.JetCollection = "AntiFKt4HlTopoders"® ’
DragonflyhAlg.DeltaRMatchCut = 0.2 include it in the algorithm sequence

DragonflvAlg.MaxDeltaR = 0.99939
DragonflyvAlg.MissingETCut = 20.0%GeV
DragonflvAlg.OutputLevel = DEBUG

ServiceMgr . THi=stSvc.Output = ["A4ARNT DATAFTLE='Dragonflyfilg.zan.root' COPFT='"EECREATE'"] _rh f1
ARNTupleStream.OutputName = 'Dragonflvyvilg.aan.root' e(DUtPUt e
|

Number of Events to process

theApp.EvtMax = -1 Number of events : 10 is 10; -1 is all

fthelpp.EvtMax = 10

The job options for data

When we are running over data it is important to run over the run good list. It is basically an xml file
that selects the runs and the lumi blocks that are tagged as good:

Configure the goodrunslist selector tool
GoodBunsLists.GoodRunsListsCont i
EDDISVC += GoodRunsListSelectorTool ()
GoodRunsLi=stSelectorTool . GoodRun=sListVecs = ['"collisions stablebeams minkbias S900GeV.xml')

#%# Thi= Athena job consists of algorithms that loop over events:
#% here, the (default) top seguence iz used:

AthenaCommon.AlgSequence AlgSequence, AthSequencer
job = AlgSequence {}
job 4= AthSequencer ("ModSequencel™}

#%# GEL selector, dummy ntuple dumper

GoodBunsListsUser.GoodBunslistsUserCont i
job.ModSequencel 4= GRLTriggerSelectorAlg('GELTriggerfilgl’})
Job.HModSequencel .GRLTriggerAlgl.GoodRunsListhrray = ['collisions stablebeams minbias 200GeV"]
Job.HModSequencel .GRLTriggerAlgl.TriggerSelectionRegistration = "L1 RDO EMETY'

ﬂnb.HDdSequencel += DummyDumperilg | " DummyDumnperilgl®)
job.ModSequencel . DummyDumperAlgl . RootFileName = "selectionl.root'
Job.HModSequencel . DummyDunperAlgl . GRLNameVec = ["LumiBlocks GoodDQO0', 'IncompletelumiBlocks GoodDQO"]

job.ModSequencel 4= DragonflyAlg
And now you add your algorithm to the sequence

Proposed exercises

Exercise O

e GettheRlainAnalysis package coping it from:
Jusers/torregrose orial/Plain_Analysis.tgz toyotlr Shome/testarea/15.6.1/
directory and execute:

— tar —zxvf Plain_Analysis.ig
e Setup Athenalif1ot done yet):
— p://atlaswww.hep.anl.gov/asc/ASC_working/index.php?n=Main.SeftimglpAccount
e Go to the cmt directory and compile it :
— cmt config
— source setup.sh (or source setup.csh)
— gmake
 Goto the run directory and run athena
— athena Plain_Analysis_topOptions_v3.1.py
 Check the output ntuple. Have a look at the code:
— src/DragonflyAlg.cxx and Plain_Analysis/DragonflyAlg.h
 Ask me any questions you may have about any part of it, get familiar with it

Substitute procedure

* cdyour_test area
* cp-r ~ryoshida/asc/testarea/15.6.6/Plain_Analysis/ Plain_Analysis

Data files in the options python files are
real data: ... options_Vn.1.py

* PoolAODInput=glob.glob("/export/share/data/users/test_user/data09_900GeV/Mi
nBias.merge/AOD/r988/A0D.*.pool.*")

mc: ...optionsVn.Opy files

* PoolAODInput=glob.glob("/export/share/data/users/test_user/mc09_900GeV/105
001.pythia_minbias/AOD/e500 s674 s675 d272 r1043/A0D.*.pool.* “)

Exercise 1 (¥)

Add new information into the output ntuple. My proposalis
— A vector that stores the mass of each jet in the collection
— The invariant mass on the two leading jets
— The Cos(0)* of the event
I solve it making use of the CLHEP library. Have a loot at the Jet.cxx class. You

can get a HepLorentzVector out of each jet. Then is just question to use the
proper methods of the HepLorentzVector class

Have a look in the code where everything related with the ntuple is coded
(both header and source file; the variables use to start with m_aan) just do
the same for the new variables

If you are lost, go to the cmt directory and do:
— ./Change_Version.sh v5.0
— and have a look again at
 src/DragonflyAlg.cxx and Plain_Analysis/DragonflyAlg.h
— Compile it (as before) and execute it:
* athena Plain_Analysis_topOptions_v5.0.py

Exercise 2 (¥)

One step further : create a new method that gets the jet and the track collection.
Then for each jet loops over all the tracks and counts the number of tracks that
match each jet (AR lower than some threshold). The store the number of tracks
matched to each jet in a vector into the output ntuple.

The track collection class is: Rec::TrackParticleContainer the key that | use is :
TrackParticleCandidate
You can find information about this c++ class here

— http://reserve02.usatlas.bnl.gov/Ixr/source/atlas/Reconstruction/Particle/?v=head
There is a function that help you to do the matching:

— DeltaR(double etal, double phil, double eta2, double phi2)

Again if you are lost, look at the solution doing exactly the same as in the exercise
one but now : ./Change_Version.sh v6.0

— Or ask me questions about it!!

Exercise 3(*)

Now it comes the trigger issue: triggerSkeleton makes use of the TrigDecisionTool. |
would like you to get familiar with it and to modify the triggerSkeleton method to
count:

— Events that passed L1_J70, L1_J120 trigger and L2_J150 triggers independently

— Events that passed L1_J70 and L2_J150 triggers together

— Events that passed L1_J120 and L2_J150 triggers together

— Events that passed L1_J70 and L1_J120 triggers together

It is not trivial, look carefully the TrigDecisionTool documentation:
— https://twiki.cern.ch/twiki/bin/view/Atlas/TrigDecisionTool15

Again if you are lost, look at the solution doing exactly the same as in the exercise
one but now : ./Change_Version.sh v4.0

Exercise 4

e Solution to Exercises 1, 2, and 3 work for MC. Could you make them working for
data?
— The code does not involve use of MC truth, so only the job options must be changed

— 1l don’t have the solution for the exercises 1, and 2, but | have the solution for exercise 3,
please have a look by doing ./Change_Version.sh v4.1 and using
Plain_Analysis_topOptions_v4.1.py

Exercise 5

* Could you include the photon collection, take the two hardest reconstructed photons
and calculate the invariant mass?

— The solution can be browsed by ./Change_Version.sh v7.1

