
Peter van Gemmeren (ANL): ANL Analysis Jamboree

The ATLAS Data Model

Data Flow at ATLAS

• RAW:
– ByteStream format.
– Original data at Tier-0 with Complete replica distributed among all Tier-1

• ESD:
– POOL/ROOT format.
– ESDs produced by primary reconstruction reside at Tier-0 and are exported to 2 Tier-1s

• Subsequent versions of ESDs, produced at Tier-1s (each one processing its own RAW), are
stored locally and replicated to another Tier-1, to have globally 2 copies on disk

• AOD:
– Completely replicated at each Tier-1 and partially replicated to Tier-2s so as to have at

least a complete set in the Tier-2s associated to each Tier-1
• Every Tier-2 specifies which datasets are most interesting for their reference community; the

rest are distributed according to capacity

• TAG:
– ROOT/Oracle format.
– TAG files or databases are replicated to all Tier-1s partial replicas of the TAG will be

distributed to Tier-2 as Root files

Diagram of the ATLAS Data Flow

SFO

SFO

SFO

…

1. SFO stream RAW (ByteStream format)
data into ~10 physics streams. Files will
be written on lumi-block boundaries.

• A lumi-block is a collection of events
taken in a period (~1 min. / ~12,000
events) of data taking for which common
attributes (e.g. trigger settings) are
constant.

• Certain metadata is associated to lumi-
blocks.

• For physics all events of a lumi-block and
stream have to be processed (at some
stage) or the entire lumi-block has to be
disregarded (calculation of delivered
luminosity).

…

…

RAW

2. Merge all SFO into single
file for each stream (~1000
– 1500 events).

Reconstruction
~100 GFlop / event

…

3. Reconstruction job reads single
input file. Writes reconstructed
objects (tracks, cluster, …) into
output ESD file (POOL/ROOT
format, ~700 KB / event).

• AOD files (~150 KB / event) can
also be produced at this step (can
also be produced separately using
ESD as input).

ESD

AOD

Analysis
~1-5 GFlop / event

AOD

AOD

…

AOD files from
additional
Reconstruction
jobs (different
lumi-blocks)

4. Analysis, can read in one or
multiple AOD (or ESD) files
.

• The analysis may de-select
events, and uses meta data
for bookkeeping.

DPD

Simulation
~5000 GFlop / event

RDO

Alternatively, simulated events can be
produced using Monte Carlo
techniques and GEANT detector
simulation

…

Analyzing the Data

• Inside Athena (RAW, RDO, ESD, AOD, DPD, TAG)
– Interactive OR batch using C++, python code.
– Provides full access to all tools and services.
– Can submit to the grid.

• Outside Athena (DPD, and to some degree ESD, AOD)
– using ROOT (to at least read)
– CINT, or using python, or compiled C++ code.
– Does not need full Athena installation (expected 1GB)
– Not all classes are available (example, calo-Cells)

• Important: both methods use the same files as input.

Athena/Gaudi components

• All levels of processing of ATLAS data, from high-level trigger to event simulation,
reconstruction and analysis, can take place within the Athena framework.

• The major components of Athena are:
• Services

– A Service provides services needed by the Algorithms. In general these are high-level,
designed to support the needs of the physicist. Examples are the message-reporting
system, different persistency services, random-number generators, etc.

• Algorithms
– Algorithms share a common interface and provide the basic per-event processing

capability of the framework. Each Algorithm performs a well-defined but configurable
operation on some input data, in many cases producing some output data.

• AlgTools
– An AlgTool is similar to an Algorithm in that it operates on input data and can generate

output data, but differs in that it can be executed multiple times per event. Each
instance of a AlgTool is owned, either by an Algorithm, a Service, or by default by the
ToolSvc.

Common Services

• There are quite a few Services in Athena to help you:
• Job Option Service.

– The JobOptionSvc is a catalogue of user-modifiable properties of Algorithms, AlgTools
and Services. As an example, the value of a property called "CutOff" in the JetMaker can
be set either from a job-option file or from the Athena interactive prompt by:

JetMaker.CutOff = 0.7

– Default values are set in the Algorithms, AlgTools or Services itself.

• Logging.
– The MessageSvc controls the output of messages sent by the developers using a

MsgStream. The developer specifies the source of the message (its name) and the
message verbosity level. The MessageSvc can be configured to filter out messages
coming from certain sources or having a high verbosity level.

• Performance Monitoring.
– The AuditorSvc and the ChronoStatSvc manage and report the results of a number of

Auditor objects, providing statistics on the CPU and memory usage (including potential
memory leaks) of Algorithms and Services.

And of course, StoreGate

• StoreGate is the Athena implementation of the blackboard.
• StoreGate allows a module (such as an algorithm, service or tool) to use a data

object (like for example Jet, Track or Cell) created by an upstream module or read
from disk transparently.

– A proxy defines and hides the cache-fault mechanism: upon request, a missing data
object instance can be transparently created and added to the transient data store,
retrieving it from persistent storage on demand.

• On second thought I am sure you don’t want to know this.

• StoreGate allows object identification via data type and key string.
– In ATLAS data objects like Jet, Track or Cell are stored in container (think STL vector, or

fancy array) called JetCollection or TrackCollection .

• StoreGate supports base-class and derived-class retrieval, key aliases, and inter-
object references.

• Just say “Wow!”

Navigational Infrastructure

• The ATLAS event store provides an advanced navigational infrastructure:
– Data objects (e.g., jet) may contain constituents of generic type, without exposing their

concrete type (e.g., cluster). Clients need to be able to retrieve constituents of specific
concrete type using constituent navigation.

– A data object (e.g., muon) can be associated with another (e.g., jet) without belonging
to that data object (for example, one may wish to associate a muon to a jet for the
purpose of b-tagging).

– A data object (e.g., Z-boson) may be a composite of other data objects (e.g., electron-
positron pair) with all the constituent navigation features to the constituents of its
components (e.g., calorimeter clusters of the electrons).

– Not all the objects that the user might need are available in each data product. When
the requested object is not found in the current input, back navigation supports
retrieval of the object from upstream data products.

StoreGate storing DataObjects: record()

• Object (example):
MissingET* met = new MissingET();
met->setEtSum(arg);
…
StatusCode status = m_storeGate->record(met, key /*, bool allowMods =

true */);
// check status…

• Container (example):
MyJet* jet1 = new Jet(); // create new Jet objects
MyJet* jet2 = new Jet();
jet1->set4Mom(arg); // setting the attributes of the Jets
jet2->set4Mom(arg);
…
JetCollection* jetColl = new JetCollection();
jetColl->push_back(jet1); // pushing Jets into a container
jetColl->push_back(jet2);
…
StatusCode status = m_storeGate->record(jetColl, key, false); // locked
// check status…

StoreGate storing DataObjects: retrieve()

• Object (example):
// Most objects are recorded as const
/*const*/ MissingET* met;
StatusCode status = m_storeGate->retrieve(met, key);
// check status…
met->setEtSum(arg); // works only if not const
val = met->getEx(); // should always be OK
…

• Container (example):
const TrackCollection* trackColl;
StatusCode status = m_storeGate->retrieve(trackColl, key);
// check status…
for (it = trackColl->begin(), itEnd = trackColl->end(); it != itEnd;

it++) {
// do something with (*it), which is a Track

…
}

StoreGate: SymLinks and Aliases

• StoreGate supports base-class and derived-class retrieval via symLinks.
– e.g.: CaloCell is base class to TileCell:

status = m_storeGate->symLink(tCell, cCell);
status = m_storeGate->symLink(ClassID_traits<TileCell>::ID(), key,

ClassID_traits<CaloCell>::ID());

– Creates symlink from TileCell to its base class and allows:
const CaloCell* bCell = new CaloCell(); // works for LAr and Tile
StatusCode status = m_storeGate->retrieve(bCell, key);
// check status…
cellE = bCell->energy();

• StoreGate supports key aliases:
status = m_storeGate->setAlias(tCell, "PetersFavorite");

Persistency: From StoreGate to Eternity… (and
back)

• The only thing more exciting than finding the Higgs is writing it to disk!
– Ok maybe not. Anyway, it still needs to be done.

• Items in StoreGate can be written to POOL/ROOT file using the Athena/Pool I/O
infrastructure (my day job).

• Existing types (like for example Jet, Track or Cell) can be written to disk by adding
OutputStream.ItemList += ["JetCollection#PetersFavorite"].

to the jobOptions file.
• New types need converter and persistent state representation (somewhat harder,

did I mention my email?).
• Check: Database/AthenaPOOL/AthenaPoolExample

Athena Algorithms (1): Interface

• If you want to do a more complex analysis, you will want to use Athena and need
to provide an algorithm.

• Algorithms perform a well-defined but configurable operation on some input data
and may produce output data.

• Common interface provided by Gaudi: IAlgorithm
• Implemented in Gaudi/Athena as Algorithm, the common base class for

Algorithms.
• Can use Services (e.g., StoreGateSvc) and AlgTools via ‘Handles’.
• Next slide example: JetMaker ->

Athena Algorithms (2): Implementation header (in
src)

#include "GaudiKernel/Algorithm.h"
#include "GaudiKernel/ServiceHandle.h"
class StoreGateSvc; // Forward declaration
class JetMaker : public Algorithm {
public: /// Gaudi boilerplate

/// Constructor with parameters:
JetMaker(const std::string& name, ISvcLocator* pSvcLocator);
/// Destructor:
virtual ~JetMaker();
virtual StatusCode initialize();
virtual StatusCode finalize();
virtual StatusCode execute();

…
private: /// Handle to use services e.g., StoreGate

ServiceHandle<StoreGateSvc> m_storeGate;
/// cutOff (e.g.) property, configurable by jobOptions
DoubleProperty m_cutOff;

};

Athena Algorithms (3): Implementation source

#include "JetMaker.h"
JetMaker::JetMaker(const std::string& name, ISvcLocator* pSvcLocator) :

Algorithm(name, pSvcLocator), m_storeGate("StoreGateSvc", name) {
// Property declaration (label, variable, description)
declareProperty("CutOff", m_cutOff, "KT Jet cut off parameter");}

JetMaker::~JetMaker() {}
StatusCode JetMaker::initialize() {

// Get handle for StoreGateSvc and cache it:
StatusCode status = m_storeGate.retrieve();
// check status
if (!status.isSuccess()) {
// get message service and log error message
MsgStream log(msgSvc(), name());
log << MSG::ERROR << "Unable to retrieve StoreGateSvc" << endreq;
return(StatusCode::FAILURE);

}
…

return(status);
}

Athena Algorithms (4): Implementation source

StatusCode JetMaker::finalize() {
StatusCode status = m_storeGate.release();
// check status…
…
return(status);

}
StatusCode JetMaker::execute() {

// Do the real work once for each event
const TrackCollection* trackColl;
StatusCode status = m_storeGate->retrieve(trackColl, key);
// Let’s use those tracks to make our very own jets
…
JetCollection* jetColl = new JetCollection();
// pushing Jets into a container
StatusCode status = m_storeGate->record(jetColl, "PetersFavorite");
// check status…

…
return(status);

}

Athena AlgTools (1): Interface

• AlgTools operate on input data and can generate output data, it can be executed
multiple times per event.

• Can be called by an Algorithm using an interface I<AlgToolName>
• There can be multiple implementations of the same interface.

– E.g.: an IJetMakerTool could have two concrete implementation as KTJetMakerTool and
ConeJetMakerTool.

– Using the interface will allow the Algorithm to be configured to use either KT or Cone.

Athena AlgTools (2): Implementation header (in
src)

#include "GaudiKernel/AlgTool.h"
#include "<dir>/IJetHelper.h"
class StoreGateSvc;
class MyJetHelper : virtual public IJetHelper, public AlgTool {
public: /// Gaudi boilerplate

/// Constructor with parameters:
MyJetHelper(const std::string& type, const std::string& name, const

IInterface* parent);
virtual ~MyJetHelper();
StatusCode initialize(); // called once, at start of job
StatusCode finalize(); // called once, at end of job

public: // AlgTool functionality to be implemented by all IJetHelper
virtual double helpWork(double arg) const;

…
private: /// Handle to use services e.g., StoreGate

ServiceHandle<StoreGateSvc> m_storeGate;
…
};

Athena AlgTools (3): Implementation source

#include "MyJetHelper.h"
#include "GaudiKernel/IToolSvc.h"
MyJetHelper::MyJetHelper(const std::string& type, const std::string& name,

const IInterface* parent) : AlgTool(type, name, parent),
m_storeGate("StoreGateSvc", name) {

// Property declaration
// Declare IJetHelper interface
declareInterface<IJetHelper>(this);

}
MyJetHelper::~MyJetHelper() {}
StatusCode MyJetHelper::initialize() {

StatusCode status = ::AlgTool::initialize();
// check status…
// Get handle for StoreGateSvc and cache it:
status = m_storeGate.retrieve();
// check status…

…
return(status);

}

Athena AlgTools (4): Implementation source

StatusCode MyJetHelper::finalize() {
StatusCode status = m_storeGate.release();
// check status…
…
return(::AlgTool::finalize());

}
double MyJetHelper::helpWork(double arg) {

// Do the real work each time called
// Use m_storeGate to retrieve/record data objects to EventStore
…
return(status);

}

• Using AlgTools in Algorithms is similar to using Services:
.h: ToolHandle<IJetHelper> m_helper; // Hold ToolHandle

.cxx, c’tor: m_helper("MyJetHelper"), // Init to default AlgTool
// Allow jobOption to configure any IJetHelper
declareProperty("HelperTool", m_helper);

Conclusion

• Athena is very well suited complex analyses:
• Provides common Services and Tools:

– StoreGate helps you exchanging data.

– Persistency allows you to easily store complex data objects (and read them back even
after a possible change of the class).

– MessageSvc, Auditors, ChronoStatSvc, etc. help you to design efficient, robust and well
performing Algorithm to do your analysis task.

• Establishes Event Data Model:
– Many classes for physics objects are defined for you.

• Including Dictionary, Converter and persistent state representation.

• Lots of functionality to help physicists develop their analysis
– Can be overwhelming, so start out with the basics only.

DPD and AthenaROOTAccess

BackUp

Skimming, Thinning, Slimming… :

• Skimming is writing a sub-set of events
– e.g., all events containing 1 or 2 electrons within a certain eta and with a minimum pT.
– Done using TAGs.

• Thinning1 (aka “poor mans’ Thinning”) is removing collections
– e.g., keep only electron container but not muons.
– Here one would modify the ItemList (in the jobOptions).

• Thinning is removing objects from a container
– e.g., keep only good electron objects.
– Done using ThinnigSvc.

• Slimming is removing quantities or sub-objects from an object
– e.g., keep only eta and pT.

All kinds of DNPD…

• Primary D1PD:
– POOL-based DPD produced by the GRID production system. There are expected to be

O(10) primary DPDs, so the contents will not be very specific to an analysis. It is
expected to be skimmed, slimmed, and thinned compared to the AOD.

• An Example Job Options file AODtoDPD.py (see SVN)
• TauDPDMaker
• BPhysicsDPDMaker

• Secondary D2PD:
– POOL-based DPD with more analysis-specific information. Typically, this is produced

from Primary DPD and may be created using an Athena tool like EventView.
• SimpleThinningExample
• HighPtViewDPDThinningTutorial

• Tertiary D3PD:
– Does not need to be POOL-based, it includes flat ntuples.

AthenaROOTAccess

• Allows reading an AOD in ROOT like you would read a normal ntuple (without
using Athena).

– However it uses the transient classes and converters of the ATLAS software so a portion
of the offline is needed.

– A ~1GB distribution including Athena libraries .
– Not all Athena classes can be called from ROOT: jobOptions, configurables, databases,

geometry etc. are not reachable from ROOT - so athena code access has to be limited to
all those classes not requiring configuration, Detector Description etc.

– The user can also write Athena tools, applications that read the AOD which appears now
as a ROOT tree.

• One can use identical code/tools to run on ESDs, AODs, DPDs.
• One can use any Analysis Framework to access the DPDs (ROOT, Athena batch,

Athena interactive)
• The names of the variables in the AOD ROOT tree are the same as in the AOD.

AthenaROOTAccess Examples

• CINT macros
– Easy development (change code and run),
– Run time is slow ~x10 C++ compiled code

• C++ compiled code
– Slower development (change code, recompile, cannot reload libs)
– Fastest runtime
– Integrates easily back into Athena

• Python scripts
– Easy development (change code, reload and run)

• But no help from the compiler to find bugs either!

– Simple example shows runtime ~x3 C++ compiled code
• May be able to compile Python

– Integration of developed code into Athena?

• Examples on TWiKi and in Release:
– https://twiki.cern.ch/twiki/bin/view/AtlasProtected/AthenaROOTAccess
– PhysicsAnalysis/AthenaROOTAccessExamples

PhysicsAnalysis/AthenaROOTAccessExamples

• Need python script to open file and setup transient tree:
– lxplus:~> get_files AthenaROOTAccess/test.py

• Compiled C++ Example:
lxplus:~> root
root [0] TPython::Exec("execfile('test.py')");
root [1] CollectionTree_trans =

(TTree*)gROOT->Get("CollectionTree_trans");
root [2] ClusterExample ce; // Example class in AthenaROOTAccessExamples
root [3] ce.plot(CollectionTree_trans);
root [4] TruthInfo ti;
root [5] ti.truth_info(CollectionTree_trans);

• The test.py script takes about ~20 seconds to load necessary dictionaries
• One can recompile and then restart from the beginning

PhysicsAnalysis/AthenaROOTAccessExamples

• CINT Example:
lxplus:~> root
root [0] TPython::Exec("execfile('test.py')");
root [1] CollectionTree_trans = (TTree*)gROOT->Get("CollectionTree_trans");
root [2] gROOT-

>LoadMacro("AthenaROOTAccessExamples/macros/cluster_example.C");
root [3] plot(CollectionTree_trans);

– One can now edit cluster_example.C and re-run LoadMacro

• Python Example:
lxplus:~> python -i test.py
>>> import AthenaROOTAccessExamples.cluster_example
>>> AthenaROOTAccessExamples.cluster_example.plot(tt)
One can now edit cluster_example.py and re-run:
>>> reload(AthenaROOTAccessExamples.cluster_example)
>>> AthenaROOTAccessExamples.cluster_example.plot(tt)

