
dCache and QoS
Paul Millar

(on behalf of the dCache team)

DOMA-QoS workshop 2020 at CERN; 2020-02-07
https://indico.cern.ch/event/873367/

QoS REST support in dCache
● Support for controlling a file’s QoS through the REST API

● One file may be changed at a time.
● INDICO-DataCloud CDMI interface has a plugin to drive this REST API.
● Elements of the REST API have been implemented by EOS, allowing the same

plugin to target either dCache or EOS.
● The REST API allows the client to introspect available QoS classes and

metadata about them.
● dCache supports three QoS classes: DISK, TAPE and DISK_AND_TAPE

Bulk operations

Improving REST API to support bulk operations
● One benefit of SRM is a single request can target multiple files.
● This is currently not possible with dCache’s REST API.

Identified as a significant limitation by euXFEL users.
● We are adding bulk operations.
● API is documented here:

https://docs.google.com/document/d/14sdrRmJts5JYBFKSvedKCxT1tcrW
tWchR-PJhxdunT8/edit?usp=sharing

The API is not fixed and may change as we gain experience.

https://docs.google.com/document/d/14sdrRmJts5JYBFKSvedKCxT1tcrWtWchR-PJhxdunT8/edit?usp=sharing
https://docs.google.com/document/d/14sdrRmJts5JYBFKSvedKCxT1tcrWtWchR-PJhxdunT8/edit?usp=sharing

Bulk operations: creating a request
● Make a bulk request by issuing a POST operation to the endpoint:

curl -X POST d ‘{...}’ https://dcache.example.org/api/v1/bulk-requests

● The response contains the location of a URL representing this request.
● There will be some authorisation: not all users may make bulk

operations.
● Clients may have multiple requests concurrently.

But there will be a limit.

Bulk operations: interacting with bulk operations
● Clients can use the returned URL to interact with the request once they

are made:
● A GET request to learn the current status,
● A PATCH request to cancel the bulk operation,
● A DELETE request to clear the bulk operation (canceling if not already

finished).
● Currently the API requires clients to poll for the current status.

Subsequent update will add support for storage events.

Bulk operations: targets and activity
● Client has different options when specifying targets:

● The request could target a list of files (SRM style),
● One (or more) directories targeting the immediate children,
● One (or more) directories with full recursion.

● Various activities will be supported:
● A single bulk-operation request has a single activity.
● Deleting, pinning and changing QoS are three examples of activities.

Storage Events

Existing support for QoS storage events
● In Kafka, events are generated when a pool writes data to tape,

and reads data back from tape.
● In SSE, the inotify support will generate the IN_ATTRIB event

whenever the QoS changes.
● Problems with these approaches:

● Kafka events require site deployment and configuration.
● Inotify targets individual directories (not recursive) and, in general,

contains no metadata. IN_ATTRIB says “something” about a file has
changed, which might be the file’s QoS.

Improvements for storage events QoS
● Add QoS notification (via SSE) to describe QoS events.

● Would potentially see QoS events of all files, not limited to a directory.
● Contain metadata describing what just happened.

● Add data loss notification (via SSE and Kafka).
● Allow Rucio to learn when data is lost
● Reduce the operational cost of using unreliable/opportunistic storage.
● Already possible with weird configuration, publishing to Kafka.

● Add bulk-request notification.
● Monitor the progress without polling.

QoS classes

Existing support for different QoS classes:
● Currently can bind different pools to different portions of the namespace.

 These pools can have different QoS
● For example, configure some pools to store data on SSD and bind these pools to

the /data/ssd directory.
● Similar to how dCache may be configured so data written into /data/tape is

written to tape.
● QoS transitions would involve an external agent (Rucio + FTS) copying

data from one portion of the namespace to another.
Optionally, can delete the old file once the new file is created.

● Exploring this option through ESCAPE project, as a proof-of-principle.

Providing richer per-file QoS choice
● Currently can choose between DISK and TAPE
● We will extend the per-file QoS choices.
● Use pool tags (key-value pairs) to define media and other

characteristics.
● Use admin-defined policies to drive data locality (within dCache).
● Open question whether QoS classes may be composed:

QoS DISK and QoS TAPE vs QoS DISK_AND_TAPE

Conclusions
● Many things are already possible, but with weird configuration.

Working to make weird configuration main-stream, and put these
choices in the hands of users.

● Bulk REST API to allow bulk operation transitions to scale.
● Storage events to avoid polling.
● Improving single-file QoS options.

Thanks for listening!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

