DOMA QoS Workshop

LHCb View 07/02/2020 Christophe Haen

LHCb workflows

LHCb current workflow: MC

LHCb current workflow: Turbo

LHCb current workflow: Full

Disk Tape

LHCb possible workflow: MC

Safer disk

Disk

Safer tape

fer Tape

LHCb possible workflow: Turbo

LHCb possible workflow: Full

Safer disk

Safer tape

Tape

General comments on the White paper

Kudos!!

- Well done
- Encompasses a lot of the aspects
- Opens the door to a lot of innovations, improvements (and cost savings...)
- Does not contain insane ideas that requires 50 FTE years to have a prototype

Caching

- Mostly out of QoS
- Very difficult topic
 - Tricky to make efficient (how many re-read over which period of time, file size, cache size, etc)
 - Settings are site dependent
 - Caches work at file level, VOs work at dataset level
 - If there is a cache in front of the storage, it has to be automatic, tuned by the site admins
- Probably no use in LHCb:
 - Not enough re-read
 - Applications not IO bound

Media & related projects

- Underlying & grouping media:
 - VO should not really care
 - Acknowledge that performance is not the only way to evaluate hardware (see Pledge comments)
- Related projects:
 - Is there going to be a "global white paper" ?
 - Data carousel: done in LHCb for restripping for 6 years

Storage abstraction

- "transitions are only possible by copying data"
 - Yes!
 - Aggregate Storage QoS classes: smells very much like SRM to me
- "Optimal block size, parallel streams, etc"
 - Can't be expected from a VO for all sites: gfal2 negotiation?
 - Great feature though (Feature request from 2016 https://its.cern.ch/jira/browse/DMC-905)
- "Geographically distributed storage"
 - Not clear to me
 - If abstracted by storage, should be invisible to the VO

QoS orchestration and the VO view

- "Manual approach is perhaps the simplest [...] but will become unmanageable as the number of Storage QoS classes increases"
 - You certainly do not want that !!
 - Already no agreement on Information System (Glue, Glue2, GoCDB, CRIC, Carrier pigeon ...)

QoS adoption strategies

- In general, example matches quite well with LHCb ideas (see previous slides)
 - Example 1 "on stage out" ~ safer disk
 - Example 3 "cloud storage" ~ safer tape
- Tactical use of low-durability systems: "automatic recovery from data loss"
 - Please, no usine a gaz
 - Rather standard file format to declare data loss (then consumed by DIRAC or Rucio)
- Optimising cost: "This saving may be passed on in terms of increased storage capacity"
 - :-)

Static and dynamic QoS

- Multiple QoS classes with single storage system
 - Please: no fancy parameters or weird calls
 - Pragmatic: expose the classes via different hostname or namespace
- "Automatic QoS transitions"
 - Mildly fond of the idea
 - LHCb wants dataset consistency across sites
 - If automatic transition, QoS has to be comparable, and invisible to the VO catalog:
 - From Hot (disk) to Colder (slow disk) is OK
 - From Hot (disk) to Cold (tape) is not OK
- "Similar principle could be implemented at the experiment level"
 - In place already for many years

Role of WLCG, Pledge & exposing cost

- Role of WLCG: "Validation of declared storage QoS classes"
 - No absolute values can realistically be assigned
 - Very site dependent
- Cost model: man power and expertise have enormous impact on the cost, not only hardware
- "Some way of compensating sites that have deployed alternative media"
 - Dangerous: you do not want the sites to be too fancy
 - Makes sense only if alternative media asked by the VO

A few more thoughts...

A few more thoughts

- Data locality is paramount, and LHCb will stick to it
 - Run the job where the data is
 - Most civil behavior on shared resources (network congestion, etc)
 - Still convince it is the most efficient way of running (no need for remote caches, transfers, etc)
- The performance of the transition between QoS classes is not mentioned, while very important
 - a.k.a staging
 - Especially if other VOs run rolling staging campaign like LHCb (e.g. Data Carousel)

A few more thoughts: be pragmatic

- Sites (and their QoS) have to be ~ uniform within their tier level
 - No T1 is special with respect to the others (not even CERN)
 - You do not bound an experiment workflow to a site hardware tender
 - A special hardware type at one site is useless in that respect
 - Same goes for T2s or T2Ds
- For it to work, QoS has to be either invisible, or pragmatic
 - Limited number of classes, manually manageable
 - No fancy url or parameters
 - The same classes throughout a tier level