

LHC recasting from A to Z

Benjamin Fuks

LPTHE / Sorbonne Université

The second MADANALYSIS 5 workshop on LHC recasting @ Korea

KIAS (Seoul, Korea) - 13 February 2020

Outline

- . The Simplified Model Spectra approach
- The 'FastSim-based' approach
- 4. Challenges for reimplementing an LHC analysis
 - Preservation of the reimplementation works

Some physics

5.

• Summary: the workshop goals

New physics at the LHC

Path towards the characterisation of new physics
 Fitting and interpreting deviations
 Predictions of associated signatures/signals

 Monte Carlo simulations play a key role

 Final words on any potential new physics at the LHC
 Accurate measurements

 precision predictions (NLO QCD + PS)
 Monte Carlo simulations play a key role

New physics at the LHC

Path towards the characterisation of new physics
 Fitting and interpreting deviations
 Predictions of associated signatures/signals

 Monte Carlo simulations play a key role

 Final words on any potential new physics at the LHC
 Accurate measurements

 precision predictions (NLO QCD + PS)
 Monte Carlo simulations play a key role

More on the new physics nature at the LHC
 Fitting deviations by new physics signals
 ~ Reinterpretation of LHC results (confronting models to data)
 Designing new analyses to probe new ideas
 ~ From signal and background predictions

New physics at the LHC

Path towards the characterisation of new physics
 Fitting and interpreting deviations
 Predictions of associated signatures/signals
 Monte Carlo simulations play a key role
 Final words on any potential new physics at the LHC
 Accurate measurements

 precision predictions (NLO QCD + PS)
 Monte Carlo simulations play a key role

More on the new physics nature at the LHC
 Fitting deviations by new physics signals
 ~ Reinterpretation of LHC results (confronting models to data)
 * Designing new analyses to probe new ideas
 ~ From signal and background predictions

BSM simulations: where are we?

New physics simulations - a challenge

- No sign of new physics
- SM-like measurements
 - \rightarrow no leading candidate theory
- Plethora of models to consider
 - \rightarrow many implementations in tools

BSM simulations: where are we?

From Lagrangians to events

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

From Lagrangians to events

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

From Lagrangians to events

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

Let's reverse the chain...

Some context

Exploit the full potential of the LHC (for new physics)
 Designing new analyses ~ probing new ideas Prospectives (based on MC simulations)
 Recasting LHC analyses ~ studying new models The LHC legacy
 Data preservation in high-energy physics is mandatory
 Going beyond raw data ~ analyses
 Related tools need to be supported by the entire community [Kraml et al. (EPJC'12)]
 Both theorists and experimentalists

The Simplified Model Spectra (SMS) approach

New physics results at the LHC

\downarrow LHC = discovery machine

- Many ATLAS and CMS searches for new physics
- Interpretation within popular frameworks and simplified models (SMS)

New physics results at the LHC

\downarrow LHC = discovery machine

- Many ATLAS and CMS searches for new physics
- Interpretation within popular frameworks and simplified models (SMS)

Simplified Model Spectra (SMS)

The SMS-based reinterpretation framework

- Decomposition of all signatures of a theory into SMS signatures
- * Fiducial cross sections are calculated on the basis of public efficiency maps
- Comparisons to published upper bounds are made

Simplified Model Spectra (SMS)

SMS reinterpretation tools

Existing tools: SMODELS (FASTLIM, XQCAT)

[Kraml et al. (EPJC'14)] [Papucci, Sakurai, Weiler & Zeune (EPJC'14)] [Barducci et al. (CPC'15)]

SMS reinterpretation tools

The 'fastsim'-based approach

Beyond the SMS approach

Plethora of new physics realisations deserving to be studied	· · · · · · · · · · · · · · · · · · ·
Experimentalists cannot study all options	
SMS often not sufficient	
→ Detector simulator mimicking ATLAS and CMS	
→ Framework for LHC analysis re-implementations	

Beyond the SMS approach

Detector modelling

Detector modelling

LHC recasting from A to Z

Benjamin Fuks - 13.02.2020 - 13

Current existing public programmes

Using DELPHES: CHECKMATE and MADANALYSIS 5
 [Drees et al. (CPC'14); Derks et al. (CPC`17)] [Dumont, BF, Kraml et al. (EPJC`15); Conte & BF (IJMPA`19)]

 Using transfer functions: RIVET, GAMBIT and MADANALYSIS 5
 [Buckley et al. (CPC`13)] [Balazs et al. (EPJC`17)] [Araz, BF & Polykratis (to appear)]

 CONTUR: Standard Model searches [Butterworth et al.]

Current existing public programmes

More examples

LHC recasting The challenges

Reimplementing an analysis: the challenges

CMS-SUS-17-001 in MADANALYSIS 5

[Bein, Choi, BF, Jeong, Kang, Li & Sonneveld ('18)]

CMS search for dark matter in the ttbar + MET channel

- Dileptonic final state
- Cutflows and Monte Carlo information for given benchmarks

Validation at a very good level, cut by cut

Cut	$(m_{\tilde{t}},m_{\tilde{\chi}})$	= (750, 1) GeV	$(m_{\tilde{t}},m_{\tilde{\chi}})=(600,300)~{\rm GeV}$		
	CMS	MA5	CMS	MA5	
$n(OS \ \mu \text{ or } e) = 2$	-	-	-	-	
$m_{\ell\ell}>20~{\rm GeV}$	0.99	0.99	0.99	0.97	
$ m_Z-m_{\ell\ell} >15~{\rm GeV}$	0.95	0.94	0.89	0.89	
$N_j \geq 2$	0.87	0.93	0.85	0.89	
$N_b \ge 1$	0.73	0.84	0.83	0.83	
$E_T^{\rm miss} > 80 { m ~GeV}$	0.94	0.95	0.89	0.88	
$S>5{\rm GeV}^{1/2}$	0.98	0.92	0.96	0.91	
$c_1 < 0.80$	0.9	0.97	0.92	0.97	
$c_2 < 0.96$	1.0	0.96	1.0	0.94	
$M_{T2}(\ell_1\ell_2)>140~{\rm GeV}$	0.49	0.42	0.17	0.16	
All cuts	0.24	0.25	0.083	0.075	

CMS-TOP-18-003 in MADANALYSIS 5

Preservation

The LHC legacy

Recasting strategy (as in MADANALYSIS 5)

MADANALYSIS 5 analyses on INSPIRE

The Public Analysis Database of MADANALYSIS

Analysis	Short Description	Implemented by		Code	Validation note	Version
⇒CMS-SUS-16-033	Supersymmetry in the multijet plus missing energy channel (35	5.9 fb-1) F. Ambrogi and J. Sonneveld		⇔ Inspire	¢→PDF	v1.7/Delphes3
+CMS-SUS-16-039	Electroweakinos in the SS2L, 3L and 4L channels (35.9 fb-1)	B. Fuks and S. Mondal		⇒ Inspire	¢→PDF	1.7/Delphes3
⇒CMS-SUS-16-052	SUSY in the 1I + jets channel (36 fb-1)	D. Sengupta		⇒Inspire	t⇒PDF	/1.6/Delphes3
⇒CMS-SUS-17-001	Stops in the OS dilepton mode (35.9 fb-1)	SM. Choi, S. Jeong, DW. Kang, J. Li	et al.	⇔ Inspire	t→PDF	<pre>/1.6/Delphes3</pre>
⇒CMS-EXO-16-010	Mono-Z-boson (2.3 fb-1)	B. Fuks		➡ Inspire	t→PDF	1.6/Delphes3
⇒CMS-EXO-16-012	Mono-Higgs (2.3 fb-1)	S. Ahn, J. Park, W. Zhang		⇒ Inspire	t→PDF	1.6/Delphes3
⇒CMS-EXO-16-022	Long-lived leptons (2.6 fb-1)	J. Chang		⇒ Inspire	t → PDF	<pre>/1.6_tracks/Delpho</pre>
⇒CMS-TOP-17-009	SM four-top analysis (35.9 fb-1)	L. Darmé and B. Fuks		⇔Inspire	PDF	v1.7/Delphes3
 Delphes card for (MS-EXO-10-012 MS-SUS-16-039 MS-SUS-16-041 MS-SUS-16-052 MS-TOP-17-009 Dedicated DELPHES cards			Validation information		formation
				(Cuti	iows, distri	Dutions, etc

Can be automatically installed within MADANALYSIS 5

Some physics

Top-philic scalar dark matter at the LHC

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD`18)]

Top-philic scalar dark matter at the LHC

[Colucci, BF, Giacchino, Lopez Honorez, Tytgat & Vandecasteele (PRD`18)]

Multijet and top-antitop plus MET probes

General features

- $\star \Gamma_T$ must be larger than Λ_{QCD} (no LLP)
- ★ Bounds independent of the Yukawa
 → monojet production negligible

Multijet probes

★ Monojet-inspired (at least one very hard jet)
★ Loss of sensitivity ⇔ decay phase space

Top-antitop plus MET

- \star Well adapted to our topology
- **★** Best constraints (and chance of discovery)

Top-philic s-channel dark matter

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

Top-philic s-channel dark matter

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

Top-philic s-channel dark matter @ NLO

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

	(m_Y,m_X)	$\sigma_{ m LO}~[m pb]$	CL_{LO} [%]	$\sigma_{ m NLO}~[m pb]$	CL_{NLO} [%]			
Ι	$(150,25)~{\rm GeV}$	$0.658^{+34.9\%}_{-24.0\%}$	$98.7^{+0.8\%}_{-13.0\%}$	$0.773^{+6.1\%}_{-10.1\%}$	$95.0^{+2.7\%}_{-0.4\%}$			
II	$(40,30)\;{\rm GeV}$	$0.776^{+34.2\%}_{-24.1\%}$	$74.7^{+19.7\%}_{-17.7\%}$	$0.926^{+5.7\%}_{-10.4\%}$	$84.2^{+0.4\%}_{-14.4\%}$			
III	$(240, 100) { m GeV}$	$0.187^{+37.1\%}_{-24.4\%}$	$91.6^{+6.4\%}_{-18.1\%}$	$0.216^{+6.7\%}_{-11.4\%}$	$86.5^{+8.6\%}_{-5.5\%}$			
n exc	luded point	t (95% Cl	L) may n	ot be exe	cluded wł	nen ac	count	ing for e

t-channel dark matter (up-quark mediated)

Arina, BF & Mantani (2020)]

Three contributing classes of processes g X ✤DM pair production DM/mediator associated production (+ mediator decays into DM+jet) Mediator pair production (+ mediator decays into DM+jet) Dark matter signal Each subprocess contributes to signal region population \star Jets generated from ISR or in the mediator decays The signal is less naive than from considering XX production only

Recasting ATLAS SUSY 2016-27 (monojet; 36 ifb)

Arina, BF & Mantani (2020)]

• CLs exclusion from the best region ($m_Y = I \text{ TeV}, m_X = I50 \text{ GeV}; \lambda = I$)

Process	CL_s [LO]	E_T^{miss} constraint	CL_s [NLO]	E_T^{miss} constrtaint
Total	$75.6^{+10.1}_{-10.5}$ %	$\in [700,800]~{\rm GeV}$	$97.8^{+0.9}_{-1.4}$ %	$\geq 700~{\rm GeV}$
XX	$0.7^{+0.6}_{-0.6}$ %	$\in [250, 300]~{\rm GeV}$	$3.6^{+0.3}_{-0.6}~\%$	$\geq 900~{\rm GeV}$
XY	$62.7^{+12.3}_{-10.4}$ %	$\in [500,600]~{\rm GeV}$	$83.9^{+2.9}_{-4.3}$ %	$\in [700, 800] \text{ GeV}$
YY [total]	$24.0^{+3.1}_{-3.1}$ %	$\geq 900~{\rm GeV}$	$58.1^{+2.2}_{-3.1}$ %	$\geq 900~{\rm GeV}$
YY [QCD]	$10.7^{+4.4}_{-2.6}$ %	$\geq 900~{\rm GeV}$	$17.0^{+2.1}_{-2.1}$ %	$\geq 900~{\rm GeV}$
YY [t-channel]	$29.6^{+3.3}_{-2.6}$ %	$\geq 900~{\rm GeV}$	$38.9^{+1.2}_{-1.8}$ %	$\geq 900 { m ~GeV}$

NLO simulations are crucial

- * Modification of the rates (larger yields) and shapes (different best region)
- \star Better control of the theory errors
- Considering all signal components is crucial
 - \star One component alone is not sufficient to exclude the scenario

Impact of the uncertainties ~ future colliders

Constraining gluino pair production and decay @ LHC

- NLO impact on the shapes of the distributions
- Impact on the limits?
- Impact of the theory uncertainties?

Impact of the uncertainties ~ future colliders

Araz, Frank & BF (2019)]

Constraining gluino pair production and decay @ LHC
Set the shapes of the distributions

- NLO impact on the shapes of the distributions
- Impact on the limits?
- Impact of the theory uncertainties?

Recasting ATLAS multijet + MET analysis (ATLAS SUSY 2016-07)
 Left: reproduction of the ATLAS results (LO-merged; σ_{NLL/NLO}) with NLO signals
 Right: extrapolation for HL-LHC ~ impact of the errors

Goals of the workshop

Summary

Designing analysis at collider is an art

- Current constraints ~ BSM is hiding
- Use of clever methods to suppress the backgrounds (without killing the signal)
- Machine learning is routine

The LHC legacy

- * It is crucial to be able to reinterpret the LHC results in any theoretical context
- * This is a very active field of the last few years: several tools are available
- Reproducibility is the ability of an entire experiment to be reproduced, (possibly by an independent theoretical study)

Goals of the workshop

Programme: tools & physics

	13 Feb 2020	14 Feb 2020	15 Feb 2020	16 Feb 2020	17 Feb 2020	18 Feb 2020	19 Feb 2020	20 Feb 2020	
09:00-09:30		Breakfast	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast	
09:30 - 10:30		Di-Higgs for new physics	Experimental physics at the LHC	Machine learning in particle physics (1/2)	Introduction to composite models	Machine learning in particle physics (2/2)	The Standard Model and beyond (2/2)	Student talk preparation	
10:30 - 10:45		Coffee break	Coffee break	Coffee break	Coffee break	Coffee break	Coffee break	Coffee break	
10:45 - 12:15		MadAnalysis 5 for experts (1/2)	Analysis design (1/3)	Detector simulation Analysis validation (1/2)	Detector simulation Analysis validation (2/2)	Detector parameterisation and tests	Validation (2/4)	Student talk preparation	
12:15 - 13:30		Lunch break	Lunch break	Lunch break	Lunch break	Lunch break	Lunch break	Lunch break	
13:30 - 14:30	The problematics of	MadAnalysis 5 for	MadAnalysis 5 for			let a busies	The Standard Model	Neutrino physics at the LHC	Student
14:30 - 15:30	recasting	experts (2/2)	MC simulations		Jet physics	and beyond (1/2)	Validation (3/4)	presentations	
15:30 - 16:00	Coffee break	Coffee break	Coffee break	Free time	Coffee break	Coffee break	Coffee break	Coffee break	
16:00 - 18:30	Software installation & basic tutorials	Working group formation & analysis presentations	Analysis design (2/3)		Analysis design (3/3)	Validation (1/4)	Validation (4/4)		

An international team of lecturers and tutors

- Eric Conte, Thomas Flacke, Taejeong Kim, Pyungwon Ko, Richard Ruiz, Jeonghyeon Song, Hwidong Yoo
- Jack Araz, Robin Ducrocq, Thomas Flacke, Si Hyun Jeon, Richard Ruiz, Dipan Sengupta,

More information: <u>https://indico.cern.ch/e/ma5_2020</u>

The recasting exercice

◆ Pick your three favourite analyses

 → send your choices to fuks@lpthe.jussieu.fr
 ◆ ATLAS-EXOT-2018-30:W' search (single lepton + MET)
 ◆ ATLAS-SUSY-2017-04: displaced leptons
 ◆ ATLAS SUSY-2018-04: stau pair
 ◆ ATLAS SUSY-2018-06: electroweakinos (multi-leptons + missing energy)
 ◆ CMS EXO-17-030: tri-jet resonance pair production (RPV gluinos)
 ◆ CMS EXO-19-002: multi-leptons + missing energy (neutrino models)
 ◆ CMS HIG-18-011: exotic Higgs to pseudo-scalars into 2µ+2b