

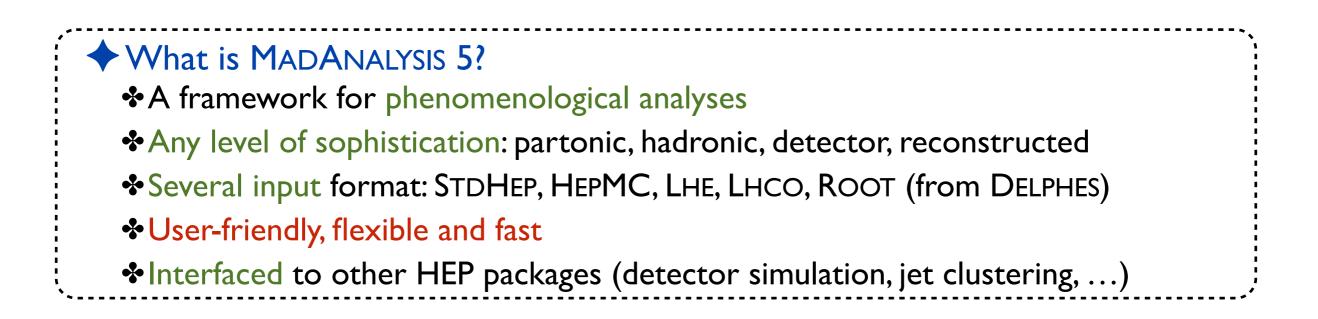
MADANALYSIS 5 for experts

Benjamin Fuks

LPTHE / Sorbonne Université

More information: Conte & Fuks, arXiv:1808.00480, IJMPA 33 (2018) 1830027

The second MADANALYSIS 5 workshop on LHC recasting @ Korea


KIAS (Seoul, Korea) - 14 February 2020

Outline

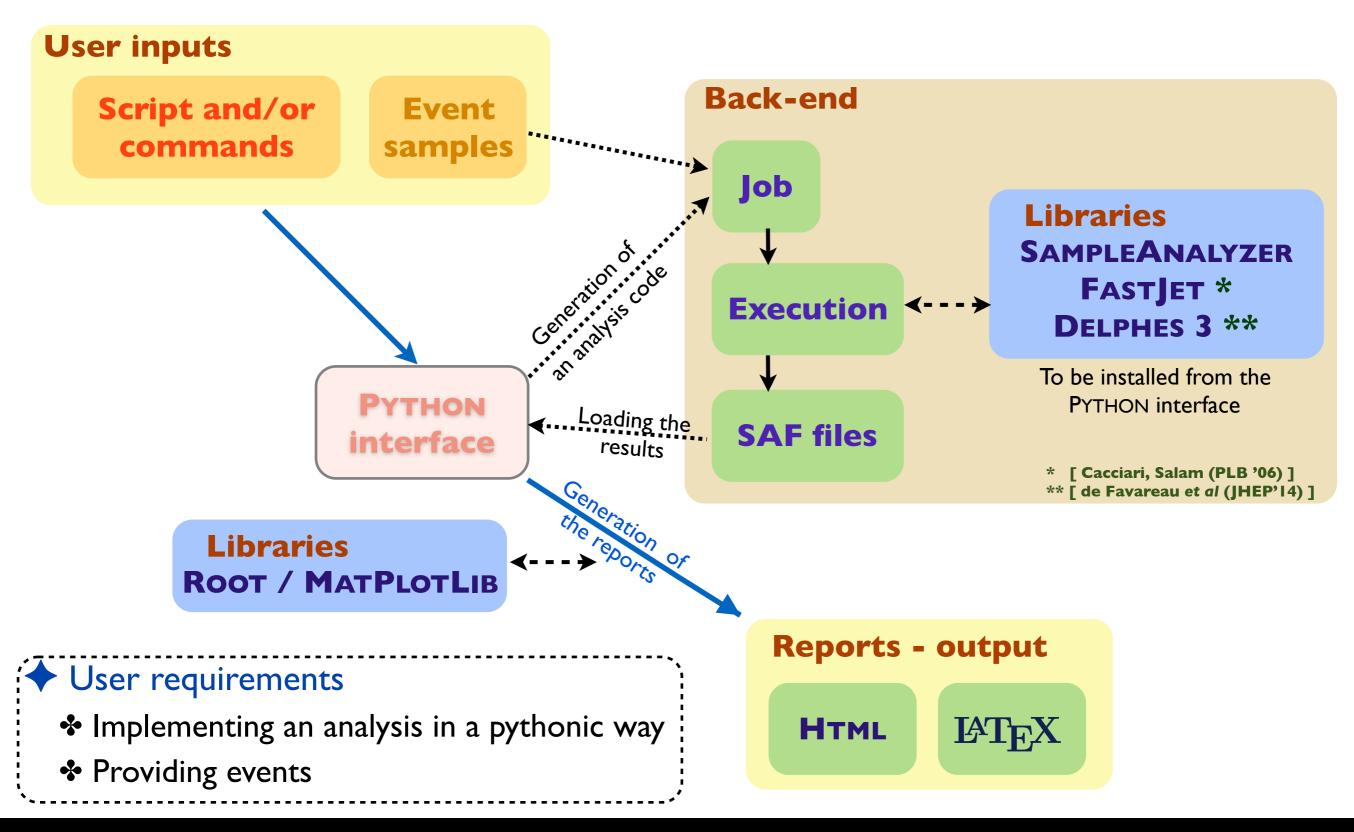
MADANALYSIS 5 in a nutshell

[Conte, BF, Serret (CPC '13); Conte, Dumont, BF, Wymant (EPJC '14); Conte & BF (IJMPA`18)]

MADANALYSIS 5 in a nutshell

[Conte, BF, Serret (CPC '13); Conte, Dumont, BF, Wymant (EPJC '14); Conte & BF (IJMPA`18)]

What is MADANALYSIS 5? A framework for phenomenological analyses	
Any level of sophistication: partonic, hadronic, detector, reconstructed	
Several input format: STDHEP, HEPMC, LHE, LHCO, ROOT (from DELPHES)	
User-friendly, flexible and fast	
Interfaced to other HEP packages (detector simulation, jet clustering,)	
Normal pythonic mode	,
Intuitive commands typed in a PYTHON interface	
Analysis performed behind the scenes (a C++ black box)	
•Human readable output: HTML and	

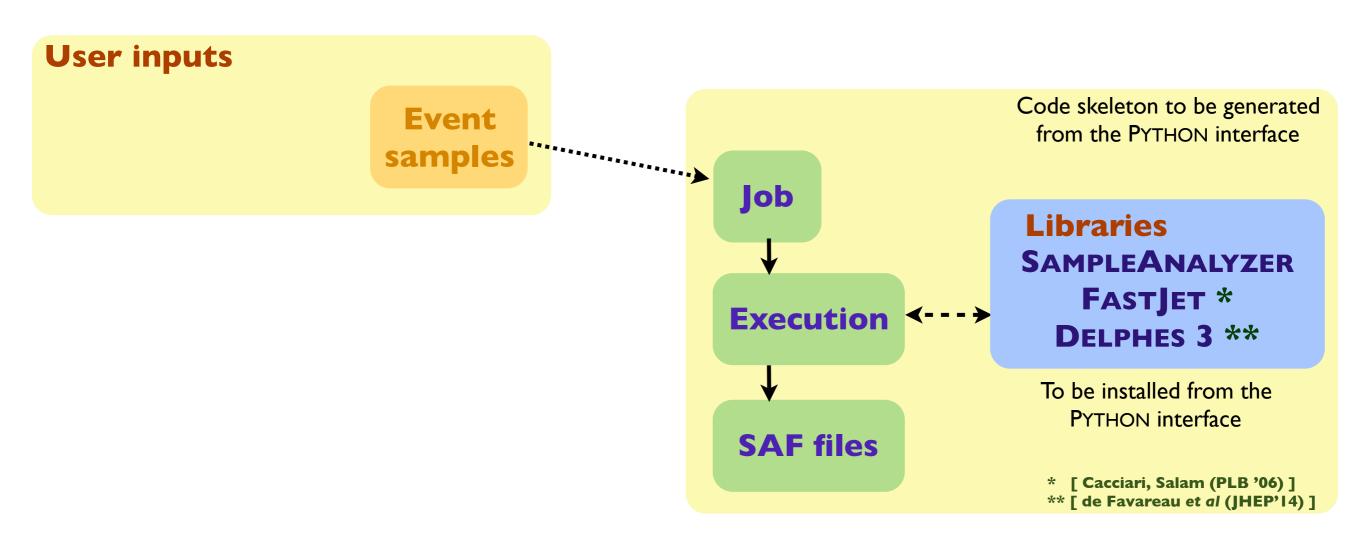

MADANALYSIS 5 in a nutshell

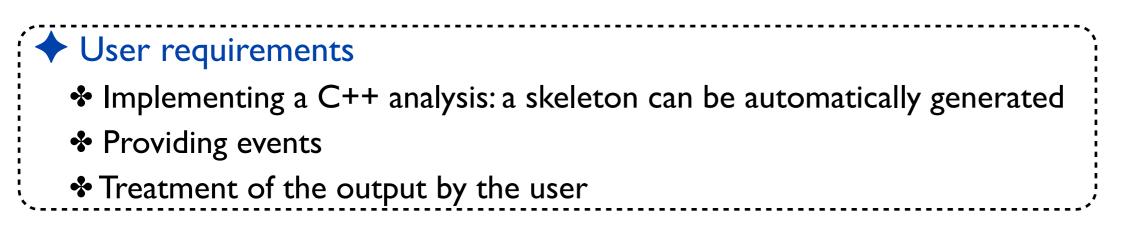
[Conte, BF, Serret (CPC '13); Conte, Dumont, BF, Wymant (EPJC '14); Conte & BF (IJMPA`18)]

 Any level of sophistication: partonic, hadronic, detector, reconstructed Several input format: STDHEP, HEPMC, LHE, LHCO, ROOT (from DELPHES)
User-friendly, flexible and fast	,
Interfaced to other HEP packages (detector simulation, jet clustering, .	.)
 Intuitive commands typed in a PYTHON interface Analysis performed behind the scenes (a C++ black box) Human readable output: HTML and LATEX 	

The (normal) user-friendly mode

[Conte, BF, Serret (CPC 'I3); Conte, Dumont, BF, Wymant (EPJC 'I4); Conte & BF (IJMPA`I8)]




MADANALYSIS 5 for experts

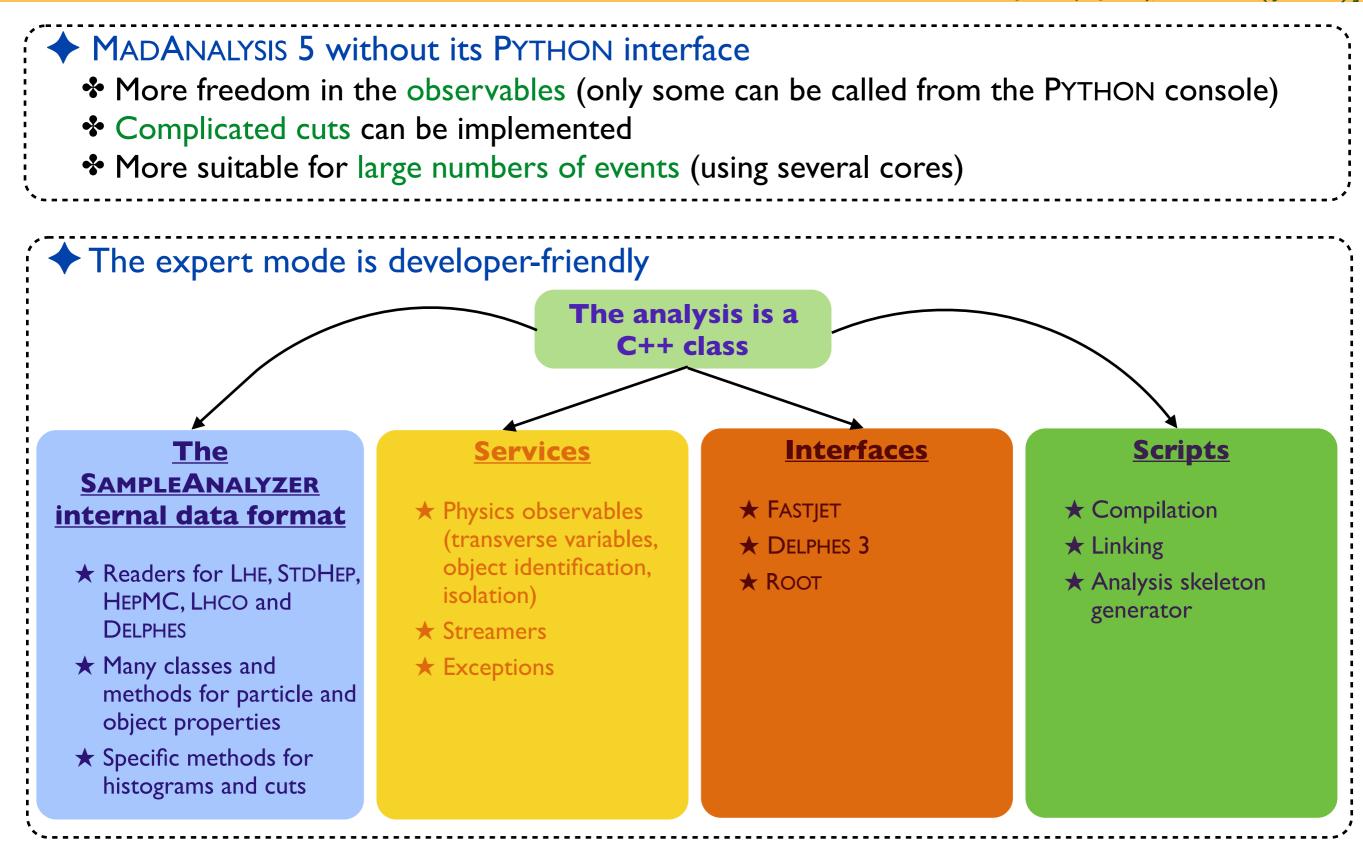
Benjamin Fuks - 14.02.2020 - 4

The expert (developer-friendly) mode

[Conte, BF, Serret (CPC 'I3); Conte, Dumont, BF, Wymant (EPJC 'I4); Conte & BF (IJMPA`I8)]

Benjamin Fuks - 14.02.2020 - 5

The expert mode of MADANALYSIS 5


[Conte, BF, Serret (CPC '13); Conte, Dumont, BF, Wymant (EPJC '14); Conte & BF (IJMPA`18)]

MADANALYSIS 5 without its PYTHON interface

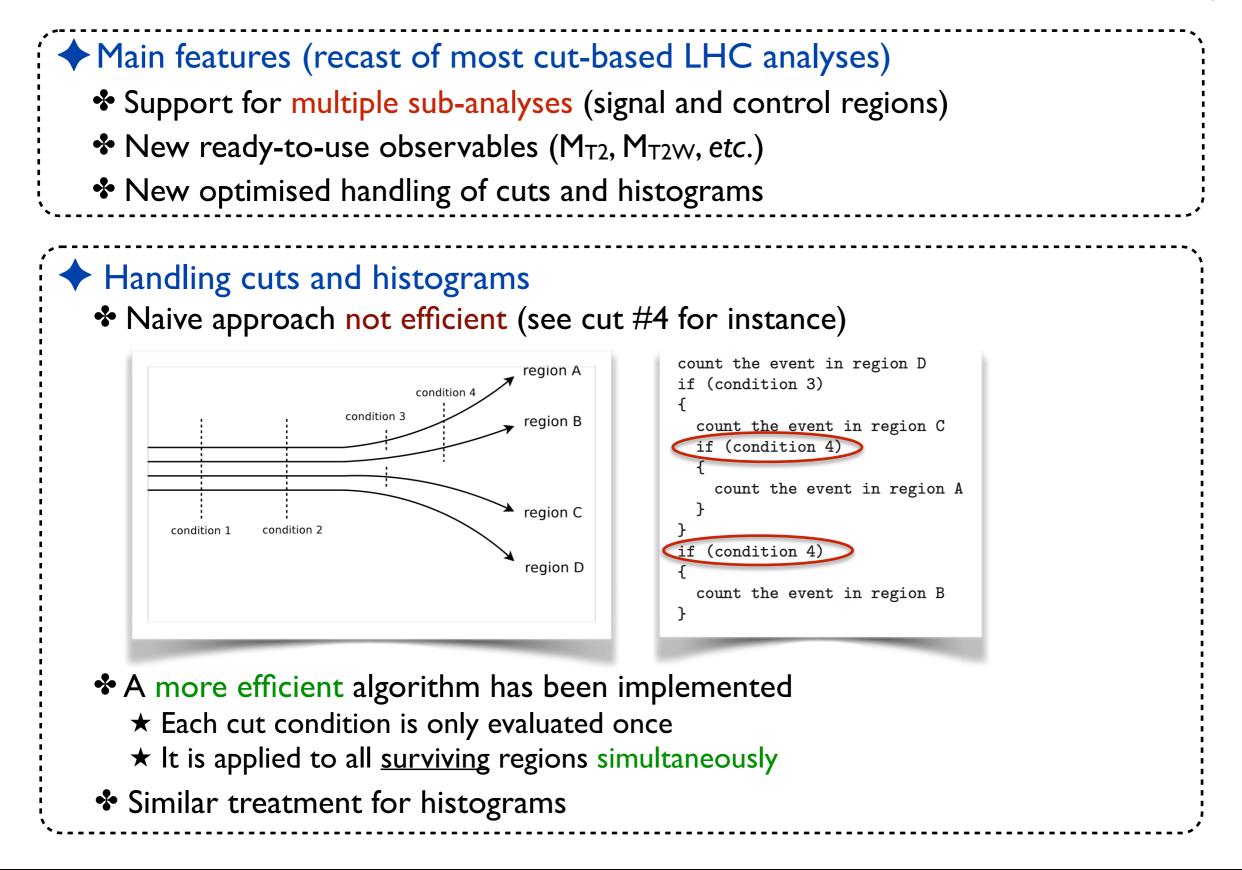
- More freedom in the observables (only some can be called from the PYTHON console)
- Complicated cuts can be implemented
- More suitable for large numbers of events (using several cores)

The expert mode of MADANALYSIS 5

[Conte, BF, Serret (CPC '13); Conte, Dumont, BF, Wymant (EPJC '14); Conte & BF (IJMPA '18)]

MADANALYSIS 5 for experts

Benjamin Fuks - 14.02.2020 - 6


Main features: signal regions, histograms & cuts

[Conte, Dumont, BF, Wymant (EPJC '14)]

·····	• • • • • • • • • • • • • • • • • • • •
Main features (recast of most cut-based LHC analyses)	
Support for multiple sub-analyses (signal and control regions)	
New ready-to-use observables (MT2, MT2W, etc.)	
New optimised handling of cuts and histograms	

Main features: signal regions, histograms & cuts

[Conte, Dumont, BF, Wymant (EPJC '14)]

Benjamin Fuks - 14.02.2020 - 7

Getting started: understanding a paper

Reimplementing ATLAS SUSY-2018-32

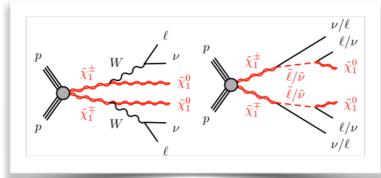
✦ Goal of the lecture

Detailing step-by-step the implementation of a search in MADANALYSIS 5

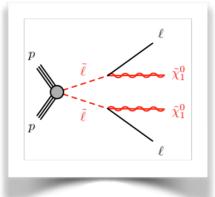
From coding to validation

Reimplementing ATLAS SUSY-2018-32

✦ Goal of the lecture


Detailing step-by-step the implementation of a search in MADANALYSIS 5

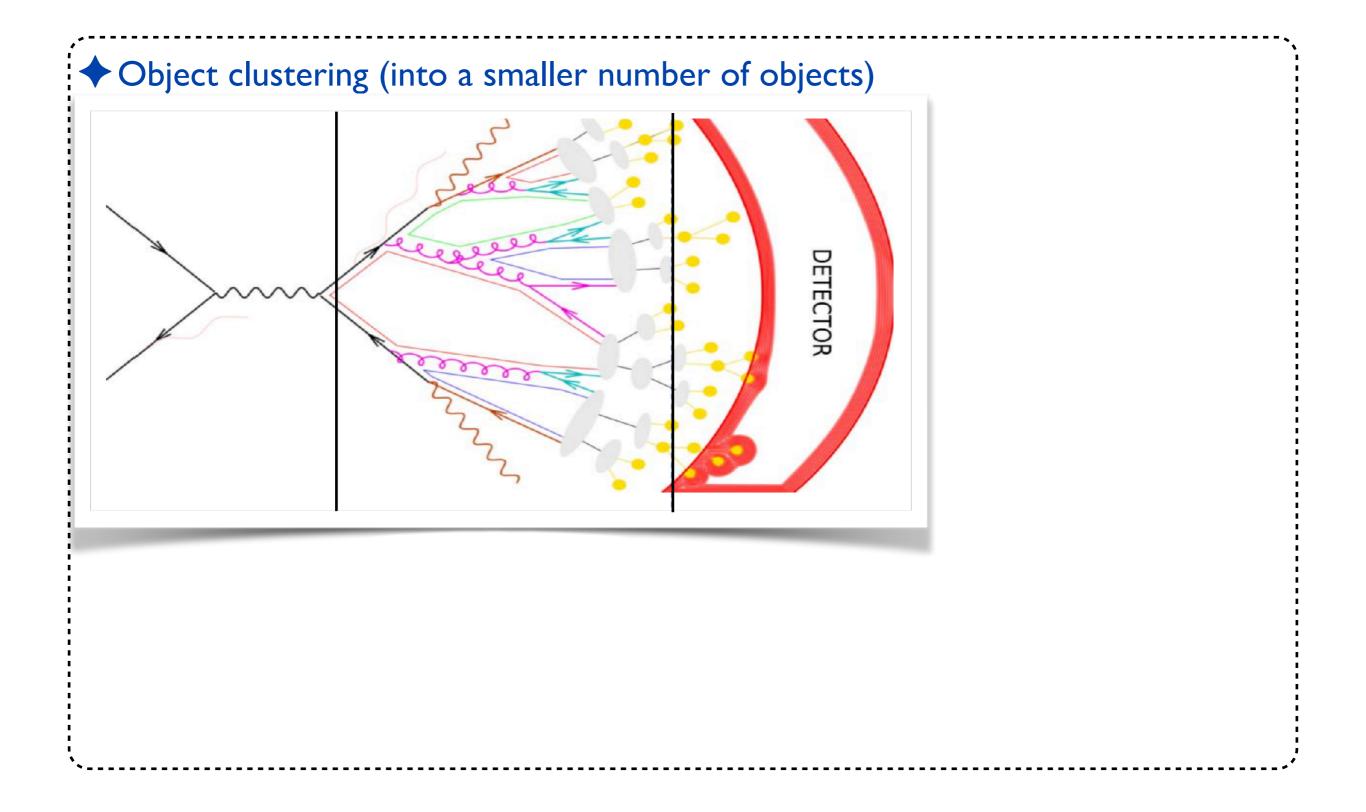
From coding to validation

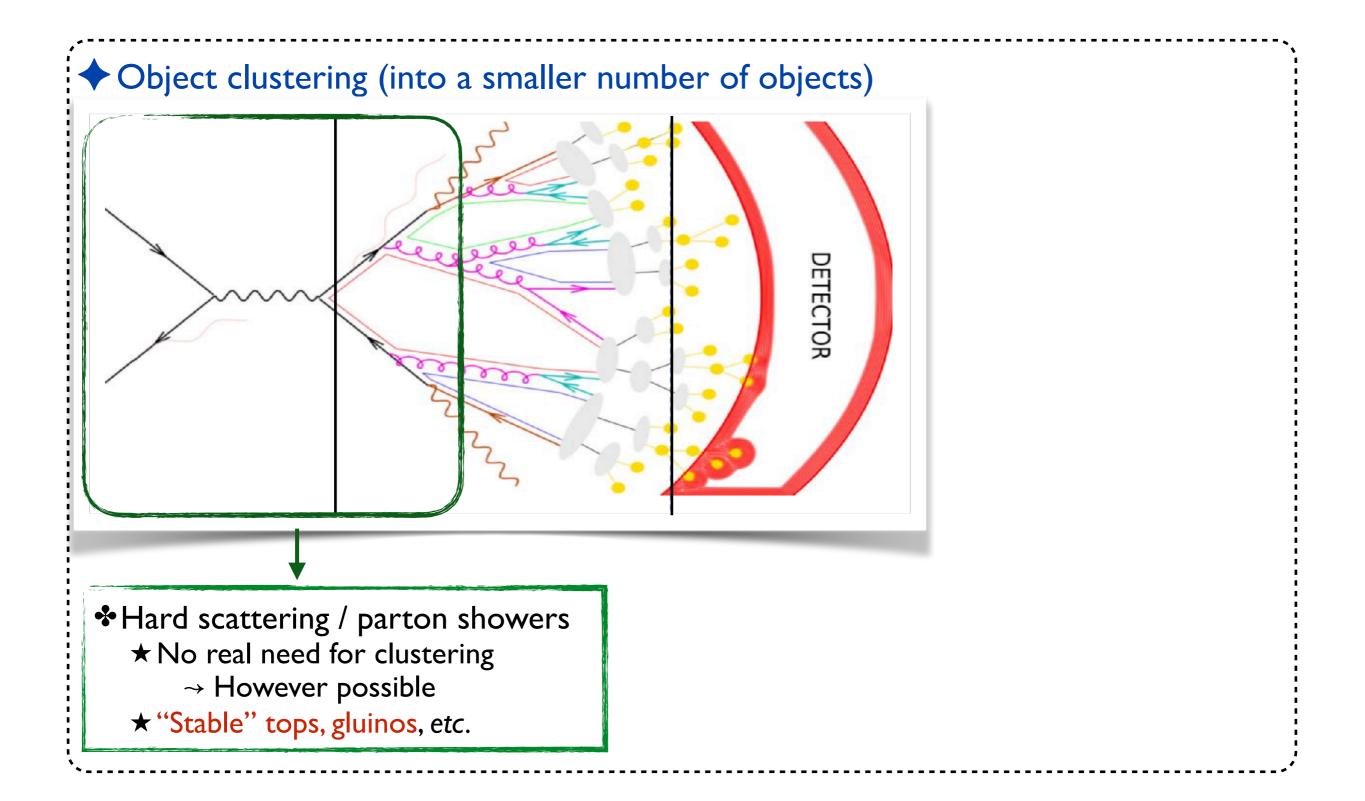

Example: ATLAS SUSY-2018-32

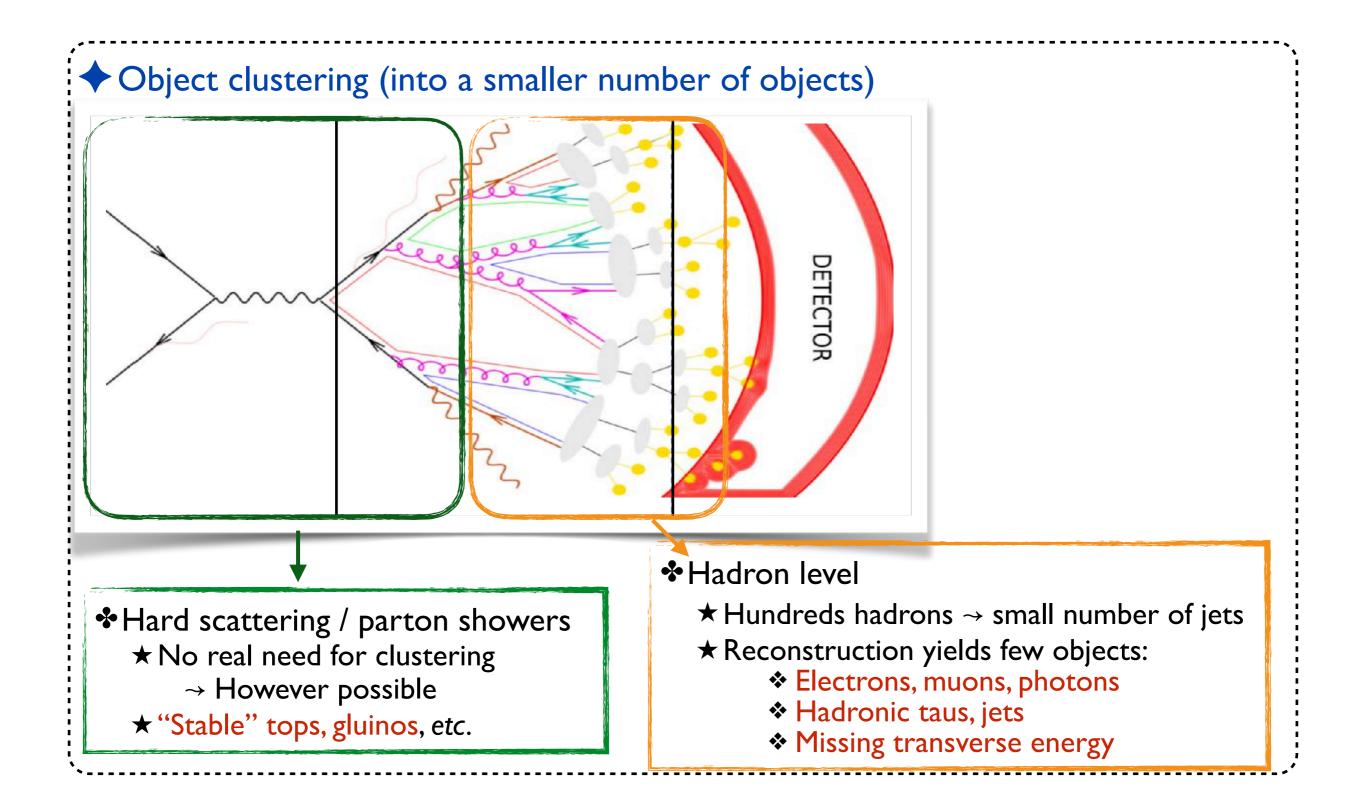
Searching for sleptons and electroweakinos

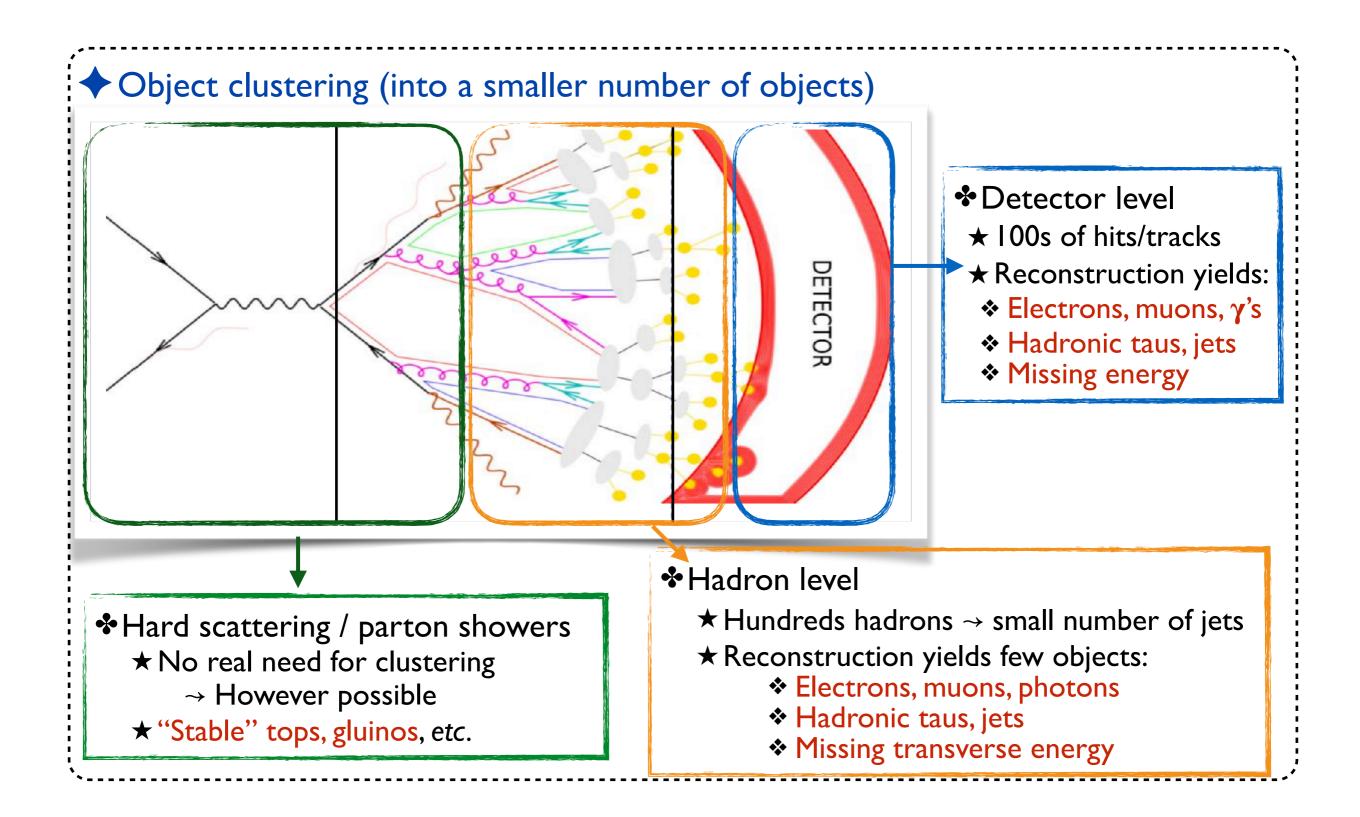
- Luminosity: 39 fb⁻¹ of 13 TeV LHC data
- Signature: dilepton plus missing energy
 - \bigstar Chargino pair-production and decay

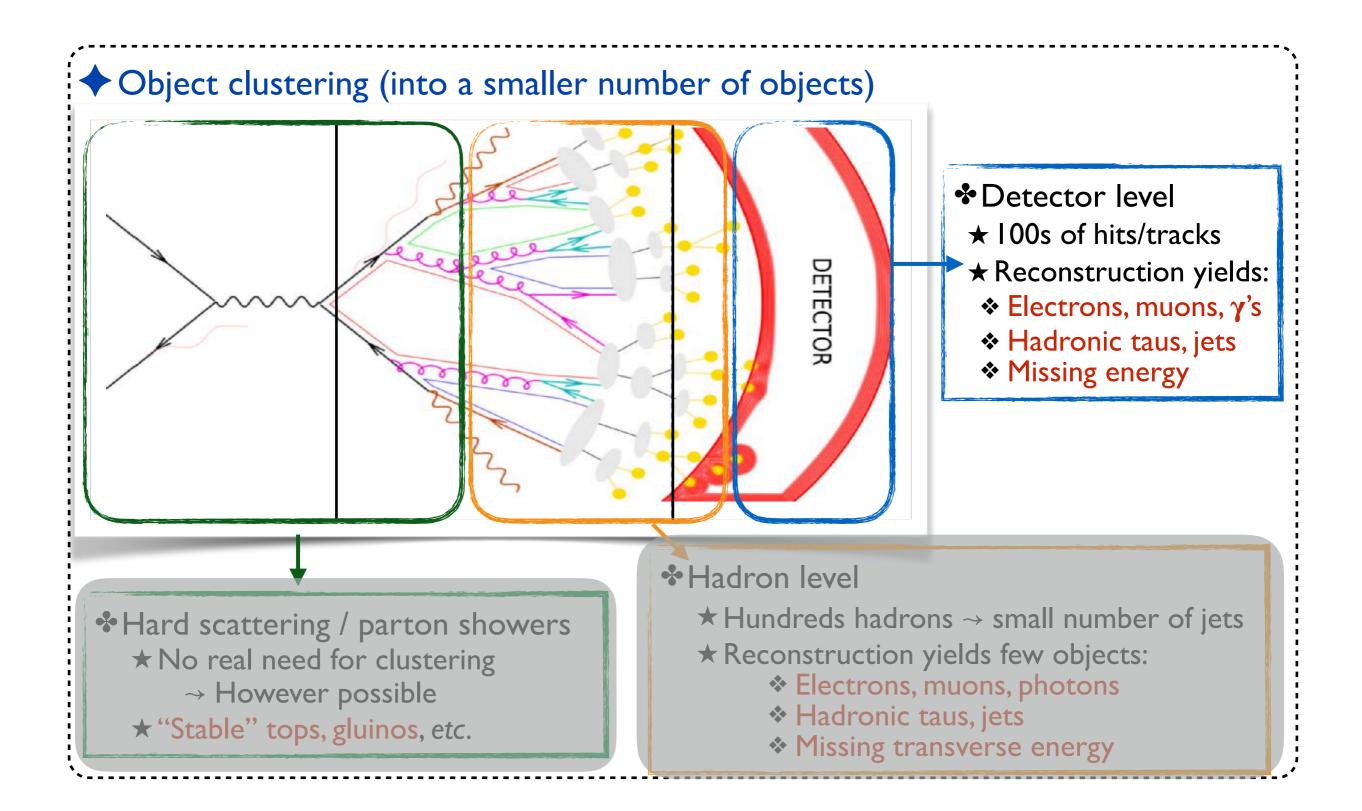
 \star Slepton pair-production and decay

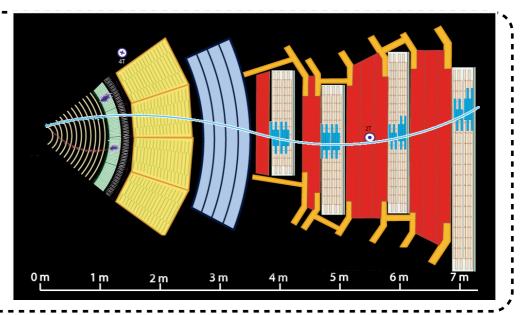

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

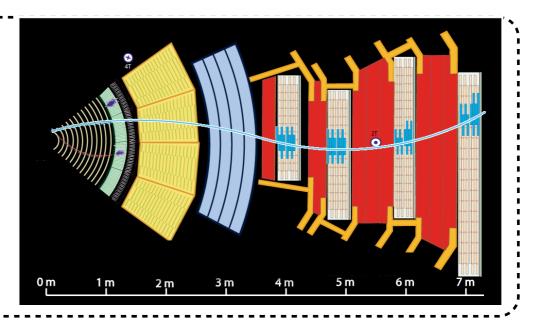

CERN-EP-2019-106 13th November 2019

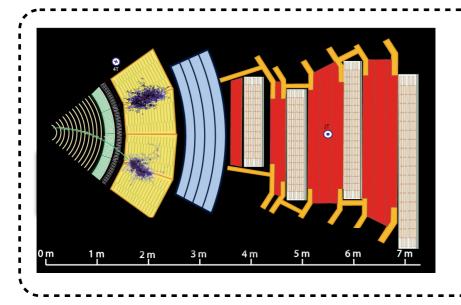

Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in $\sqrt{s} = 13$ TeV *pp* collisions using the ATLAS detector


The ATLAS Collaboration


A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb⁻¹ of proton–proton collisions recorded by the ATLAS detector at the Large Hadron Collider at $\sqrt{s} = 13$ TeV. Three *R*-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via either *W* bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95% confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 GeV are excluded for the production of the lightest-chargino pairs assuming *W*-boson-mediated decays and up to 1 TeV for slepton-mediated decays, whereas for slepton-pair production, masses up to 700 GeV are excluded assuming three generations of mass-degenerate sleptons.

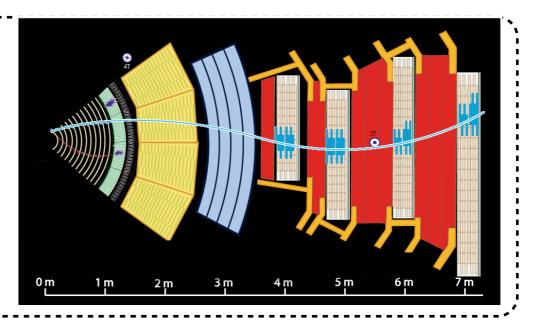


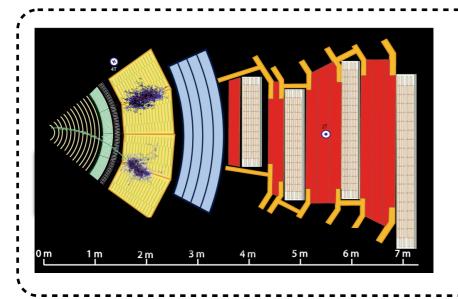

Reconstructed objects in a nutshell


Directly observable objects
 Truely stable: electrons, γ's
 Stable on detector scales: muons
 Other unstable particles
 Observable through decays
 SM and BSM

Reconstructed objects in a nutshell

- Directly observable objects
 Truely stable: electrons, γ's
 Stable on detector scales: muons
 Other unstable particles
 Observable through decays
 - SM and BSM




✦ Jets

Charged and neutral hadrons
Matched with an initial parton

Reconstructed objects in a nutshell

- Directly observable objects
 Truely stable: electrons, γ's
 Stable on detector scales: muons
 Other unstable particles
 Observable through decays
 - SM and BSM

♦ Jets

Charged and neutral hadrons
Matched with an initial parton

The invisible

- Energy-momentum conservation
 - → reconstructing the invisible (neutrinos & more)

Object identification \rightarrow **collections**

Dedicated section in the experimental paper

- Quality of the objects
- Properties of the objects
- References

5 Object identification

Leptons selected for analysis are categorised as baseline or signal leptons according to various quality and kinematic selection criteria. Baseline objects are used in the calculation of missing transverse momentum, to resolve ambiguities between the analysis objects in the event and in the fake/non-prompt (FNP) lepton background estimation described in Section 7. Leptons used for the final event selection must satisfy more stringent signal requirements.

Baseline electron candidates are reconstructed using clusters of energy deposits in the electromagnetic calorimeter that are matched to an ID track. They are required to satisfy a *Loose* likelihood-based identification requirement [39], and to have $p_T > 10$ GeV and $|\eta| < 2.47$. They are also required to be within $|z_0 \sin \theta| = 0.5$ mm of the primary vertex,³ where z_0 is the longitudinal impact parameter relative to the primary vertex. Signal electrons are required to satisfy a *Tight* identification requirement [39] and the track associated with the signal electron is required to have $|d_0|/\sigma(d_0) < 5$, where d_0 is the transverse impact parameter relative to the reconstructed primary vertex and $\sigma(d_0)$ is its error.

Baseline muon candidates are reconstructed in the pseudorapidity range $|\eta| < 2.7$ from MS tracks matching ID tracks. They are required to have $p_T > 10$ GeV, to be within $|z_0 \sin \theta| = 0.5$ mm of the primary vertex and to satisfy the *Medium* identification requirements defined in Ref. [40]. The *Medium* identification criterion defines requirements on the number of hits in the different ID and MS subsystems, and on the significance of the charge-to-momentum ratio q/p. Finally, the track associated with the signal muon must have $|d_0|/\sigma(d_0) < 3$.

Isolation criteria are applied to signal electrons and muons. The scalar sum of the $p_{\rm T}$ of tracks inside a variable-size cone around the lepton (excluding its own track), must be less than 15% of the lepton $p_{\rm T}$. The track isolation cone size for electrons (muons) $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ is given by the minimum of $\Delta R = 10 \text{ GeV}/p_{\rm T}$ and $\Delta R = 0.2 (0.3)$. In addition, for electrons (muons) the sum of the transverse energy of the calorimeter energy clusters in a cone of $\Delta R = 0.2$ around the lepton (excluding the energy from the lepton itself) must be less than 20% (30%) of the lepton $p_{\rm T}$. For electrons with $p_{\rm T} > 200 \text{ GeV}$ these isolation requirements are not applied, and instead an upper limit of max(0.015 × $p_{\rm T}$, 3.5 GeV) is placed on the transverse energy of the calorimeter energy clusters in a cone of $\Delta R = 0.2$ around the electron.

Jets are reconstructed from topological clusters of energy in the calorimeter [86] using the anti- k_t jet clustering algorithm [87] as implemented in the FastJet package [88], with a radius parameter R = 0.4. The

Object identification \rightarrow **collections**

Dedicated section in the experimental paper

- Quality of the objects
- Properties of the objects
- References

Two classes of objects

Leptons: electrons, muons

- ★ Two categories:
 - → baseline (loose) leptons
 - → signal (tighter) leptons
- \star Isolation requirements

* Jets

- \star anti- k_T , R=0.4
- \star Quality: centrality, hardness
- ★ b-tagging (MV2C10)

5 Object identification

Leptons selected for analysis are categorised as baseline or signal leptons according to various quality and kinematic selection criteria. Baseline objects are used in the calculation of missing transverse momentum, to resolve ambiguities between the analysis objects in the event and in the fake/non-prompt (FNP) lepton background estimation described in Section 7. Leptons used for the final event selection must satisfy more stringent signal requirements.

Baseline electron candidates are reconstructed using clusters of energy deposits in the electromagnetic calorimeter that are matched to an ID track. They are required to satisfy a *Loose* likelihood-based identification requirement [39], and to have $p_T > 10$ GeV and $|\eta| < 2.47$. They are also required to be within $|z_0 \sin \theta| = 0.5$ mm of the primary vertex,³ where z_0 is the longitudinal impact parameter relative to the primary vertex. Signal electrons are required to satisfy a *Tight* identification requirement [39] and the track associated with the signal electron is required to have $|d_0|/\sigma(d_0) < 5$, where d_0 is the transverse impact parameter relative to the reconstructed primary vertex and $\sigma(d_0)$ is its error.

Baseline muon candidates are reconstructed in the pseudorapidity range $|\eta| < 2.7$ from MS tracks matching ID tracks. They are required to have $p_T > 10$ GeV, to be within $|z_0 \sin \theta| = 0.5$ mm of the primary vertex and to satisfy the *Medium* identification requirements defined in Ref. [40]. The *Medium* identification criterion defines requirements on the number of hits in the different ID and MS subsystems, and on the significance of the charge-to-momentum ratio q/p. Finally, the track associated with the signal muon must have $|d_0|/\sigma(d_0) < 3$.

Isolation criteria are applied to signal electrons and muons. The scalar sum of the $p_{\rm T}$ of tracks inside a variable-size cone around the lepton (excluding its own track), must be less than 15% of the lepton $p_{\rm T}$. The track isolation cone size for electrons (muons) $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ is given by the minimum of $\Delta R = 10 \text{ GeV}/p_{\rm T}$ and $\Delta R = 0.2 (0.3)$. In addition, for electrons (muons) the sum of the transverse energy of the calorimeter energy clusters in a cone of $\Delta R = 0.2$ around the lepton (excluding the energy from the lepton itself) must be less than 20% (30%) of the lepton $p_{\rm T}$. For electrons with $p_{\rm T} > 200 \text{ GeV}$ these isolation requirements are not applied, and instead an upper limit of max(0.015 × $p_{\rm T}$, 3.5 GeV) is placed on the transverse energy of the calorimeter energy clusters in a cone of $\Delta R = 0.2$ around the electron.

Jets are reconstructed from topological clusters of energy in the calorimeter [86] using the anti- k_t jet clustering algorithm [87] as implemented in the FastJet package [88], with a radius parameter R = 0.4. The

Object identification \rightarrow **collections**

Dedicated section in the experimental paper

- Quality of the objects
- Properties of the objects
- References

Two classes of objects

Leptons: electrons, muons

- ★ Two categories:
 - \rightarrow baseline (loose) leptons
 - → signal (tighter) leptons
- \star Isolation requirements

*Jets

- \star anti- k_T , R=0.4
- ★ Quality: centrality, hardness
- ★ *b*-tagging (MV2C10)

5 Object identification

Leptons selected for analysis are categorised as baseline or signal leptons according to various quality and kinematic selection criteria. Baseline objects are used in the calculation of missing transverse momentum, to resolve ambiguities between the analysis objects in the event and in the fake/non-prompt (FNP) lepton background estimation described in Section 7. Leptons used for the final event selection must satisfy more stringent signal requirements.

Baseline electron candidates are reconstructed using clusters of energy deposits in the electromagnetic calorimeter that are matched to an ID track. They are required to satisfy a *Loose* likelihood-based identification requirement [39], and to have $p_T > 10$ GeV and $|\eta| < 2.47$. They are also required to be within $|z_0 \sin \theta| = 0.5$ mm of the primary vertex,³ where z_0 is the longitudinal impact parameter relative to the primary vertex. Signal electrons are required to satisfy a *Tight* identification requirement [39] and the track associated with the signal electron is required to have $|d_0|/\sigma(d_0) < 5$, where d_0 is the transverse impact parameter relative to the reconstructed primary vertex and $\sigma(d_0)$ is its error.

Baseline muon candidates are reconstructed in the pseudorapidity range $|\eta| < 2.7$ from MS tracks matching ID tracks. They are required to have $p_T > 10$ GeV, to be within $|z_0 \sin \theta| = 0.5$ mm of the primary vertex and to satisfy the *Medium* identification requirements defined in Ref. [40]. The *Medium* identification criterion defines requirements on the number of hits in the different ID and MS subsystems, and on the significance of the charge-to-momentum ratio q/p. Finally, the track associated with the signal muon must have $|d_0|/\sigma(d_0) < 3$.

Isolation criteria are applied to signal electrons and muons. The scalar sum of the $p_{\rm T}$ of tracks inside a variable-size cone around the lepton (excluding its own track), must be less than 15% of the lepton $p_{\rm T}$. The track isolation cone size for electrons (muons) $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ is given by the minimum of $\Delta R = 10 \text{ GeV}/p_{\rm T}$ and $\Delta R = 0.2 (0.3)$. In addition, for electrons (muons) the sum of the transverse energy of the calorimeter energy clusters in a cone of $\Delta R = 0.2$ around the lepton (excluding the energy from the lepton itself) must be less than 20% (30%) of the lepton $p_{\rm T}$. For electrons with $p_{\rm T} > 200 \text{ GeV}$ these isolation requirements are not applied, and instead an upper limit of max(0.015 × $p_{\rm T}$, 3.5 GeV) is placed on the transverse energy of the calorimeter energy clusters in a cone of $\Delta R = 0.2$ around the electron.

Jets are reconstructed from topological clusters of energy in the calorimeter [86] using the anti- k_t jet clustering algorithm [87] as implemented in the FastJet package [88], with a radius parameter R = 0.4. The

Extra features

- Overlap removal
 - ★ jets-electrons
 - ★ jets-muons
 - \star electrons-muons

Missing energy → inclusively reconstructed from the visible sector

Signal region definitions

Dedicated section in the experimental paper

Preselection

★ Two opposite-charge leptons
★ Hard leptons ($p_T > 25$ GeV)
★ Heavy system ($m_{\parallel} > 100$ GeV)

✤b-veto

Missing energy requirements

★ MET > 100 GeV
 ★ MET significance > 10
 → approximated by MET/√H_T

6 Search strategy

Events are required to have exactly two oppositely charged signal leptons ℓ_1 and ℓ_2 , both with $p_T > 25$ GeV. To remove contributions from low-mass resonances and to ensure good modelling of the SM background in all relevant regions, the invariant mass of the two leptons must be $m_{\ell_1\ell_2} > 100$ GeV. Events are further required to have no reconstructed *b*-jets, to suppress contributions from processes with top quarks. Selected events must also satisfy $E_T^{\text{miss}} > 110$ GeV and E_T^{miss} significance > 10.

The stransverse mass m_{T2} [96, 97] is a kinematic variable used to bound the masses of a pair of particles that are assumed to have each decayed into one visible and one invisible particle. It is defined as

 $m_{\mathrm{T2}}(\mathbf{p}_{\mathrm{T},1},\mathbf{p}_{\mathrm{T},2},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}) = \min_{\mathbf{q}_{\mathrm{T},1}+\mathbf{q}_{\mathrm{T},2}=\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}} \left\{ \max[m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T},1},\mathbf{q}_{\mathrm{T},1}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T},2},\mathbf{q}_{\mathrm{T},2})] \right\},\$

where m_T indicates the transverse mass,⁵ $\mathbf{p}_{T,1}$ and $\mathbf{p}_{T,2}$ are the transverse-momentum vectors of the two leptons, and $\mathbf{q}_{T,1}$ and $\mathbf{q}_{T,2}$ are vectors with $\mathbf{p}_T^{\text{miss}} = \mathbf{q}_{T,1} + \mathbf{q}_{T,2}$. The minimisation is performed over all the possible decompositions of $\mathbf{p}_T^{\text{miss}}$. For $t\bar{t}$ or WW decays, assuming an ideal detector with perfect momentum resolution, $m_{\text{T2}}(\mathbf{p}_{T,\ell_1}, \mathbf{p}_{T,\ell_2}, \mathbf{p}_T^{\text{miss}})$ has a kinematic endpoint at the mass of the W boson [97]. Signal models with significant mass splittings between the $\tilde{\chi}_1^{\pm}$ and the $\tilde{\chi}_1^0$ feature m_{T2} distributions that extend beyond the kinematic endpoint expected from the dominant SM backgrounds. Therefore, events are required to have

Signal region definitions

Dedicated section in the experimental paper

Preselection

- ★ Two opposite-charge leptons
 ★ Hard leptons ($p_T > 25$ GeV)
 - ★ Heavy system $(m_{\parallel} > 100 \text{ GeV})$

♦ b-veto

Missing energy requirements

★ MET > 100 GeV
 ★ MET significance > 10
 → approximated by MET/√H_T

6 Search strategy

Events are required to have exactly two oppositely charged signal leptons ℓ_1 and ℓ_2 , both with $p_T > 25$ GeV. To remove contributions from low-mass resonances and to ensure good modelling of the SM background in all relevant regions, the invariant mass of the two leptons must be $m_{\ell_1\ell_2} > 100$ GeV. Events are further required to have no reconstructed *b*-jets, to suppress contributions from processes with top quarks. Selected events must also satisfy $E_T^{\text{miss}} > 110$ GeV and E_T^{miss} significance > 10.

The stransverse mass m_{T2} [96, 97] is a kinematic variable used to bound the masses of a pair of particles that are assumed to have each decayed into one visible and one invisible particle. It is defined as

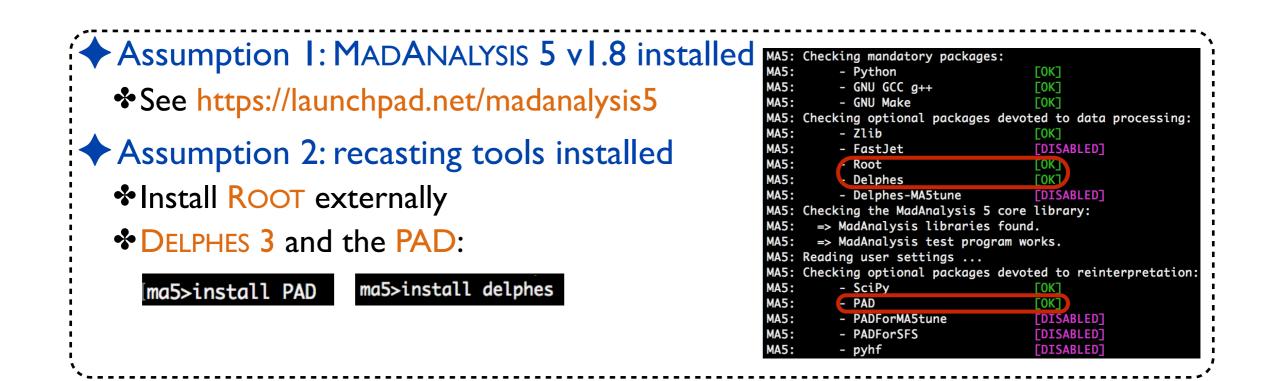
 $m_{\mathrm{T2}}(\mathbf{p}_{\mathrm{T},1},\mathbf{p}_{\mathrm{T},2},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}) = \min_{\mathbf{q}_{\mathrm{T},1}+\mathbf{q}_{\mathrm{T},2}=\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}} \left\{ \max[m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T},1},\mathbf{q}_{\mathrm{T},1}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T},2},\mathbf{q}_{\mathrm{T},2})] \right\},\$

where m_T indicates the transverse mass,⁵ $\mathbf{p}_{T,1}$ and $\mathbf{p}_{T,2}$ are the transverse-momentum vectors of the two leptons, and $\mathbf{q}_{T,1}$ and $\mathbf{q}_{T,2}$ are vectors with $\mathbf{p}_T^{\text{miss}} = \mathbf{q}_{T,1} + \mathbf{q}_{T,2}$. The minimisation is performed over all the possible decompositions of $\mathbf{p}_T^{\text{miss}}$. For $t\bar{t}$ or WW decays, assuming an ideal detector with perfect momentum resolution, $m_{\text{T2}}(\mathbf{p}_{T,\ell_1}, \mathbf{p}_{T,\ell_2}, \mathbf{p}_T^{\text{miss}})$ has a kinematic endpoint at the mass of the W boson [97]. Signal models with significant mass splittings between the $\tilde{\chi}_1^{\pm}$ and the $\tilde{\chi}_1^0$ feature m_{T2} distributions that extend beyond the kinematic endpoint expected from the dominant SM backgrounds. Therefore, events are required to have

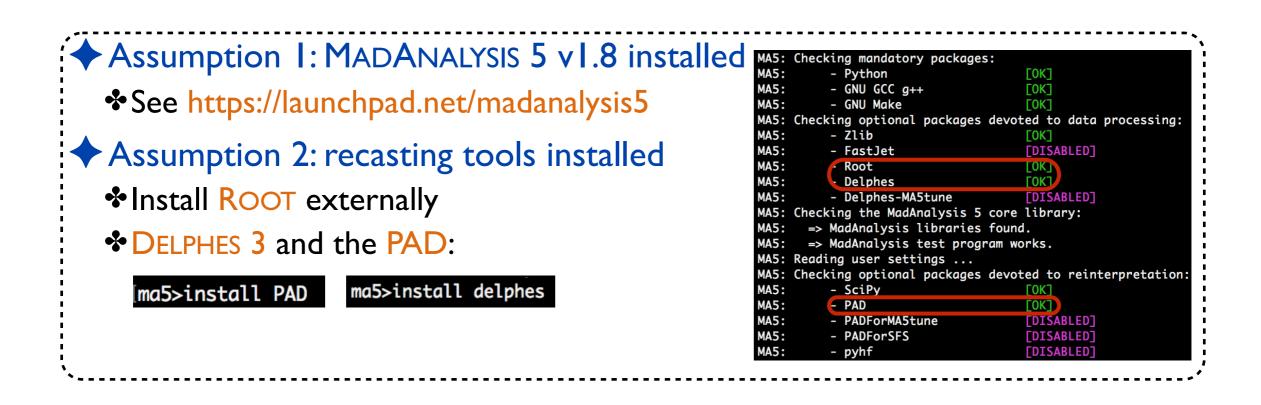
✦ Signal regions

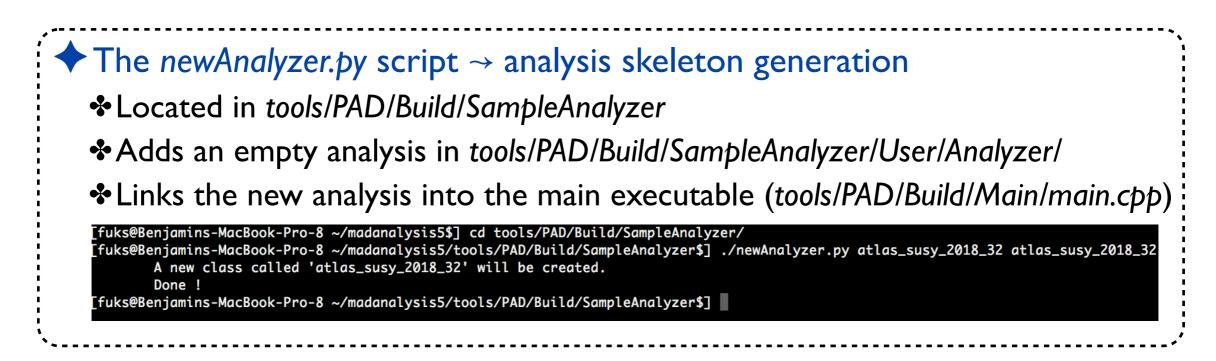
- Two classes of regions
 - **\star** DF: different lepton flavours (e μ)
 - **\star** SF: same lepton flavour (ee or $\mu\mu$)
 - → off-Z requirements (reducing SM backgrounds)
- *0 or 1 light jet
- ✤Binning in M_{T2}
 - *9 exclusive bins (tracking of specific endpoints)
 - \star 2 inclusive bins
 - $\star 2$ regions tracking lower M_{T2} endpoints

Signal region (SR)	SR-DF-0J	SR-DF-1J	SR-SF-0J	SR-SF-1	
nnon-b-tagged jets	= 0	= 1	= 0	= 1	
$m_{\ell_1\ell_2}$ [GeV]	>100 >121.2			21.2	
$E_{\rm T}^{\rm miss}$ [GeV]		>1	10		
$E_{\rm T}^{\rm miss}$ significance		>]	10		
nb-tagged jets		=	0		
Binned SRs					
		€[100	,105)		
	∈[105,110)				
	∈[110,120)				
$m_{\mathrm{T2}} [\mathrm{GeV}]$	∈[120,140)				
	∈[140,160)				
	∈[160,180)				
		∈[180	,220)		
		€[220	,260)		
		∈[26	0,∞)		
Inclusive SRs					
		∈[10	0,∞)		
m _{T2} [GeV]	∈[160,∞)				
	∈[100,120)				
		€[120	,160)		


Benjamin Fuks - 14.02.2020 - 13

Creating a blank analysis


Adding a new analysis to the local PAD


Assumption I: MADANALYSIS 5 v I.8 installed	- `,
See https://launchpad.net/madanalysis5	

Adding a new analysis to the local PAD

Adding a new analysis to the local PAD

Location of the analysis files

Modifications in	tools/PAD/Build/SampleAnalyzer/User/Analyzer	

[[fuks@Benjamins-MacBook-Pro-	-8 ~/madanalysis5/tools/PAD/E	Build/SampleAnalyzer\$] cd User/	Analyzer/		
[[fuks@Benjamins-MacBook-Pro-	-8 ~/madanalysis5/tools/PAD/E	Build/SampleAnalyzer/User/Analy	zer\$] ls		
analysisList.bak	atlas_exot_2015_03.o	atlas_susy_2016_07.cpp	cms_b2g_12_022.cpp	cms_exo_16_010.h	cms_sus_16_039.info
analysisList.h	atlas_exot_2016_25.cpp	atlas_susy_2016_07.h	cms_b2g_12_022.h	cms_exo_16_010.info	cms_sus_16_039.o
atlas_conf_2016_086.cpp	atlas_exot_2016_25.h	atlas_susy_2016_07.info	cms_b2g_12_022.info	cms_exo_16_010.o	<pre>cms_sus_16_052.cpp</pre>
atlas_conf_2016_086.h	atlas_exot_2016_25.info	atlas_susy_2016_07.o	cms_b2g_12_022.o	cms_exo_16_012.cpp	cms_sus_16_052.h
atlas_conf_2016_086.info	atlas_exot_2016_25.o	atlas_susy_2018_031.cpp	cms_b2g_14_004.cpp	cms_exo_16_012.h	<pre>cms_sus_16_052.info</pre>
atlas_conf_2016_086.o	atlas_exot_2016_27.cpp	atlas_susy_2018_031.h	cms_b2g_14_004.h	cms_exo_16_012.info	cms_sus_16_052.o
atlas_conf_2019_040.cpp	atlas_exot_2016_27.h	atlas_susy_2018_031.info	cms_b2g_14_004.info	cms_exo_16_012.o	<pre>cms_sus_17_001.cpp</pre>
atlas_conf_2019_040.h	atlas_exot_2016_27.info	atlas_susy_2018_031.o	cms_b2g_14_004.o	cms_exo_16_022.cpp	cms_sus_17_001.h
atlas_conf_2019_040.info	atlas_exot_2016_27.o	atlas_susy_2018_031_SRA.json	cms_exo_12_047.cpp	cms_exo_16_022.h	<pre>cms_sus_17_001.info</pre>
atlas_conf_2019_040.o	atlas_exot_2016_32.cpp	atlas_susy_2018_031_SRB.json	cms_exo_12_047.h	cms_exo_16_022.info	cms_sus_17_001.o
atlas_exot_2014_06.cpp	atlas_exot_2016_32.h	atlas_susy_2018_031_SRC.json	<pre>cms_exo_12_047.info</pre>	cms_exo_16_022.o	<pre>cms_top_17_009.cpp</pre>
atlas_exot_2014_06.h	atlas_exot_2016_32.info	atlas_susy_2018_32.cpp	cms_exo_12_047.o	cms_sus_16_033.cpp	cms_top_17_009.h
atlas_exot_2014_06.info	atlas_exot_2016_32.o	atlas_susy_2018_32.h	cms_exo_12_048.cpp	cms_sus_16_033.h	<pre>cms_top_17_009.info</pre>
atlas_exot_2014_06.o	atlas_susy_2015_06.cpp	cms_b2g_12_012.cpp	cms_exo_12_048.h	cms_sus_16_033.info	cms_top_17_009.o
<pre>atlas_exot_2015_03.cpp</pre>	atlas_susy_2015_06.h	cms_b2g_12_012.h	<pre>cms_exo_12_048.info</pre>	cms_sus_16_033.o	
atlas_exot_2015_03.h	atlas_susy_2015_06.info	cms_b2g_12_012.info	cms_exo_12_048.o	cms_sus_16_039.cpp	
<pre>atlas_exot_2015_03.info</pre>	atlas_susy_2015_06.o	cms_b2g_12_012.o	cms_exo_16_010.cpp	cms_sus_16_039.h	
[fuks@Benjamins-MacBook-Pro-	-8 ~/madanalysis5/tools/PAD/E	Build/SampleAnalyzer/User/Analy	zer\$]		

- The info file to be created later
- The source file to be implemented

Location of the analysis files

[fuks@Benjamins-MacBook-Pr	o-8 ~/madanalysis5/tools/PAD,	/Build/SampleAnalyzer\$] cd User/ /Build/SampleAnalyzer/User/Analy	zer\$] ls		
ınalysisList.bak ınalysisList.h	atlas_exot_2015_03.o atlas_exot_2016_25.cpp	atlas_susy_2016_07.cpp atlas_susy_2016_07.h	cms_b2g_12_022.cpp cms_b2g_12_022.h	cms_exo_16_010.h cms_exo_16_010.info	cms_sus_16_039.inf cms_sus_16_039.o
tlas_conf_2016_086.cpp	atlas_exot_2016_25.h	atlas_susy_2016_07.info	cms_b2g_12_022.info	cms_exo_16_010.o	cms_sus_16_052.cpp
las_conf_2016_086.h	atlas_exot_2016_25.info	atlas_susy_2016_07.o	cms_b2g_12_022.o	cms_exo_16_012.cpp	cms_sus_16_052.h
:las_conf_2016_086.info	atlas_exot_2016_25.o	atlas_susy_2018_031.cpp	cms_b2g_14_004.cpp	cms_exo_16_012.h	cms_sus_16_052.inf
:las_conf_2016_086.o :las_conf_2019_040.cpp	atlas_exot_2016_27.cpp atlas_exot_2016_27.h	atlas_susy_2018_031.h atlas_susy_2018_031.info	cms_b2g_14_004.h cms_b2g_14_004.info	<pre>cms_exo_16_012.info cms_exo_16_012.o</pre>	<pre>cms_sus_16_052.o cms_sus_17_001.cpp</pre>
:las_conf_2019_040.h	atlas_exot_2016_27.info	atlas_susy_2018_031.0	cms_b2g_14_004.0	cms_exo_16_022.cpp	cms_sus_17_001.h
las_conf_2019_040.info	atlas_exot_2016_27.0	atlas_susy_2018_031_SRA.json		cms_exo_16_022.h	cms_sus_17_001.inf
las_conf_2019_040.0	atlas_exot_2016_32.cpp	atlas_susy_2018_031_SRB.json		cms_exo_16_022.info	cms_sus_17_001.o
las_exot_2014_06.cpp	atlas_exot_2016_32.h	atlas_susy_2018_031_SRC.json		cms_exo_16_022.o	cms_top_17_009.cpp
las_exot_2014_06.h	atlas_exot_2016_32.info	atlas_susy_2018_32.cpp	cms_exo_12_047.o	cms_sus_16_033.cpp	cms_top_17_009.h
las_exot_2014_06.info	atlas_exot_2016_32.o	atlas_susy_2018_32.h	cms_exo_12_048.cpp	cms_sus_16_033.h	cms_top_17_009.inf
las_exot_2014_06.o	atlas_susy_2015_06.cpp	cms_b2g_12_012.cpp	cms_exo_12_048.h	cms_sus_16_033.info	cms_top_17_009.o
:las_exot_2015_03.cpp :las_exot_2015_03.h	atlas_susy_2015_06.h	cms_b2g_12_012.h	cms_exo_12_048.info	cms_sus_16_033.0	
las_exot_2015_03.info	atlas_susy_2015_06.info atlas_susy_2015_06.o	cms_b2g_12_012.info cms_b2g_12_012.o	<pre>cms_exo_12_048.o cms_exo_16_010.cpp</pre>	cms_sus_16_039.cpp cms_sus_16_039.h	
		/Build/SampleAnalyzer/User/Analy			
-	-				
The info	file to be crea	ited later			
The sour	ce file to be i	mplemented			
Re-compili	ing the PAD	with the new a	nalysis		
uks@Benjamins-MacBook-Pr		D/Build/SampleAnalyzer/User/An	alyzer\$] cd///	Configuring 1	the system
				\rightarrow source se	otut ch
Your environment is pr	operly configured for MA5				.up.sn
-					•

The structure of the analysis file

Editing the atlas_susy_2018-32.cpp file Removal of all comments Three main methods Initialize function called one time at the beginning of the analysis bol atlas_susy_2018_32:Initialize(const MAS::Configuration& cfg, const std::map<std::string.std::string.st parameters) function called one time at the end of the analysis widd atlas_susy_2018_32:Finalize(const SompleFormat& summary, const std::vector<SompleFormat>& files) function called each time one event is read bol atlas_susy_2018_32:Execute(SompleFormat& somple, const EventFormat& event)

The structure of the analysis file

Removal of all comments	8-32.cpp file #include "SampleAnalyzer/User/Analyzer/atlas_susy_2018_32.h" using namespace MA5; using namespace std;
Three main methods Initialize: declarations	<pre>// // Initialize // function called one time at the beginning of the analysis //</pre>
 → signal regions → cuts → histograms 	<pre>bool atlas_susy_2018_32::Initialize(const MA5::Configuration& cfg, const std::map<std::string,std::string>& parameters) { return true; } // // Finalize</std::string,std::string></pre>
	<pre>// function called one time at the end of the analysis //</pre>
	<pre>// // Execute // function called each time one event is read //</pre>
	<pre>bool atlas_susy_2018_32::Execute(SampleFormat& sample, const EventFormat& event) { return true; }</pre>

The structure of the analysis file

•Removal of all comments	<pre>#include "SampleAnalyzer/User/Analyzer/atlas_susy_2018_32.h" using namespace MA5; using namespace std;</pre>
Three main methods <i>★ Initialize</i> : declarations	<pre>// // Initialize // function called one time at the beginning of the analysis</pre>
 → signal regions → cuts 	<pre>bool atlas_susy_2018_32::Initialize(const MA5::Configuration& cfg, const std::map<std::string,std::string>& paramet { return true; } </std::string,std::string></pre>
→ histograms	<pre>// Finalize // Function called one time at the end of the analysis //</pre>
\star Execute: the analysis itself	<pre>void atlas_susy_2018_32::Finalize(const SampleFormat& summary, const std::vector<sampleformat>& files) { }</sampleformat></pre>
	<pre>// // Execute // function called each time one event is read</pre>
	<pre>bool atlas_susy_2018_32::Execute(SampleFormat& sample, const EventFormat& event) { return true;</pre>

The structure of the analysis file

Editing the atlas_susy_2018-32.cpp file Removal of all comments SampleAnalyzer/User/Analyzer/atlas_susy_2018_32.h' namespace MA5; namespace std; Three main methods \star Initialize: declarations pool atlas_susy_2018_32::Initialize(const MA5::Configuration& cfg, const std::map<std::string,std::string>& parameters) \rightarrow signal regions return true; \rightarrow cuts → histograms void atlas_susy_2018_32::Finalize(const SampleFormat& summary, const std::vector<SampleFormat>& files) \star *Execute*: the analysis itself \star Finalize: if needed bool atlas_susy_2018_32::Execute(SampleFormat& sample, const EventFormat& event) return true;

Declarations:

Cuts, histograms and signal regions

The Initialize method

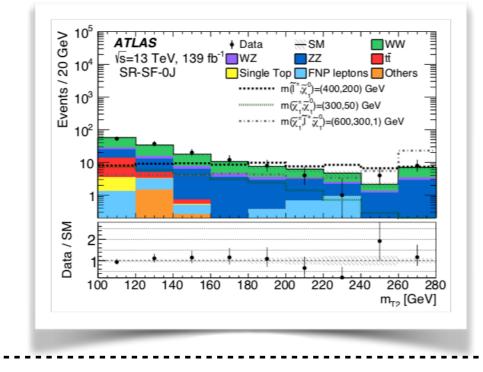
	``````````````````````````````````````
Implementation of the <i>Initialize</i> method	i

# The Initialize method

## Implementation of the Initialize method

- Adding an electronic signature
  - ★ Not mandatory
  - ★ Useful: contact info, papers, etc.

/ Informat	ion on the analysis, authors,	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	><>" << endmsg
NFO << "	Analysis: ATLAS-SUSY-2018-32, arXiv:1908.08215	↔" << endmsg
NFO << "	(Ewkinos/sleptons: dilepton)	<>" << endmsg
NFO << "	<> Recaster: B. Fuks	∽" << endmsg
NFO << "	<> Contact: fuks@lpthe.jussieu.fr	↔" << endmsg;
NFO << "	<> Based on MadAnalysis 5 v1.8	<>" << endmsg
NFO << "	<> DOI: XX.YYYY/ZZZ	∽" << endmsg
NFO << "		><>" << endmsg


# The Initialize method

## Implementation of the Initialize method

- Adding an electronic signature
  - $\star$  Not mandatory
  - ★ Useful: contact info, papers, etc.

ethod				
// Informati	ion on the analysis, authors,			
[NFO << "	<b>~~~~~~~~~~~~~~~~</b>	><>"	<< endmsg	;
[NFO << "	<>> Analysis: ATLAS-SUSY-2018-32, arXiv:1908.08215	<>"	<< endmsg	;
[NFO << "	(Ewkinos/sleptons: dilepton)	<>"	<< endmsg	;
[NFO << "	<> Recaster: B. Fuks	<>"	<< endmsg	;
[NFO << "	<> Contact: fuks@lpthe.jussieu.fr	<>"	<< endmsg	;
[NFO << "	<>> Based on MadAnalysis 5 v1.8	<>"	<< endmsg	;
[NFO << "	◇ DOI: XX.YYYY/ZZZ	<>"	<< endmsg	;
[NFO << "	<u> </u>	<>>"	<< endmsg	;

- Declaration of the 52 analysis signal regions
- Declaration of the O(20) analysis cuts
- Declaration of 4 histograms
  - $\star$  M_{T2} distributions (fig. 6 of the ATLAS paper)
  - $\star$  3 signal curves to reproduce



Signal region (SR)	SR-DF-0J	SR-DF-1J	SR-SF-0J	SR-SF-1	
nnon-b-tagged jets	= 0	= 1	= 0	= 1	
$m_{\ell_1\ell_2}$ [GeV]	>1	.00	>12	21.2	
$E_{\rm T}^{\rm miss}$ [GeV]		>110			
$E_{\rm T}^{\rm miss}$ significance	>10				
nb-tagged jets		=	0		
Binned SRs					
		∈[100	,105)		
		∈[105	,110)		
m _{T2} [GeV]	∈[110,120)				
	∈[120,140)				
	∈[140,160)				
		€[160	,180)		
		∈[180	,220)		
		€[220	,260)		
	∈[260,∞)				
Inclusive SRs					
∈[100,∞)					
$m_{T2}$ [GeV]	∈[160,∞)				
	∈[100,120)				
		€[120	,160)		

# **Declarations of all signal regions**

1			1.1		•
	Regions	cuts and	histogram	declarations via the Manager	1
· `		cuts and	mscogram		
· · · ·					

# **Declarations of all signal regions**

## Regions, cuts and histogram declarations via the Manager

## Signal regions: AddRegionSelection

### To be done 52 times

110 >10 = 0 00,105) 05,110) (0,120)	= 1 21.2				
110 >10 = 0 00,105) 05,110) (0,120)	21.2				
>10 = 0 00,105) 05,110) (0,120)					
= 0 00,105) 05,110) 10,120)					
00,105) 05,110) 10,120)					
05,110) (0,120)					
05,110) (0,120)					
0,120)					
. ,					
20 140)					
∈[120,140)					
∈[140,160)					
50,180)					
∈[180,220) ∈[220,260) ∈[260,∞)					
				∈[100,∞)	
∈[160,∞)					
∈[100,120)					

#### // Declaration of the signal regions

Manager()->AddRegionSelection("SR-DF-0J-MT2_100_105"); Manager()->AddRegionSelection("SR-DF-0J-MT2_105_110"); Manager()->AddRegionSelection("SR-DF-0J-MT2_110_120"); Manager()->AddRegionSelection("SR-DF-0J-MT2_120_140"); Manager()->AddRegionSelection("SR-DF-0J-MT2_140_160"); Manager()->AddRegionSelection("SR-DF-0J-MT2_160_180"); Manager()->AddRegionSelection("SR-DF-0J-MT2_180_220"); Manager()->AddRegionSelection("SR-DF-0J-MT2_220_260"); Manager()->AddRegionSelection("SR-DF-0J-MT2_260_inf' Manager()->AddRegionSelection("SR-DF-0J-MT2_100_inf"); Manager()->AddRegionSelection("SR-DF-0J-MT2_160_inf" Manager()->AddRegionSelection("SR-DF-0J-MT2_100_120"); Manager()->AddRegionSelection("SR-DF-0J-MT2_120_160"); Manager()->AddRegionSelection("SR-DF-1J-MT2_100_105"); Manager()->AddRegionSelection("SR-DF-1J-MT2_105_110"); Manager()->AddRegionSelection("SR-DF-1J-MT2_110_120"); Manager()->AddRegionSelection("SR-DF-1J-MT2_120_140"); Manager()->AddRegionSelection("SR-DF-1J-MT2_140_160"); Manager()->AddRegionSelection("SR-DF-1J-MT2_160_180"); Manager()->AddRegionSelection("SR-DF-1J-MT2_180_220"); Manager()->AddRegionSelection("SR-DF-1J-MT2_220_260"); Manager()->AddRegionSelection("SR-DF-1J-MT2_260_inf"); Manager()->AddRegionSelection("SR-DF-1J-MT2_100_inf");

Manager()->AddRegionSelection("SR-DF-1J-MT2_160_inf"); Manager()->AddRegionSelection("SR-DF-1J-MT2_100_120"); Manager()->AddRegionSelection("SR-DF-1J-MT2_120_160");

# **Declarations of all cuts**

Regions, cuts and histogram declarations via the Manager
----------------------------------------------------------

# **Declarations of all cuts**

## Regions, cuts and histogram declarations via the Manager

## Cuts: AddCut

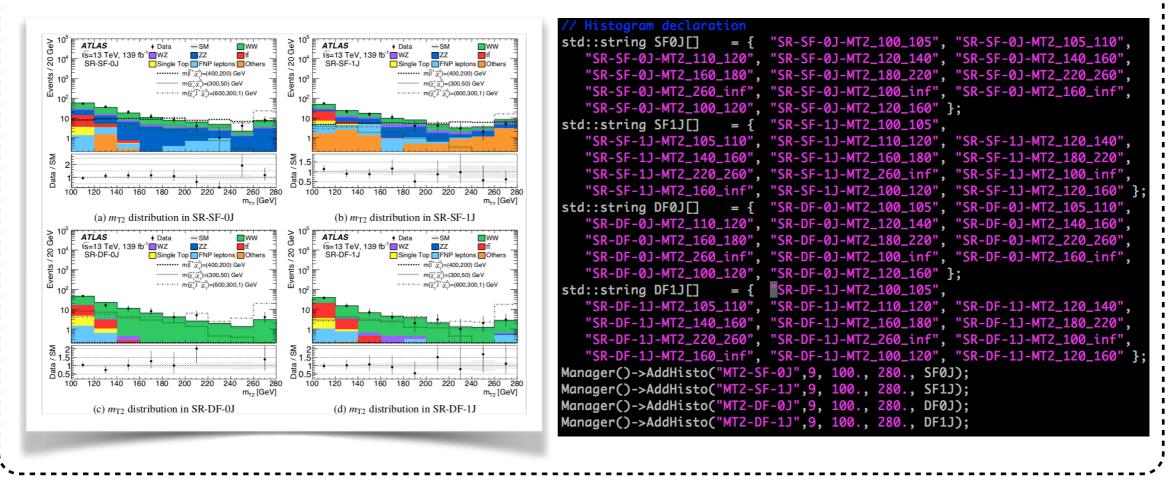
- One mandatory argument
  - ★ User-defined name (user-friendliness!)
- One optional argument
  - $\star$  Linking cuts to regions
- Selection and preselection cuts similar
  - $\star$  Preselection cuts linked to all regions
  - $\star$  Selection cuts linked to some regions

<pre>// Declaration of the preselection cuts</pre>
<pre>Manager()-&gt;AddCut("OS dilepton");</pre>
<pre>Manager()-&gt;AddCut("Mll &gt; 100 GeV");</pre>
<pre>Manager()-&gt;AddCut("MET &gt; 110 GeV");</pre>
<pre>Manager()-&gt;AddCut("MET sign. &gt; 10");</pre>
<pre>Manager()-&gt;AddCut("b veto");</pre>

Signal region (SR)	SR-DF-0J	SR-DF-1J	SR-SF-0J	SR-SF-1J		
nnon-b-tagged jets	= 0	= 1	= 0	= 1		
$m_{\ell_1\ell_2}$ [GeV]	>1	00	>12	21.2		
$E_{\rm T}^{\rm miss}$ [GeV]		>110				
$E_{\rm T}^{\rm miss}$ significance	>10					
nb-tagged jets		=	0			
Binned SRs						
	€[100,105)					
		€[105	,110)			
$m_{\rm T2}$ [GeV]	∈[110,120)					
		€[120	,140)			
	∈[140,160)					
		€[160				
	€[180,220) €[220,260)					
		€[26	0,∞)			
Inclusive SRs						
		∈[10				
$m_{\mathrm{T2}}  [\mathrm{GeV}]$	∈[160,∞)					
		∈[100				
		€[120	,160)			

// Njet cuts		
<pre>std::string ZeroJet[] = {</pre>	"SR-DF-0J-MT2_100_105",	"SR-DF-0J-MT2_105_110",
"SR-DF-0J-MT2_110_120",	"SR-DF-0J-MT2_120_140",	"SR-DF-0J-MT2_140_160",
"SR-DF-0J-MT2_160_180",	"SR-DF-0J-MT2_180_220",	"SR-DF-0J-MT2_220_260",
"SR-DF-0J-MT2_260_inf",	"SR-DF-0J-MT2_100_inf",	"SR-DF-0J-MT2_160_inf",
"SR-DF-0J-MT2_100_120",	"SR-DF-0J-MT2_120_160",	"SR-SF-0J-MT2_100_105",
"SR-SF-0J-MT2_105_110",	"SR-SF-0J-MT2_110_120",	"SR-SF-0J-MT2_120_140",
"SR-SF-0J-MT2_140_160",	"SR-SF-0J-MT2_160_180",	"SR-SF-0J-MT2_180_220",
"SR-SF-0J-MT2_220_260",	"SR-SF-0J-MT2_260_inf",	"SR-SF-0J-MT2_100_inf",
"SR-SF-0J-MT2_160_inf",	"SR-SF-0J-MT2_100_120",	"SR-SF-0J-MT2_120_160" ]
<pre>std::string OneJet[] = {</pre>	"SR-DF-1J-MT2_100_105",	"SR-DF-1J-MT2_105_110",
"SR-DF-1J-MT2_110_120",	"SR-DF-1J-MT2_120_140",	"SR-DF-1J-MT2_140_160",
"SR-DF-1J-MT2_160_180",	"SR-DF-1J-MT2_180_220",	"SR-DF-1J-MT2_220_260",
"SR-DF-1J-MT2_260_inf",	"SR-DF-1J-MT2_100_inf",	"SR-DF-1J-MT2_160_inf",
"SR-DF-1J-MT2_100_120",	"SR-DF-1J-MT2_120_160",	"SR-SF-1J-MT2_100_105",
"SR-SF-1J-MT2_105_110",	"SR-SF-1J-MT2_110_120",	"SR-SF-1J-MT2_120_140",
"SR-SF-1J-MT2_140_160",	"SR-SF-1J-MT2_160_180",	"SR-SF-1J-MT2_180_220",
"SR-SF-1J-MT2_220_260",	"SR-SF-1J-MT2_260_inf",	"SR-SF-1J-MT2_100_inf",
"SR-SF-1J-MT2_160_inf",	"SR-SF-1J-MT2_100_120",	"SR-SF-1J-MT2_120_160" ]
Manager()->AddCut("Nj=0",	ZeroJet);	
	0	

# **Declarations of histograms**


1				declarations vi			, ,
	<b>Regions</b>	cuts and	nistogram	declarations vi	la the /	vianager	1
1.	•		0			0	

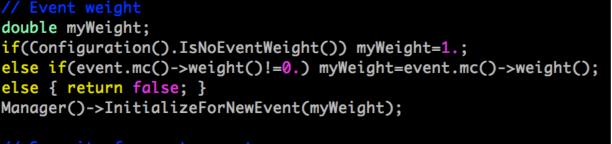
# **Declarations of histograms**

# Regions, cuts and histogram declarations via the Manager

## Histograms: AddHisto

- Four mandatory argument
  - ★ User-defined name (user-friendliness!)
  - $\star$  Number of bins, minimum, maximum
- One optional argument (as for cuts)
  - ★ Linking histograms to regions

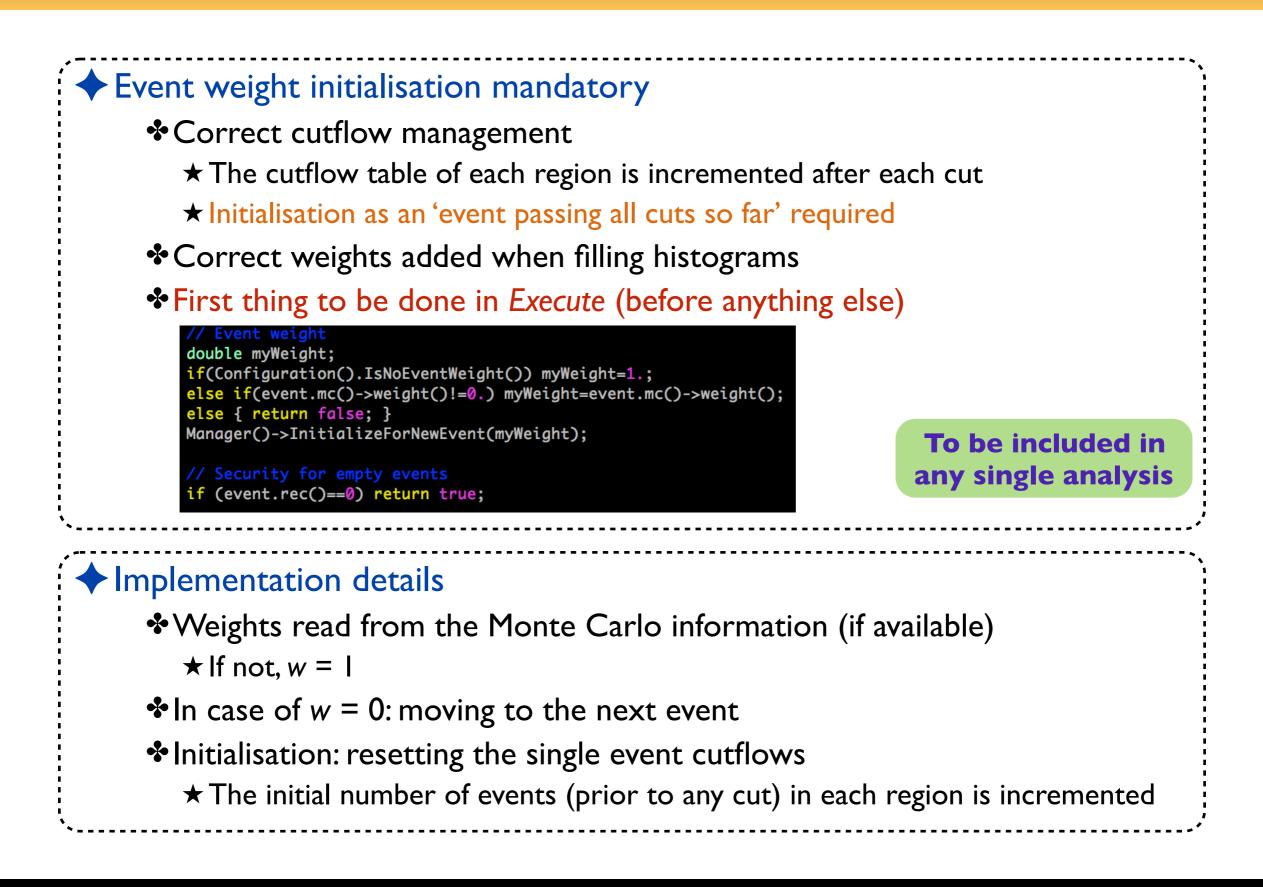



## **The Execute method:**

objects

# Weight management

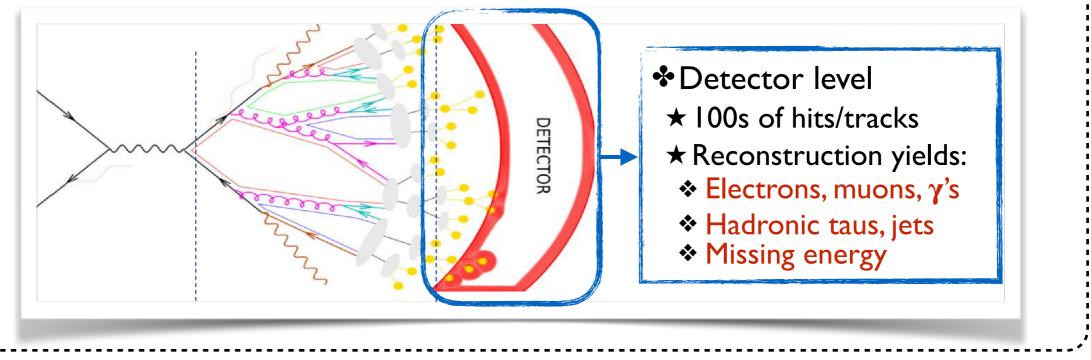
## Event weight initialisation mandatory


- Correct cutflow management
  - $\star$  The cutflow table of each region is incremented after each cut
  - ★ Initialisation as an 'event passing all cuts so far' required
- Correct weights added when filling histograms
- First thing to be done in *Execute* (before anything else)



// Security for empty events
if (event.rec()==0) return true;

To be included in any single analysis


# Weight management



# **Objects: generalities**

## Object definitions from event.rec()

Separate collection for each class of reconstructed objects
 ★ Electrons, muons, jets, photons, taus, etc.
 ★ All objects of a given class are included

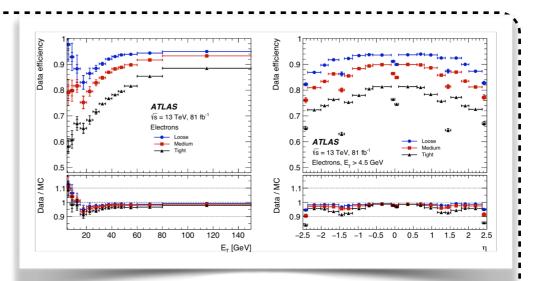


# **Objects: generalities**

## Object definitions from event.rec() Separate collection for each class of reconstructed objects ★ Electrons, muons, jets, photons, taus, etc. $\star$ All objects of a given class are included Detector level $\star$ 100s of hits/tracks DETECTOR $\star$ Reconstruction yields: $\star$ Electrons, muons, $\gamma$ 's ✤ Hadronic taus, jets Missing energy

 $\blacklozenge$  Extra requirements to be implemented  $\rightarrow$  analysis-relevant objects

*рт, η, ...


MADANALYSIS 5 treatment for electrons/jets: overlap removal

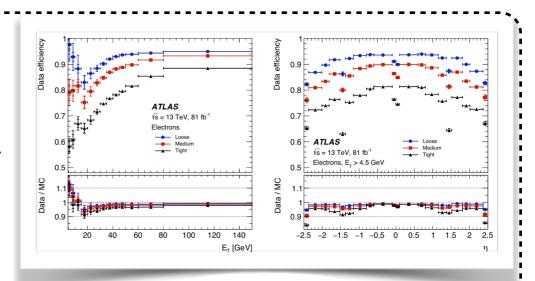
# **Objects: the electron example**

## Two classes of electrons

Baseline (loose) electrons: not needed

- Signal (tighter) leptons:
  - ★ Hard and central:  $p_T > 10$  GeV,  $|\eta| < 2.47$
  - ★ Displacement ignored
  - **★** Tight reconstruction (DELPHES card)




Baseline electron candidates are reconstructed using clusters of energy deposits in the electromagnetic calorimeter that are matched to an ID track. They are required to satisfy a *Loose* likelihood-based identification requirement [39], and to have  $p_T > 10$  GeV and  $|\eta| < 2.47$ . They are also required to be within  $|z_0 \sin \theta| = 0.5$  mm of the primary vertex,³ where  $z_0$  is the longitudinal impact parameter relative to the primary vertex. Signal electrons are required to satisfy a *Tight* identification requirement [39] and the track associated with the signal electron is required to have  $|d_0|/\sigma(d_0) < 5$ , where  $d_0$  is the transverse impact parameter relative to the reconstructed primary vertex and  $\sigma(d_0)$  is its error.

# **Objects: the electron example**

## Two classes of electrons

Baseline (loose) electrons: not needed

- Signal (tighter) leptons:
  - ★ Hard and central:  $p_T > 10$  GeV,  $|\eta| < 2.47$
  - ★ Displacement ignored
  - **★** Tight reconstruction (DELPHES card)



Baseline electron candidates are reconstructed using clusters of energy deposits in the electromagnetic calorimeter that are matched to an ID track. They are required to satisfy a *Loose* likelihood-based identification requirement [39], and to have  $p_T > 10$  GeV and  $|\eta| < 2.47$ . They are also required to be within  $|z_0 \sin \theta| = 0.5$  mm of the primary vertex,³ where  $z_0$  is the longitudinal impact parameter relative to the primary vertex. Signal electrons are required to satisfy a *Tight* identification requirement [39] and the track associated with the signal electron is required to have  $|d_0|/\sigma(d_0) < 5$ , where  $d_0$  is the transverse impact parameter relative to the reconstructed primary vertex and  $\sigma(d_0)$  is its error.

## Implementation:

```
std::vector<const RecLeptonFormat*> SignalElectrons;
for(unsigned int i=0; i<event.rec()->electrons().size(); i++)
{
 const RecLeptonFormat *Lep = &(event.rec()->electrons()[i]);
 // Kinematics
 double eta = Lep->abseta();
 double pt = Lep->pt();
 // Signal leptons
 if(eta<2.47 && pt>10.) { SignalElectrons.push_back(Lep);}
```

## Signal electrons are isolated

Isolation criteria are applied to signal electrons and muons. The scalar sum of the  $p_{\rm T}$  of tracks inside a variable-size cone around the lepton (excluding its own track), must be less than 15% of the lepton  $p_{\rm T}$ . The track isolation cone size for electrons (muons)  $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$  is given by the minimum of  $\Delta R = 10 \text{ GeV}/p_{\rm T}$  and  $\Delta R = 0.2 (0.3)$ . In addition, for electrons (muons) the sum of the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the lepton (excluding the energy from the lepton itself) must be less than 20% (30%) of the lepton  $p_{\rm T}$ . For electrons with  $p_{\rm T} > 200 \text{ GeV}$  these isolation requirements are not applied, and instead an upper limit of max(0.015 ×  $p_{\rm T}$ , 3.5 GeV) is placed on the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the electron.

## Signal electrons are isolated

Isolation criteria are applied to signal electrons and muons. The scalar sum of the  $p_{\rm T}$  of tracks inside a variable-size cone around the lepton (excluding its own track), must be less than 15% of the lepton  $p_{\rm T}$ . The track isolation cone size for electrons (muons)  $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$  is given by the minimum of  $\Delta R = 10 \text{ GeV}/p_{\rm T}$  and  $\Delta R = 0.2 (0.3)$ . In addition, for electrons (muons) the sum of the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the lepton (excluding the energy from the lepton itself) must be less than 20% (30%) of the lepton  $p_{\rm T}$ . For electrons with  $p_{\rm T} > 200 \text{ GeV}$  these isolation requirements are not applied, and instead an upper limit of max(0.015 ×  $p_{\rm T}$ , 3.5 GeV) is placed on the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the electron.

## Use of built-in dedicated methods

```
// Electrons
```

```
std::vector<const RecLeptonFormat*> SignalElectrons;
for(unsigned int i=0; i<event.rec()->electrons().size(); i++)
```

const RecLeptonFormat *Lep = &(event.rec()->electrons()[i]);

### // Kinematics

double eta = Lep->abseta(); double pt = Lep->pt();

### // Isolation

```
double iso_dR = std::min(10./pt,0.2);
double iso_tracks = PHYSICS->Isol->eflow->relIsolation(Lep,
 event.rec(), iso_dR, 0., IsolationEFlow::TRACK_COMPONENT);
double iso_all = PHYSICS->Isol->eflow->relIsolation(Lep,
 event.rec(), 0.2, 0., IsolationEFlow::ALL_COMPONENTS);
bool iso = (iso_tracks<0.15 && iso_all<0.20);
if(pt>200.) { iso = (iso_all<std::max(0.015, 3.5/pt)); }</pre>
```

### // Signal leptons

if(eta<2.47 && pt>10. && iso) { SignalElectrons.push_back(Lep);}

## Signal electrons are isolated

Isolation criteria are applied to signal electrons and muons. The scalar sum of the  $p_{\rm T}$  of tracks inside a variable-size cone around the lepton (excluding its own track), must be less than 15% of the lepton  $p_{\rm T}$ . The track isolation cone size for electrons (muons)  $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$  is given by the minimum of  $\Delta R = 10 \text{ GeV}/p_{\rm T}$  and  $\Delta R = 0.2 (0.3)$ . In addition, for electrons (muons) the sum of the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the lepton (excluding the energy from the lepton itself) must be less than 20% (30%) of the lepton  $p_{\rm T}$ . For electrons with  $p_{\rm T} > 200 \text{ GeV}$  these isolation requirements are not applied, and instead an upper limit of max(0.015 ×  $p_{\rm T}$ , 3.5 GeV) is placed on the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the electron.

## Use of built-in dedicated methods

```
// Electrons
```

```
std::vector<const RecLeptonFormat*> SignalElectrons;
for(unsigned int i=0; i<event.rec()->electrons().size(); i++)
```

const RecLeptonFormat *Lep = &(event.rec()->electrons()[i]);

### // Kinematics

double eta = Lep->abseta(); double pt = Lep->pt();

#### // Isolation

```
double iso_dR = std::min(10./pt,0.2);
double iso_tracks = PHTSICS->ISOI->etIow->relIsolation(Lep,
 event.rec(), iso_dR, 0., IsolationEFlow::TRACK_COMPONENT);
double iso_all = PHYSICS->Isol->eflow->relIsolation(Lep,
 event.rec(), 0.2, 0., IsolationEFlow::ALL_COMPONENTS);
bool iso = (iso_tracks<0.15 && iso_all<0.20);
if(pt>200.) { iso = (iso_all<std::max(0.015, 3.5/pt)); }</pre>
```

### // Signal leptons

if(eta<2.47 && pt>10. && iso) { SignalElectrons.push_back(Lep);}

Tracking isolation
 Variable cone size

## Signal electrons are isolated

Isolation criteria are applied to signal electrons and muons. The scalar sum of the  $p_T$  of tracks inside a variable-size cone around the lepton (excluding its own track), must be less than 15% of the lepton  $p_T$ . The track isolation cone size for electrons (muons)  $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$  is given by the minimum of  $\Delta R = 10 \text{ GeV}/p_T$  and  $\Delta R = 0.2 (0.3)$ . In addition, for electrons (muons) the sum of the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the lepton (excluding the energy from the lepton itself) must be less than 20% (30%) of the lepton  $p_T$ . For electrons with  $p_T > 200 \text{ GeV}$  these isolation requirements are not applied, and instead an upper limit of max(0.015 ×  $p_T$ , 3.5 GeV) is placed on the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the electron.

## Use of built-in dedicated methods

```
// Electrons
```

```
std::vector<const RecLeptonFormat*> SignalElectrons;
for(unsigned int i=0; i<event.rec()->electrons().size(); i++)
```

const RecLeptonFormat *Lep = &(event.rec()->electrons()[i]);

### // Kinematics

```
double eta = Lep->abseta();
double pt = Lep->pt();
```

### // Isolation

```
double iso_dR = std::min(10./pt,0.2);
double iso_tracks = PHYSICS->Isol->eflow->relIsolation(Lep,
 event.rec(), iso_dR, 0., IsolationEFlow::TRACK_COMPONENT);
double iso_all = PHYSICS->Isol->eflow->relIsolation(Lep,
 event.rec(), 0.2, 0., IsolationEFlow::ALL_COMPONENTS);
bool iso = (iso_tracks<0.15 & iso_all<0.20);
if(pt>200.) { iso = (iso_all<std::max(0.015, 3.5/pt)); }</pre>
```

## // Signal leptons if(eta<2.47 && pt>10. && iso) { SignalElectrons.push_back(Lep);}

Tracking isolation

- $\star$  Variable cone size
- $\star$  Low activity around the electron

## Signal electrons are isolated

Isolation criteria are applied to signal electrons and muons. The scalar sum of the  $p_{\rm T}$  of tracks inside a variable-size cone around the lepton (excluding its own track), must be less than 15% of the lepton  $p_{\rm T}$ . The track isolation cone size for electrons (muons)  $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$  is given by the minimum of  $\Delta R = 10 \text{ GeV}/p_{\rm T}$  and  $\Delta R = 0.2 (0.3)$ . In addition, for electrons (muons) the sum of the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the lepton (excluding the energy from the lepton itself) must be less than 20% (30%) of the lepton  $p_{\rm T}$ . For electrons with  $p_{\rm T} > 200 \text{ GeV}$  these isolation requirements are not applied, and instead an upper limit of max(0.015 ×  $p_{\rm T}$ , 3.5 GeV) is placed on the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the electron.

## Use of built-in dedicated methods

```
// Electrons
```

```
std::vector<const RecLeptonFormat*> SignalElectrons;
for(unsigned int i=0; i<event.rec()->electrons().size(); i++)
```

const RecLeptonFormat *Lep = &(event.rec()->electrons()[i]);

### // Kinematics

double eta = Lep->abseta(); double pt = Lep->pt();

### // Isolation

```
double iso_dR = std::min(10./pt,0.2);
double iso_tracks = PHYSICS->Isol->eflow->relIsolation(Lep,
 event.rec(), iso_dR, 0., IsolationEFlow::TRACK_COMPONENT);
double iso_all = PHYSICS->Isol->eflow->relIsolation(Lep,
 event.rec(), 0.2, 0., IsolationEFlow::ALL_COMPONENTS);
bool iso = (iso_tracks<0.15 && iso_all<0.20)}
if(pt>200.) { iso = (iso_all<sta::max(0.015, 3.5/pt)); }</pre>
```

## // Signal leptons if(eta<2.47 && pt>10. && iso) { SignalElectrons.push_back(Lep);}

### Tracking isolation

- $\star$  Variable cone size
- $\star$  Low activity around the electron

Calorimetric isolation

### Benjamin Fuks - 14.02.2020 - 27

## Signal electrons are isolated

Isolation criteria are applied to signal electrons and muons. The scalar sum of the  $p_{\rm T}$  of tracks inside a variable-size cone around the lepton (excluding its own track), must be less than 15% of the lepton  $p_{\rm T}$ . The track isolation cone size for electrons (muons)  $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$  is given by the minimum of  $\Delta R = 10 \text{ GeV}/p_{\rm T}$  and  $\Delta R = 0.2 (0.3)$ . In addition, for electrons (muons) the sum of the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the lepton (excluding the energy from the lepton itself) must be less than 20% (30%) of the lepton  $p_{\rm T}$ . For electrons with  $p_{\rm T} > 200 \text{ GeV}$  these isolation requirements are not applied, and instead an upper limit of max(0.015 ×  $p_{\rm T}$ , 3.5 GeV) is placed on the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the electron.

## Use of built-in dedicated methods

```
// Electrons
```

```
std::vector<const RecLeptonFormat*> SignalElectrons;
for(unsigned int i=0; i<event.rec()->electrons().size(); i++)
```

const RecLeptonFormat *Lep = &(event.rec()->electrons()[i]);

### // Kinematics

double eta = Lep->abseta(); double pt = Lep->pt();

### // Isolation

```
double iso_dR = std::min(10./pt,0.2);
double iso_tracks = PHYSICS->Isol->eflow->relIsolation(Lep,
 event.rec(), iso_dR, 0., IsolationEFlow::TRACK_COMPONENT);
double iso_all = PHYSICS->Isol->eflow->relIsolation(Lep,
 event.rec(), 0.2, 0., IsolationEFlow::ALL_COMPONENTS);
bool iso = (iso_tracks<0.15 && iso_all<0.20);
if(pt>200.) { iso = (iso_all<std::max(0.015, 3.5/pt)); }</pre>
```

## // Signal leptons if(eta<2.47 && pt>10. && iso) { SignalElectrons.push_back(Lep);}

### Tracking isolation

- $\star$  Variable cone size
- $\star$  Low activity around the electron
- Calorimetric isolation
- Very hard objects: special

## Signal electrons are isolated

Isolation criteria are applied to signal electrons and muons. The scalar sum of the  $p_{\rm T}$  of tracks inside a variable-size cone around the lepton (excluding its own track), must be less than 15% of the lepton  $p_{\rm T}$ . The track isolation cone size for electrons (muons)  $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$  is given by the minimum of  $\Delta R = 10 \text{ GeV}/p_{\rm T}$  and  $\Delta R = 0.2 (0.3)$ . In addition, for electrons (muons) the sum of the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the lepton (excluding the energy from the lepton itself) must be less than 20% (30%) of the lepton  $p_{\rm T}$ . For electrons with  $p_{\rm T} > 200 \text{ GeV}$  these isolation requirements are not applied, and instead an upper limit of max(0.015 ×  $p_{\rm T}$ , 3.5 GeV) is placed on the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the electron.

## Use of built-in dedicated methods

```
// Electrons
```

```
std::vector<const RecLeptonFormat*> SignalElectrons;
for(unsigned int i=0; i<event.rec()->electrons().size(); i++)
```

const RecLeptonFormat *Lep = &(event.rec()->electrons()[i]);

### // Kinematics

double eta = Lep->abseta(); double pt = Lep->pt();

### // Isolation

```
double iso_dR = std::min(10./pt,0.2);
double iso_tracks = PHYSICS->Isol->eflow->relIsolation(Lep,
 event.rec(), iso_dR, 0., IsolationEFlow::TRACK_COMPONENT);
double iso_all = PHYSICS->Isol->eflow->relIsolation(Lep,
 event.rec(), 0.2, 0., IsolationEFlow::ALL_COMPONENTS);
bool iso = (iso_tracks<0.15 && iso_all<0.20);
if(pt>200.) { iso = (iso_all<std::max(0.015, 3.5/pt)); }</pre>
```

## // Signal leptons if(eta<2.47 && pt>10. && iso) { SignalElectrons.push_back(Lep);}

- Tracking isolation
  - $\star$  Variable cone size
  - $\star$  Low activity around the electron
- Calorimetric isolation
- Very hard objects: special
- *Signal electrons are saved

# Similar treatment for muons

Baseline muon candidates are reconstructed in the pseudorapidity range  $|\eta| < 2.7$  from MS tracks matching ID tracks. They are required to have  $p_T > 10$  GeV, to be within  $|z_0 \sin \theta| = 0.5$  mm of the primary vertex and to satisfy the *Medium* identification requirements defined in Ref. [40]. The *Medium* identification criterion defines requirements on the number of hits in the different ID and MS subsystems, and on the significance of the charge-to-momentum ratio q/p. Finally, the track associated with the signal muon must have  $|d_0|/\sigma(d_0) < 3$ .

Isolation criteria are applied to signal electrons and muons. The scalar sum of the  $p_T$  of tracks inside a variable-size cone around the lepton (excluding its own track), must be less than 15% of the lepton  $p_T$ . The track isolation cone size for electrons (muons)  $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$  is given by the minimum of  $\Delta R = 10 \text{ GeV}/p_T$  and  $\Delta R = 0.2 (0.3)$ . In addition, for electrons (muons) the sum of the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the lepton (excluding the energy from the lepton itself) must be less than 20% (30%) of the lepton  $p_T$ . For electrons with  $p_T > 200 \text{ GeV}$  these isolation requirements are not applied, and instead an upper limit of max(0.015 ×  $p_T$ , 3.5 GeV) is placed on the transverse energy of the calorimeter energy clusters in a cone of  $\Delta R = 0.2$  around the electron.

## std::vector<const RecLeptonFormat*> SignalMuons; for(unsigned int i=0; i<event.rec()->muons().size(); i++)

const RecLeptonFormat *Lep = &(event.rec()->muons()[i]);

#### // Kinematics

double eta = Lep->abseta(); double pt = Lep->pt();

#### // Isolation

double iso_dR = std::min(10./pt,0.3); double iso_tracks = PHYSICS->Isol->eflow->relIsolation(Lep, event.rec(), iso_dR, 0., IsolationEFlow::TRACK_COMPONENT); double iso_all = PHYSICS->Isol->eflow->relIsolation(Lep, event.rec(), 0.2, 0., IsolationEFlow::ALL_COMPONENTS); bool iso = (iso_tracks<0.15 && iso_all<0.30);</pre>

#### // Signal leptons

if(eta<2.7 && pt>10. && iso) { SignalMuons.push_back(Lep);}

## Muon definitions

- $p_T$  and  $\eta$  requirements
- Isolation
- Displacement ignored

# Jet definition: generalities

## Jets are reconstructed at the DELPHES level

Jets are reconstructed from topological clusters of energy in the calorimeter [86] using the anti- $k_t$  jet clustering algorithm [87] as implemented in the FastJet package [88], with a radius parameter R = 0.4. The reconstructed jets are then calibrated by the application of a jet energy scale derived from 13 TeV data and simulation [89]. Only jet candidates with  $p_T > 20$  GeV and  $|\eta| < 2.4$  are considered,⁴ although jets with  $|\eta| < 4.9$  are included in the missing transverse momentum calculation and are considered when applying the procedure to remove reconstruction ambiguities, which is described later in this Section.

To reduce the effects of pile-up, for jets with  $|\eta| \le 2.5$  and  $p_T < 120$  GeV a significant fraction of the tracks associated with each jet are required to have an origin compatible with the primary vertex, as defined by the jet vertex tagger [90]. This requirement reduces jets from pile-up to 1%, with an efficiency for pure hard-scatter jets of about 90%. For jets with  $|\eta| > 2.5$  and  $p_T < 60$  GeV, pile-up suppression is achieved through the forward jet vertex tagger [91], which exploits topological correlations between jet pairs. Finally, events containing a jet that does not satisfy the jet-quality requirements [92, 93] are rejected to remove events impacted by detector noise and non-collision backgrounds.

# Jet definition: generalities

### Jets are reconstructed at the DELPHES level

Jets are reconstructed from topological clusters of energy in the calorimeter [86] using the anti- $k_t$  jet clustering algorithm [87] as implemented in the FastJet package [88], with a radius parameter R = 0.4. The reconstructed jets are then calibrated by the application of a jet energy scale derived from 13 TeV data and simulation [89]. Only jet candidates with  $p_T > 20$  GeV and  $|\eta| < 2.4$  are considered,⁴ although jets with  $|\eta| < 4.9$  are included in the missing transverse momentum calculation and are considered when applying the procedure to remove reconstruction ambiguities, which is described later in this Section.

To reduce the effects of pile-up, for jets with  $|\eta| \le 2.5$  and  $p_T < 120$  GeV a significant fraction of the tracks associated with each jet are required to have an origin compatible with the primary vertex, as defined by the jet vertex tagger [90]. This requirement reduces jets from pile-up to 1%, with an efficiency for pure hard-scatter jets of about 90%. For jets with  $|\eta| > 2.5$  and  $p_T < 60$  GeV, pile-up suppression is achieved through the forward jet vertex tagger [91], which exploits topological correlations between jet pairs. Finally, events containing a jet that does not satisfy the jet-quality requirements [92, 93] are rejected to remove events impacted by detector noise and non-collision backgrounds.

✦ Jets candidates

•  $p_T$  and  $\eta$  requirements

# Jet definition: generalities

## Jets are reconstructed at the DELPHES level

Jets are reconstructed from topological clusters of energy in the calorimeter [86] using the anti- $k_t$  jet clustering algorithm [87] as implemented in the FastJet package [88], with a radius parameter R = 0.4. The reconstructed jets are then calibrated by the application of a jet energy scale derived from 13 TeV data and simulation [89]. Only jet candidates with  $p_T > 20$  GeV and  $|\eta| < 2.4$  are considered,⁴ although jets with  $|\eta| < 4.9$  are included in the missing transverse momentum calculation and are considered when applying the procedure to remove reconstruction ambiguities, which is described later in this Section.

To reduce the effects of pile-up, for jets with  $|\eta| \le 2.5$  and  $p_T < 120$  GeV a significant fraction of the tracks associated with each jet are required to have an origin compatible with the primary vertex, as defined by the jet vertex tagger [90]. This requirement reduces jets from pile-up to 1%, with an efficiency for pure hard-scatter jets of about 90%. For jets with  $|\eta| > 2.5$  and  $p_T < 60$  GeV, pile-up suppression is achieved through the forward jet vertex tagger [91], which exploits topological correlations between jet pairs. Finally, events containing a jet that does not satisfy the jet-quality requirements [92, 93] are rejected to remove events impacted by detector noise and non-collision backgrounds.

### ✦ Jets candidates

♣p⊤ and	$ \eta $	requirements
---------	----------	--------------

## Missing energy and pile-up

- ✤MET automatically handled with DELPHES
- Pile-up ignored (removed from the DELPHES card)

# Jet definition: implementation

## Straightforward: as for electrons and muons

Jets are reconstructed from topological clusters of energy in the calorimeter [86] using the anti- $k_t$  jet clustering algorithm [87] as implemented in the FastJet package [88], with a radius parameter R = 0.4. The reconstructed jets are then calibrated by the application of a jet energy scale derived from 13 TeV data and simulation [89]. Only jet candidates with  $p_T > 20$  GeV and  $|\eta| < 2.4$  are considered,⁴ although jets with  $|\eta| < 4.9$  are included in the missing transverse momentum calculation and are considered when applying the procedure to remove reconstruction ambiguities, which is described later in this Section.

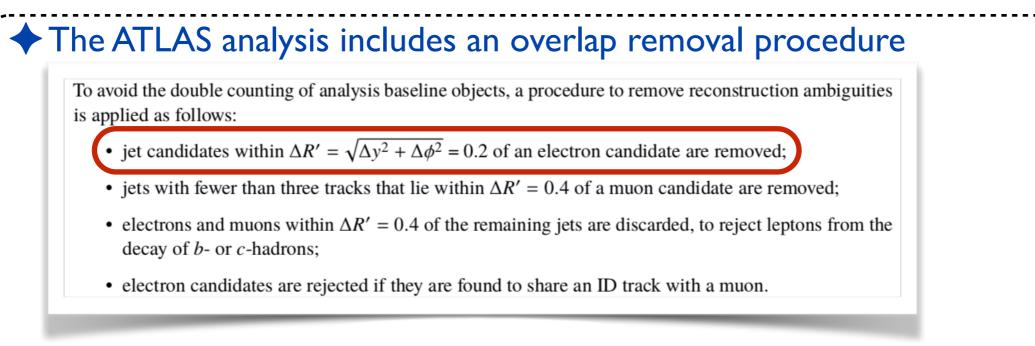
std::vector <const RecJetFormat*> Jets;
for(unsigned int i=0; i<event.rec()->jets().size(); i++)

const RecJetFormat *Jet = &(event.rec()->jets()[i]); double eta = Jet->abseta(); double pt = Jet->pt(); if(pt>20. && eta<2.4) { Jets.push_back(Jet); }</pre>

# **Object overlap removal - mandatory**

In MADANALYSIS 5 electrons are also part of the jet collection

* The double-counting should be removed  $\rightarrow$  reorganisation of the code


- 1. Electron candidates  $\rightarrow$  into the SignalElectrons collection
- 2. Muon candidates  $\rightarrow$  into the SignalMuons collection
- 3. Jet candidates  $\rightarrow$  into the Jets collection
- 4. Overlap removal (dedicated JetCleaning method)

Jets = PHYSICS->Isol->JetCleaning(Jets, SignalElectrons, 0.2);



To avoid the double counting of analysis baseline objects, a procedure to remove reconstruction ambiguities is applied as follows:

- jet candidates within  $\Delta R' = \sqrt{\Delta y^2 + \Delta \phi^2} = 0.2$  of an electron candidate are removed;
- jets with fewer than three tracks that lie within  $\Delta R' = 0.4$  of a muon candidate are removed;
- electrons and muons within  $\Delta R' = 0.4$  of the remaining jets are discarded, to reject leptons from the decay of *b* or *c*-hadrons;
- electron candidates are rejected if they are found to share an ID track with a muon.



Jet-electron removal: already done (inherent to MADANALYSIS 5)

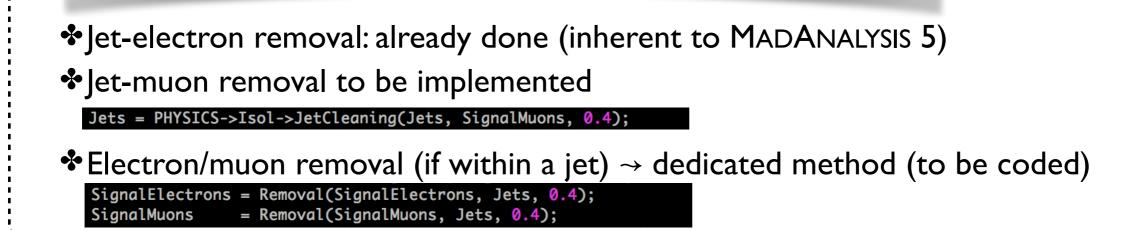
## The ATLAS analysis includes an overlap removal procedure

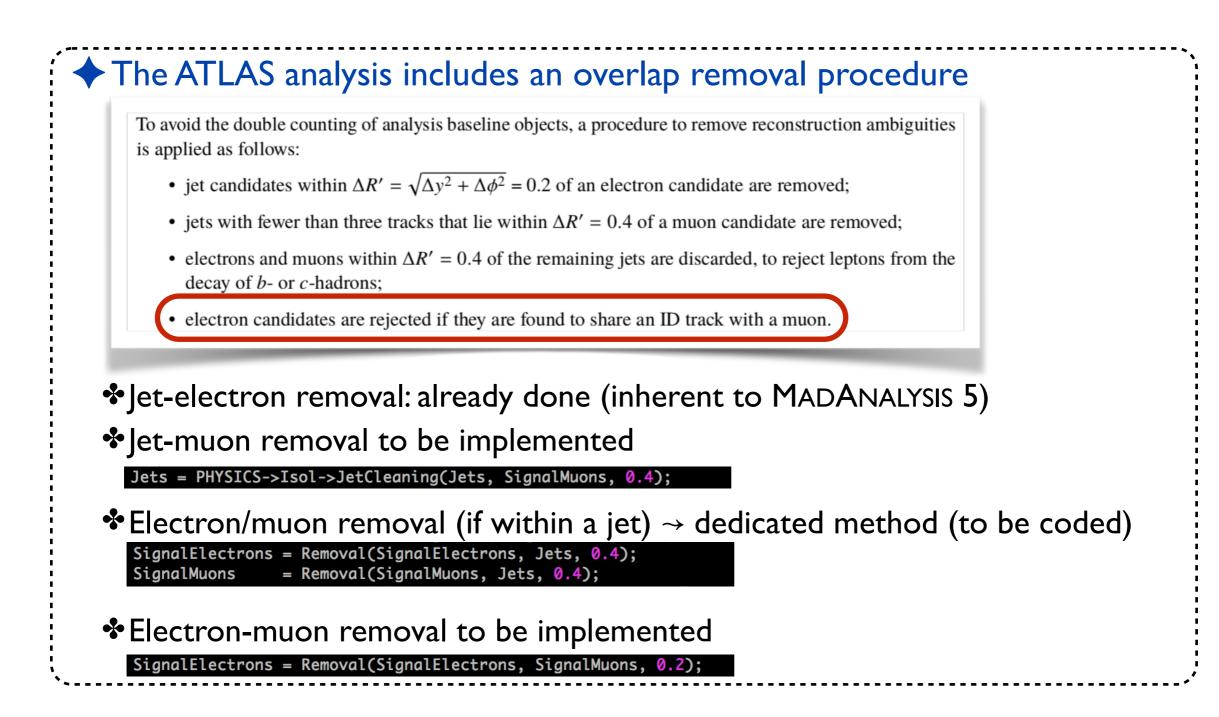
To avoid the double counting of analysis baseline objects, a procedure to remove reconstruction ambiguities is applied as follows:

- jet candidates within  $\Delta R' = \sqrt{\Delta y^2 + \Delta \phi^2} = 0.2$  of an electron candidate are removed;
- jets with fewer than three tracks that lie within  $\Delta R' = 0.4$  of a muon candidate are removed;
- electrons and muons within  $\Delta R' = 0.4$  of the remaining jets are discarded, to reject leptons from the decay of *b* or *c*-hadrons;
- electron candidates are rejected if they are found to share an ID track with a muon.

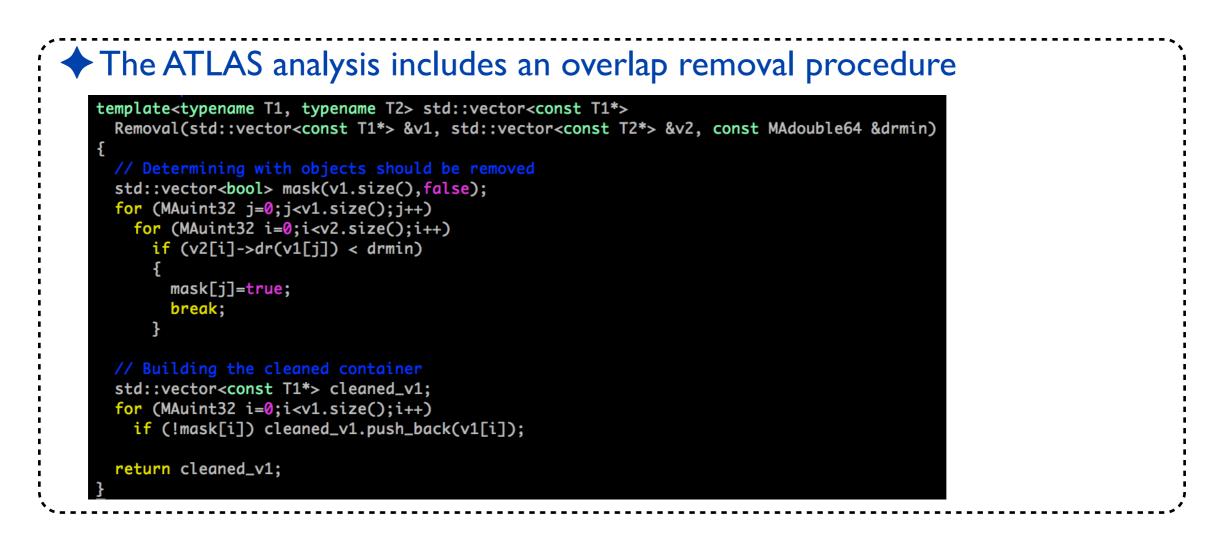
Jet-electron removal: already done (inherent to MADANALYSIS 5)
Jet-muon removal to be implemented

Jets = PHYSICS->Isol->JetCleaning(Jets, SignalMuons, 0.4);

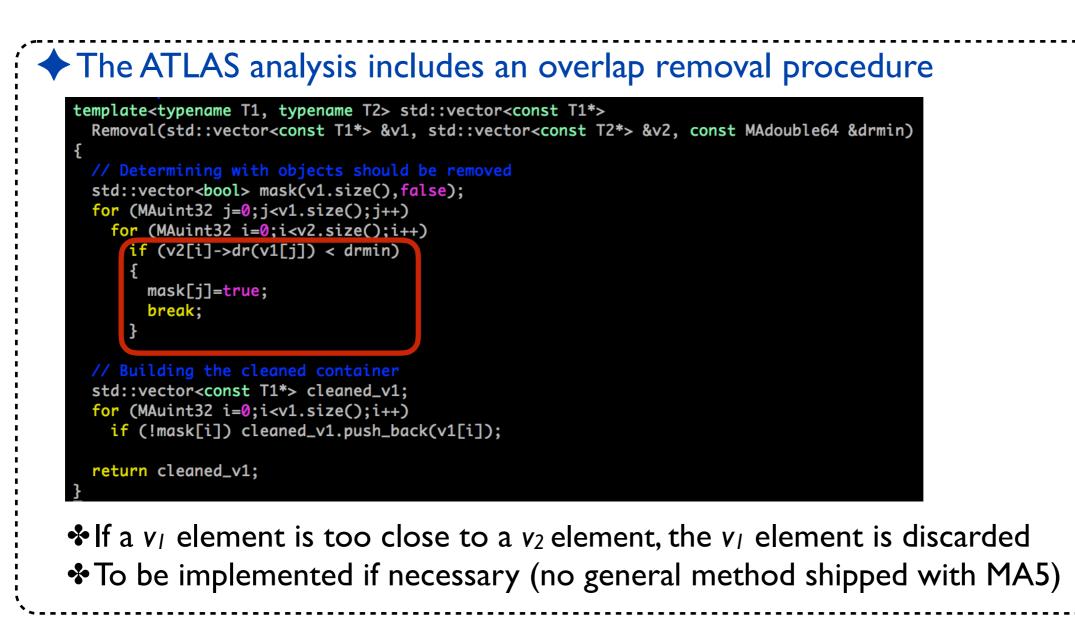




To avoid the double counting of analysis baseline objects, a procedure to remove reconstruction ambiguities is applied as follows:

- jet candidates within  $\Delta R' = \sqrt{\Delta y^2 + \Delta \phi^2} = 0.2$  of an electron candidate are removed;
- jets with fewer than three tracks that lie within  $\Delta R' = 0.4$  of a muon candidate are removed;


```
• electrons and muons within \Delta R' = 0.4 of the remaining jets are discarded, to reject leptons from the decay of b- or c-hadrons;
```

• electron candidates are rejected if they are found to share an ID track with a muon.






### **Analysis-dependent removal method**



### **Analysis-dependent removal method**



#### igstarrow b-tagging efficiencies/mistagging rates at the DELPHES level

The MV2C10 boosted decision tree algorithm [41] identifies jets containing *b*-hadrons ('*b*-jets') by using quantities such as the impact parameters of associated tracks, and well-reconstructed secondary vertices. A selection that provides 85% efficiency for tagging *b*-jets in simulated  $t\bar{t}$  events is used. The corresponding rejection factors against jets originating from *c*-quarks, from  $\tau$ -leptons, and from light quarks and gluons in the same sample at this working point are 2.7, 6.1 and 25, respectively.

Only the number of *b*-jets is needed (cf. *b*-veto)

#### b-tagging efficiencies/mistagging rates at the DELPHES level

The MV2C10 boosted decision tree algorithm [41] identifies jets containing *b*-hadrons ('*b*-jets') by using quantities such as the impact parameters of associated tracks, and well-reconstructed secondary vertices. A selection that provides 85% efficiency for tagging *b*-jets in simulated  $t\bar{t}$  events is used. The corresponding rejection factors against jets originating from *c*-quarks, from  $\tau$ -leptons, and from light quarks and gluons in the same sample at this working point are 2.7, 6.1 and 25, respectively.

Only the number of *b*-jets is needed (cf. *b*-veto)

Hadronic activity
 Sum of the p_T of all remaining jets

#### b-tagging efficiencies/mistagging rates at the DELPHES level

The MV2C10 boosted decision tree algorithm [41] identifies jets containing *b*-hadrons ('*b*-jets') by using quantities such as the impact parameters of associated tracks, and well-reconstructed secondary vertices. A selection that provides 85% efficiency for tagging *b*-jets in simulated  $t\bar{t}$  events is used. The corresponding rejection factors against jets originating from *c*-quarks, from  $\tau$ -leptons, and from light quarks and gluons in the same sample at this working point are 2.7, 6.1 and 25, respectively.

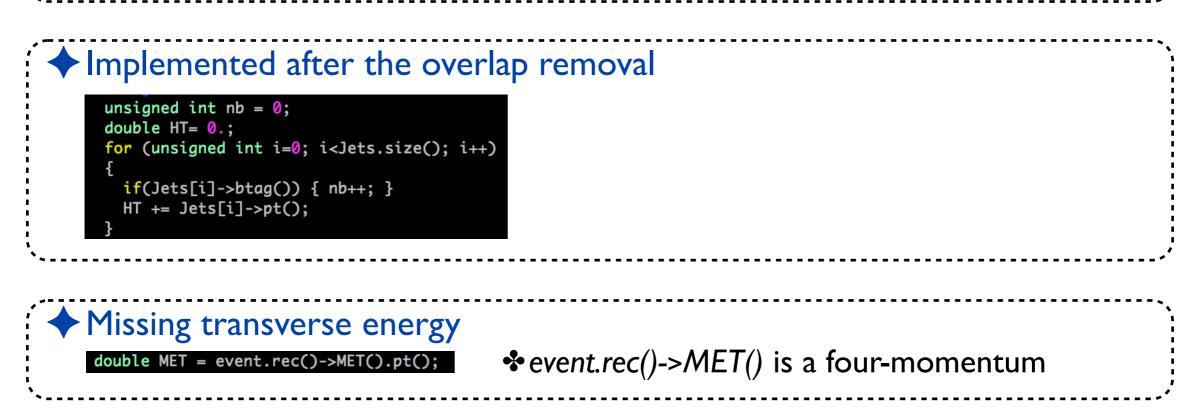
Only the number of *b*-jets is needed (cf. *b*-veto)

#### Hadronic activity

Sum of the  $p_T$  of all remaining jets

```
Implemented after the overlap removal
```

```
unsigned int nb = 0;
double HT= 0.;
for (unsigned int i=0; i<Jets.size(); i++)
{
 if(Jets[i]->btag()) { nb++; }
 HT += Jets[i]->pt();
}
```


#### b-tagging efficiencies/mistagging rates at the DELPHES level

The MV2C10 boosted decision tree algorithm [41] identifies jets containing *b*-hadrons ('*b*-jets') by using quantities such as the impact parameters of associated tracks, and well-reconstructed secondary vertices. A selection that provides 85% efficiency for tagging *b*-jets in simulated  $t\bar{t}$  events is used. The corresponding rejection factors against jets originating from *c*-quarks, from  $\tau$ -leptons, and from light quarks and gluons in the same sample at this working point are 2.7, 6.1 and 25, respectively.

Only the number of *b*-jets is needed (cf. *b*-veto)

# Hadronic activity Sum of the br of all y

Sum of the  $p_T$  of all remaining jets



## **Object implementation: summary**

#### Starting from the event.rec() collections

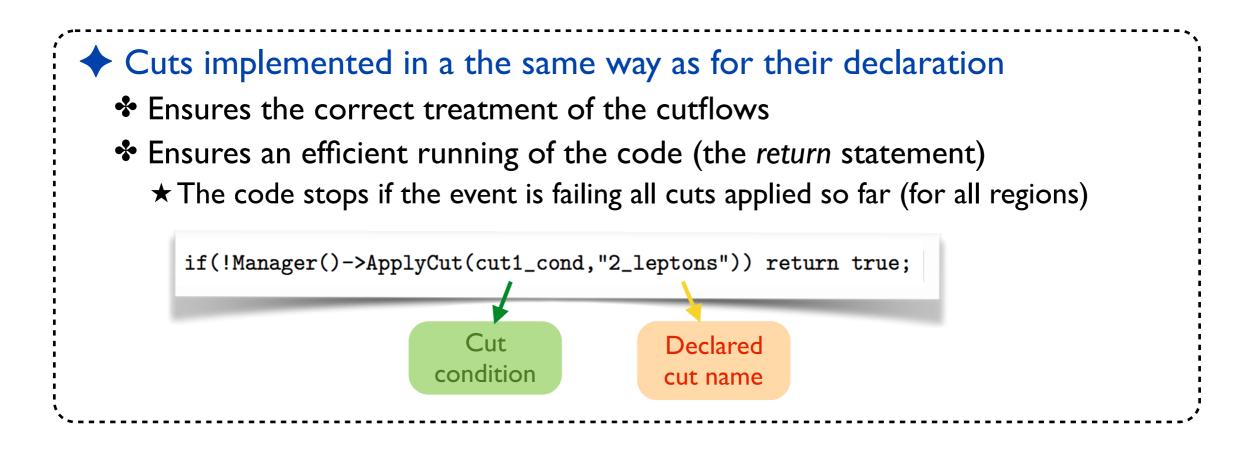
Selection of electron, muon and jet candidates

Overlap removal (mandatory + analysis dependent)

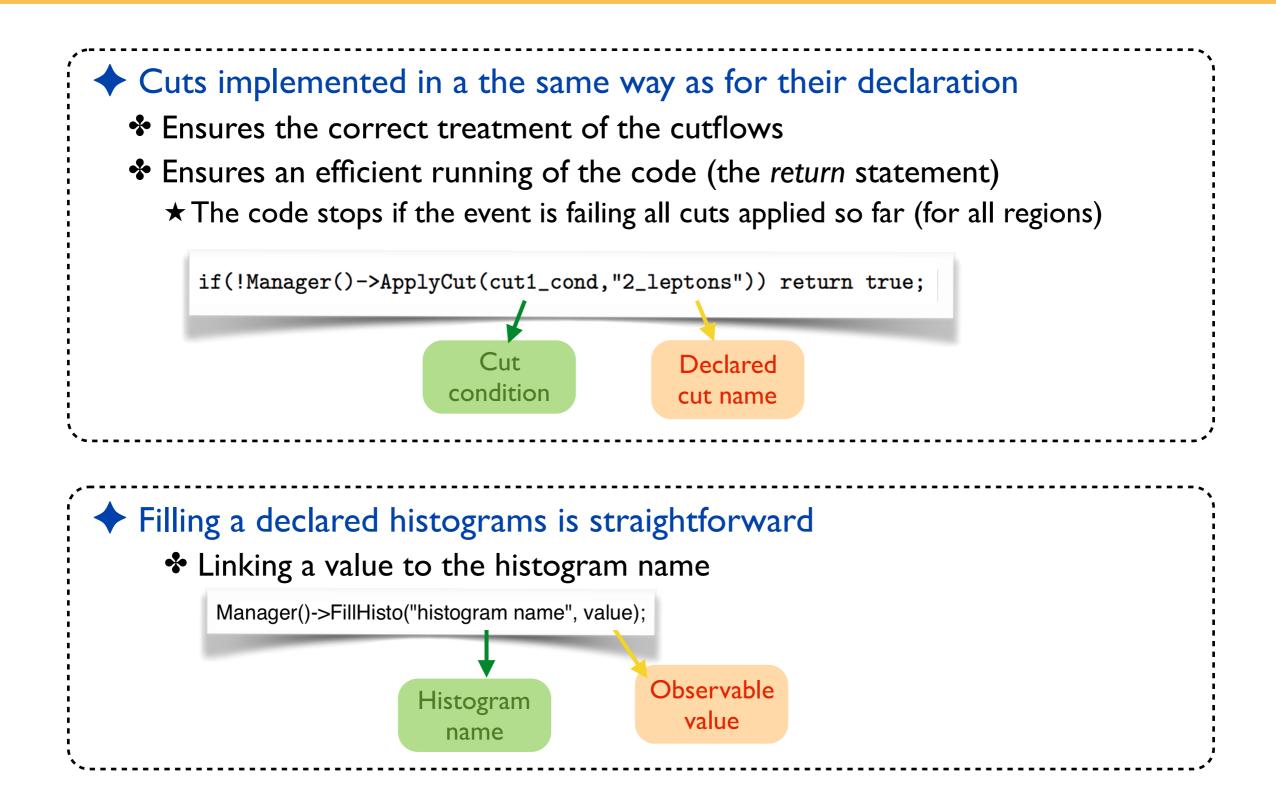
## **Object implementation: summary**

#### Starting from the event.rec() collections

- Selection of electron, muon and jet candidates
- Overlap removal (mandatory + analysis dependent)


#### Creation of the signal lepton collection

- Merging electrons and muons
- ✤Ordering in p_T


std::vector<const RecLeptonFormat*> SignalLeptons;
for(unsigned int i=0; i<SignalMuons.size(); i++)
 { SignalLeptons.push_back(SignalMuons[i]); }
for(unsigned int i=0; i<SignalElectrons.size(); i++)
 { SignalLeptons.push_back(SignalElectrons[i]); }
SORTER->sort(SignalLeptons, PTordering);

The Execute method: cuts and histograms

### **Cuts and histograms**



### **Cuts and histograms**



### Preselection

<pre>\$ 2 OS leptons \$ M_{ll} &gt; 100 GeV \$ MET &gt; 110 GeV \$ MET/√H_T &gt; 10 √GeV \$ b-jet veto</pre> $  \frac{n_{non-b-tagged jets} = 0 = 1 = 0 = 1 \\ m_{\ell_1 \ell_2} [GeV] > 100 > 121.2 \\ E_T^{miss} significance > 10 \\ m_{b-tagged jets} = 0 $ $  \frac{1}{\frac{100}{200}} = 0 \\   \frac{100}{200} = 0 \\   $	Reminder: 5 preselection cuts	Signal region (SR)	SR-DF-0J			SR-SF-1J
	2 OS leptons		-		-	
<pre>*/MET &gt; 110 GeV * MET/√H_T &gt; 10 √GeV * b-jet veto // Declaration of the preselection cuts Manager()-&gt;AddCut("OS dilepton"); Manager()-&gt;AddCut("MET &gt; 100 GeV"); Manager()-&gt;AddCut("MET &gt; 110 GeV"); Manager()-&gt;AddCut("MET &gt; 10");</pre>	✤M _{ll} > 100 GeV	$E_{\rm T}^{\rm miss}$ [GeV]				
<pre>Manager()-&gt;AddCut("OS dilepton"); Manager()-&gt;AddCut("Mll &gt; 100 GeV"); Manager()-&gt;AddCut("MET &gt; 110 GeV"); Manager()-&gt;AddCut("MET sign. &gt; 10");</pre>	✤MET > 110 GeV	n _{b-tagged jets}		=	0	
<pre>Manager()-&gt;AddCut("Mll &gt; 100 GeV"); Manager()-&gt;AddCut("MET &gt; 110 GeV"); Manager()-&gt;AddCut("MET sign. &gt; 10");</pre>	<b>�</b> <i>MET/</i> <b>√</b> <i>H</i> ^{<i>T</i>} > 10 <b>√</b> GeV					its
	✤b-jet veto	<pre>Manager()-&gt;AddCut("Mll &gt; 100 GeV"); Manager()-&gt;AddCut("MET &gt; 110 GeV"); Manager()-&gt;AddCut("MET sign. &gt; 10");</pre>				

### Preselection

Reminder: 5 preselection cuts	Signal region (SR)	SR-DF-0J	SR-DF-1J	SR-SF-0J	SR-SF-1J	
*2 OS leptons	n _{non-b} -tagged jets	= 0	= 1	= 0	= 1	
•	$m_{\ell_1\ell_2}$ [GeV]	>1	.00		21.2	
♣M _{ll} > 100 GeV	$E_{\rm T}^{\rm miss}$ [GeV] $E_{\rm T}^{\rm miss}$ significance			10 10		
✤MET > 110 GeV	$n_{b-\text{tagged jets}}$		=	0		
<b>�</b> <i>MET/</i> <b>√</b> <i>H</i>  ₇ > 10 <b>√</b> GeV		ration of			uts	
✤ b-jet veto	<pre>Manager()-&gt;AddCut("OS dilepton"); Manager()-&gt;AddCut("Mll &gt; 100 GeV");</pre>					
	Manager(	<pre>Manager()-&gt;AddCut("MET &gt; 110 GeV");</pre>				
			Cut("MET sign. > 10"); Cut("b veto");			
Straightforward implementation bool 0S = false;		•	The or	rdering		
	->charge());		follow	the cu	t	
<pre>bool 0S = false; if(SignalLeptons.size()&gt;=2) 0S = (SignalLeptons[0]-&gt;charge()!=SignalLeptons[1]</pre>	->charge()); S,"OS dilepton")) return eptons[1]->momentum()).M(	true;	follow declara	the cu ation o	it one	
<pre>bool 0S = false; if(SignalLeptons.size()&gt;=2) 0S = (SignalLeptons[0]-&gt;charge()!=SignalLeptons[1]- if(!Manager()-&gt;ApplyCut(SignalLeptons.size()==2 &amp;&amp; 0 double mll = (SignalLeptons[0]-&gt;momentum() + SignalLeptons[0]</pre>	->charge()); S,"OS dilepton")) return eptons[1]->momentum()).M( eturn true;	true;	follow declara	the cu ation o	_	
<pre>bool 0S = false; if(SignalLeptons.size()&gt;=2) 0S = (SignalLeptons[0]-&gt;charge()!=SignalLeptons[1]- if(!Manager()-&gt;ApplyCut(SignalLeptons.size()==2 &amp;&amp; 0) double mll = (SignalLeptons[0]-&gt;momentum() + SignalLeptons[0]-&gt;momentum() + SignalLepton</pre>	->charge()); S,"OS dilepton")) return eptons[1]->momentum()).M( eturn true; eturn true;	true;	follow declara	the cu ation o	it one	

#### MADANALYSIS 5 for experts

#### Benjamin Fuks - 14.02.2020 - 38

## Signal region definitions

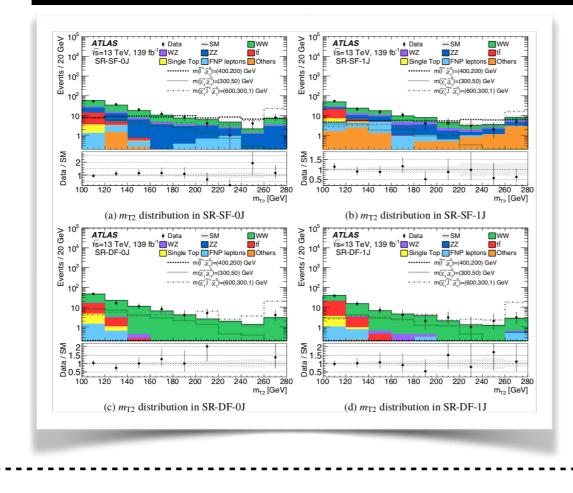
Many useful methods are implemented (no need for reinventing the wheel)
 Please check the appendix of the IJMPA paper (or the reference cards)

Signal region (SR)	SR-DF-0J	SR-DF-1J	SR-SF-0J	SR-SF-1J
nnon-b-tagged jets	= 0	= 1	= 0	= 1
$m_{\ell_1\ell_2}$ [GeV]	>1	00	>12	21.2
$E_{\rm T}^{\rm miss}$ [GeV]		>1	10	
$E_{\rm T}^{\rm miss}$ significance	>10			
$n_{b-\text{tagged jets}}$	= 0			

	∈[100,105)
	∈[105,110)
	∈[110,120)
$m_{T2}$ [GeV]	∈[120,140)
	∈[140,160)
	∈[160,180)
	∈[180,220)
	∈[220,260)
	∈[260,∞)
Inclusive SRs	
	∈[100,∞)
m _{T2} [GeV]	∈[160,∞)
	∈[100,120)
	∈[120,160)

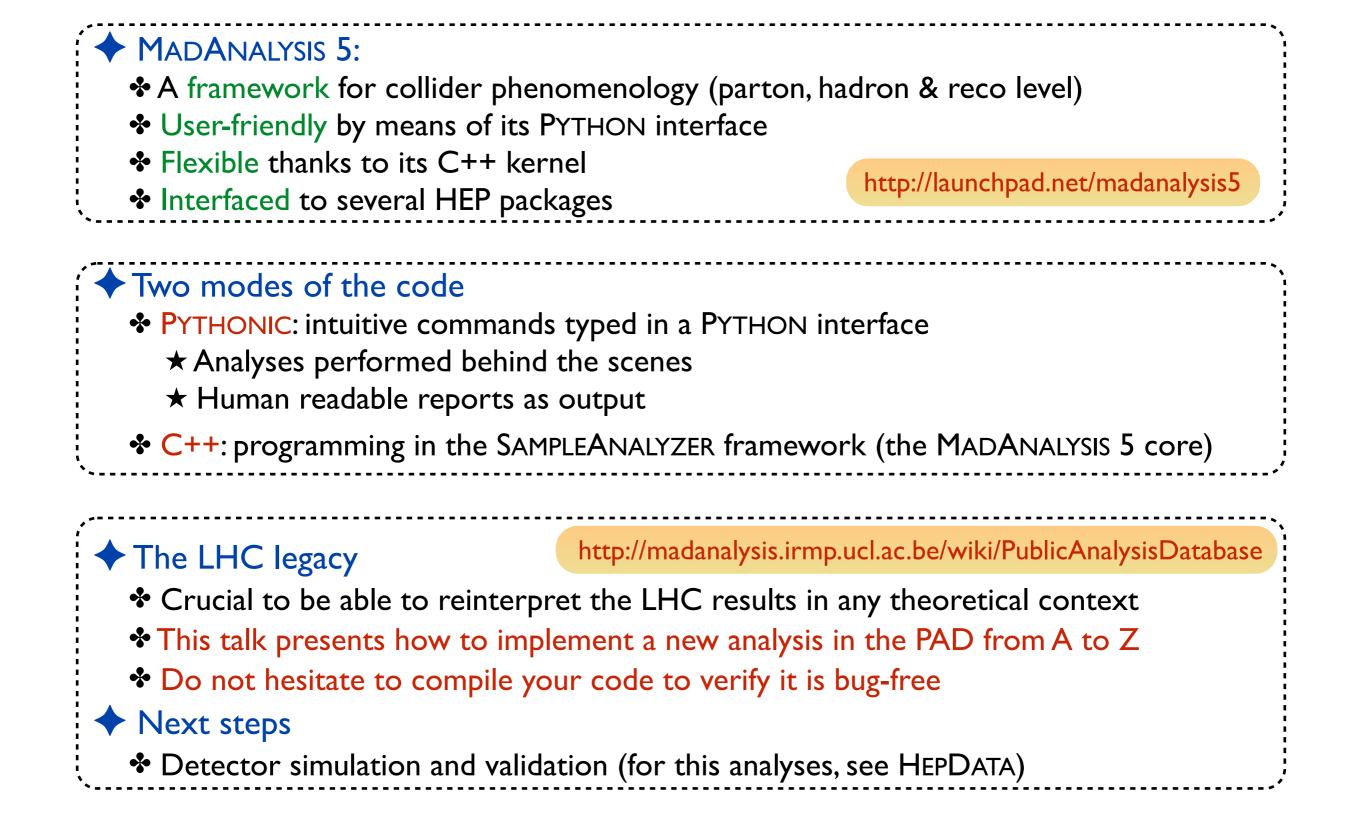
<pre>// Njets unsigned int nj = Jets.size(); if(!Manager()-&gt;ApplyCut(nj==0,"Nj=0")) return true; if(!Manager()-&gt;ApplyCut(nj==1,"Nj=1")) return true;</pre>	
<pre>// SF vs DF bool SF = (SignalLeptons[0]-&gt;isMuon()==SignalLeptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;isMucleptons[1]-&gt;</pre>	
<pre>// MT2 double mt2 = PHYSICS-&gt;Transverse-&gt;MT2(SignalLeptons[0],SignalL if(!Manager()-&gt;ApplyCut(mt2&gt;100. &amp;&amp; mt2&lt;105.,"MT2 in [100, 105 if(!Manager()-&gt;ApplyCut(mt2&gt;105. &amp;&amp; mt2&lt;110.,"MT2 in [105, 110 if(!Manager()-&gt;ApplyCut(mt2&gt;120. &amp;&amp; mt2&lt;120.,"MT2 in [110, 120 if(!Manager()-&gt;ApplyCut(mt2&gt;120. &amp;&amp; mt2&lt;160.,"MT2 in [120, 140 if(!Manager()-&gt;ApplyCut(mt2&gt;140. &amp;&amp; mt2&lt;160.,"MT2 in [140, 160 if(!Manager()-&gt;ApplyCut(mt2&gt;160. &amp;&amp; mt2&lt;180.,"MT2 in [160, 180 if(!Manager()-&gt;ApplyCut(mt2&gt;20. &amp;&amp; mt2&lt;20.,"MT2 in [180, 220 if(!Manager()-&gt;ApplyCut(mt2&gt;20. &amp;&amp; mt2&lt;20.,"MT2 in [20, 260 if(!Manager()-&gt;ApplyCut(mt2&gt;20. &amp;&amp; mt2&lt;20.,"MT2 in [20, 141 if(!Manager()-&gt;ApplyCut(mt2&gt;20. &amp;&amp; mt2&lt;20.,"MT2 in [100, inf if(!Manager()-&gt;ApplyCut(mt2&gt;100. ,"MT2 in [100, inf if(!Manager()-&gt;ApplyCut(mt2&gt;160. ,"MT2 in [160, inf if(!Manager()-&gt;ApplyCut(mt2&gt;160. ,"MT2</pre>	<pre>5] GeV")) return true; 0] GeV")) return true; f[ GeV")) return true; f[ GeV")) return true;</pre>
<pre>if(!Manager()-&gt;ApplyCut(mt2&gt;100. &amp;&amp; mt2&lt;120.,"MT2 in [100, 120 if(!Manager()-&gt;ApplyCut(mt2&gt;120. &amp;&amp; mt2&lt;160.,"MT2 in [120, 160</pre>	

## Histograms


Many useful methods are implemented (no need for reinventing the wheel)
 Please check the appendix of the IJMPA paper (or the reference cards)

Histograms must be filled prior to the region specific cuts

/ Histograms


double mt2 = PHYSICS->Transverse->MT2(SignalLeptons[0],SignalLeptons[1],event.rec()->MET(),0.); Manager()->FillHisto("MT2-SF-0J",mt2); Manager()->FillHisto("MT2-SF-1J",mt2); Manager()->FillHisto("MT2-DF-0J",mt2);

Manager()->FillHisto("MT2-DF-1J",mt2);



#### Summary

# Summary

