Introduction to deep Learning for high energy physics

Tae Jeong Kim (Hanyang University) For 2nd MadAnalysis 5 workshop at KIAS Feb. 18 in 2020

Event selection

traditional way

nonlinear

Single top quark discovery with ML

- The small cross section \rightarrow simple cut and count does not work
- Single top quark was discovered with a help of machine learning technique in 2009

Machine learning

Machine learning in Higgs discovery

Machine learning

- Photon energy by regression
- Photon ID by Boosted Decision Tree (BDT)
- Multivariate Data Analysis for event classification

Event categorization with Deep Neural Network

- Precision of categorization scheme using jets & b-tags is difficult with high b-tag multiplicity
- Use DNNs to categorize using most probable process and jets

JHEP 03 (2019) 026

DNN discriminant

Performance with DNN for b-tagging

CMS DP-2018/058

CMS DP-2018/033

What is Machine learning?

• Examples : spam filter

- Traditionally you would write a detection algorithm for each of the pattern from spam \rightarrow need to add rules forever
- Machine learning learns automatically which words and phrases are good predictors of spam \rightarrow short, easier to maintain and accurate

Perceptron

• The idea of perceptron was created by Frank Rosenblatt in 1957

• Multi-layer perceptron

Activation function

• h(x) is the activation function which determine whether or not we activate the sum of the input

non-linear is essential for deep neural network!

1.0 0.8

Deep neural network

- Weight (w) and bias (b) have to be determined manually by human
- In neural network, we will let computer to determine the weight (w) and bias (b)

Output layer

- Regression : parameter determination
- Classification
 - Binary classification : sigmoid function
 - Multi-classification : softmax function

$$y_{k} = \frac{exp(a_{k})}{\sum\limits_{i=1}^{n} exp(a_{i})} = \frac{Cexp(a_{k})}{C\sum\limits_{i=1}^{n} exp(a_{i})}$$
$$= \frac{exp(a_{k} + logC)}{\sum\limits_{i=1}^{n} exp(a_{i} + logC)}$$
$$C' \text{ to prevent from being} \frac{\infty}{\infty} = \frac{exp(a_{k} + C')}{\sum\limits_{i=1}^{n} exp(a_{i} + C')}$$

Training

- From the training dataset, determine the weights automatically
- Will use loss function to find the weights in a way to minimize the loss function

 \Rightarrow Adjust w_{ij} and b_i so that output y_n is close to d_n

Gradient decent

Find minimum of the loss function

$$L = rac{1}{2} \sum_{k} (y_k - t_k)^2$$
 Mean Squared Error
 $L = -\sum_{k} t_k log y_k$ Cross entropy

$$w = w - \eta \frac{\partial L}{\partial w}$$

 η = leaning rate (hyperparameter)

• Mini-batch

- If training data is large, it is not feasible to calculate the loss over the whole data
- Randomly choose fraction of data and calculate the loss approximately
- The fraction of data (N samples) is mini-batch

Forward and Backward

- We need to know how much x or y is changed when loss is changed
- Can rely on the chain rules in this case to calculate the derivatives analytically

Backward propagation with ReLU function

Backward propagation with Sigmoid function

can be simplified as follows: $\frac{\partial L}{\partial y}y^2e^{-x} = \frac{\partial L}{\partial y}\frac{1}{(1+e^{-x})^2}e^{-x}$ $= \frac{\partial L}{\partial y}\frac{1}{1+e^{-x}}\frac{e^{-x}}{1+e^{-x}}$ $= \frac{\partial L}{\partial y}y(1-y)$

Optimization

- Sometimes training a very large deep neural network is painfully slow
- We can speed up the training using a faster optimizer instead of using the regular Gradient descent optimizer

$$w = w - \eta \frac{\partial L}{\partial w}$$

Momentum

- Imagine a bowling ball rolling down a gentle slop on a smooth surface
 - It will start out slowly but it will quickly pick up momentum until it eventually reaches terminal velocity
 - v is a new variable corresponding to velocity
- In contrast, gradient descent will simply take small regular steps down the slope
 - It takes much more time to reach the bottom

$$v = \alpha v - \eta \frac{\partial}{\partial w}$$
$$w = w + v$$

AdaGrad (adaptive gradient)

$$h = h + \frac{\partial L}{\partial W} \odot \frac{\partial L}{\partial W}$$
$$W = W - \eta \frac{1}{\sqrt{h}} \frac{\partial L}{\partial W}$$

- Gradient is scaled down by a factor of \sqrt{h}
- Low learning rates for frequently occurring features and high learning rates for infrequent features
- No need to tune the learning rate
- Often stops too early before reaching the global optimum
- Should not use it to train deep neural network
- Might be efficient for simple tasks (Linear regression)

Adam

- Adam stands for adaptive moment estimation
- Combination of Momentum and RMSProp (AdaGrad)

$$m = \beta_1 m + (1 - \beta_1) \frac{\partial L}{\partial W}$$
$$v = \beta_2 v + (1 - \beta_2) \frac{\partial L}{\partial W} \odot \frac{\partial L}{\partial W}$$
$$m$$

$$\hat{m} = \frac{m}{1 - \beta_1}$$
$$\hat{v} = \frac{v}{1 - \beta_2}$$
$$w = w - \frac{\eta}{\sqrt{\hat{v} + \epsilon}} \hat{m}$$

- m and v are initialized at 0, they will be biased toward 0 at the beginning of training
- These two steps will help boost m and v at the beginning of training

$$\beta_1 = 0.9 \quad \beta_2 = 0.999 \quad \eta = 0.001$$

Comparisons

- Gradient decent would not be the best way to optimize
- Other method such as Adam should be considered for fast optimization

Overtraining

- Overfitting in statistics is production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit additional data or predict future observations reliably
- Can happen when...
 - many weight parameters
 - training data is small
- Possible solutions:
 - Select one with fewer parameters
 - Gather more training data
 - Reduce the noise in the training data (fix data errors and remove outliers)
- Early stopping can also be one of the options to avoid overtraining
- But we can usually get much higher performance when we combine it with other regularization techniques (see next slide)

Weight decay (L2 regularization)

 Regularization – constraining a model to make it simpler and reduce the risk of overfitting

• Add term $\frac{1}{2}\lambda W^2$ to the loss function $\rightarrow L = L + \frac{\lambda}{2}W^2$

$$W = w - \alpha \frac{\partial L}{\partial W} - \alpha \frac{\lambda}{2} \frac{\partial W^2}{\partial W}$$
$$= (1 - \alpha \lambda)W - \alpha \frac{\partial L}{\partial W}$$

New term $(1 - \alpha \lambda)W$ can constrain weights W Prevent weights from being too high

Dropout

- At every training step, every neuron has a probability p of being temporarily "dropped out"
- It will be entirely ignored during this training step but it may be active during the next step
- Here p is called the dropout rate

(a) Standard Neural Net

(b) After applying dropout.

Journal of Machine Learning Research 15 (2014) 1929-1958

Why convolution neural network?

- Fully connected network has problems
 - A gray image has $28 \times 28 = 784$ weight parameters
 - For RGB color image, it has $3 \times 28 \times 28 (d \times h \times w) = 2352$ weight parameters
 - Ignores its spatial information
 - Has too many parameters that should be determined from training

Convolution Neutral Network (CNN)

- Examples : images recognition, images classification, face recognition...
- Preserves the relationship between nearby pixels
- Keep the spatial information throughout the layers
- Start by collecting local information, at the end, it will represent more global, high-level and representative information

	Convolution									Stride		
1	2	3	0	*	2	0 1		$ \begin{array}{c} $				
3	0	1	2		1	1 0 2		6	15			
In	put	da	ta		F Pad	ilter ding	I	Outp	ut data	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	1 0	2	3	0	-	2 0	1		7 12 10 2 4 15 16 10	Output width and height		
	3	0	1	2	(*)	0 1	2 -	-	10 6 15 6			
	2	3	0	1			2		8 10 4 3	$OH = \frac{H + 2P - FH}{S} + 1$		
L		(4, 4	1)	damed		(3, 3)			(4, 4)	$OW = \frac{W + 2P - FW}{S} + 1$		

- Down-sample input representation, e.g. keeping the max value (max pooling)
- There are no parameters to be learned

- Goal is to subsample the input image to reduce computational load, the memory usage, and the number of parameters
- Stable and solid from the variations of input data

ConvNet architecture

• Start by collecting local information, at the end it will represent more global, high-level and representative information

Machine Learning software and Tools

Two approaches

- Externally developed software such Tensorflow, theano, Caffe, MXNet,.....
 - Too many choices guaranteed to be supported over the lifetime of particle physics experiments
 - difficulty of adaptation to HEP specific requirements
- Focus on HEP-developed ML toolkits, Toolkit for Multivariate Analysis (TMVA) in ROOT.
 - long-term support in HEP
 - Can be adapted to specific needs of HEP
 - Challenges in incorporating new algorithms and ideas

TMVA

- TMVA has been used for multivariate data analysis in High Energy Physics for two decades
- Compatible with ROOT data format
- Now deep learning framework is available in TMVA
 - PyMVA interface to scikit-learn
 - PyKeras interface to Keras
 - High-level interface to Theano, TensorFlow deep-learning library

Conclusion

- Since Higgs discovery, we have been looking for new physics
- With HL-LHC, it is getting more challenging to analyze data
- Not only better computing resource but also different approaches to big data analysis are required
 - Rare process
 - Huge pileup background
 - Unknown physics
- Machine learning would be the promising approach
- Right moment to apply machine learning in High Energy Physics