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Event selection  

accept accept accept

linear nonlineartraditional way



Single top quark discovery with ML

• The small cross section à simple cut 
and count does not work

• Single top quark was discovered with a 
help of machine learning technique in 
2009
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Machine learning

Autonomous driving

Face recognition

Customers pattern 

Voice recognition

Machine in Industry Success of Machine learning
Big data + GPU



Machine learning in Higgs discovery
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Machine learning
• Photon energy by regression
• Photon ID by Boosted Decision 

Tree (BDT)  
• Multivariate Data Analysis for 

event classification



Event categorization with Deep Neural Network
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• Precision of categorization scheme using jets & b-tags is difficult with 
high b-tag multiplicity 

• Use DNNs to categorize using most probable process and jets
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Performance with DNN for b-tagging
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What is Machine learning?

• Examples : spam filter
• Traditionally you would write a detection algorithm for each of the 

pattern from spam à need to add rules forever
• Machine learning learns automatically which words and phrases are 

good predictors of spam à short, easier to maintain and accurate
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Traditional Programming

Computer
Data

Output
Program

Data

Program
OutputComputer

Machine Learning



Perceptron

• The idea of perceptron was created by Frank Rosenblatt in 1957
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Activation function

• h(x) is the activation function which determine 
whether or not we activate the sum of the input
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Step function 

Sigmoid function 

Rectified Liner Unit

non-linear is essential for 
deep neural network!

Adding bias to perceptron

What if h is linear?

y x = h h h x = c ∗ c ∗ c ∗ x = ax
No reason to have multi-layers 



Deep neural network
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•Weight (w) and bias (b) have to be determined manually by human

• In neural network, we will let computer to determine the weight 
(w) and bias (b)

probability
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Output layer

• Regression : parameter determination

• Classification
• Binary classification : sigmoid function
• Multi-classification : softmax function
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Training

• From the training dataset, determine the weights automatically 

•Will use loss function to find the weights in a way to minimize 
the loss function 
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(x1, d1), (x2, d2), ..., (xn, dn)

training data

training sample

Adjust w@A and b@ so that output yC is close to dC



Gradient decent

• Find minimum of the loss function
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• Mini-batch 
• If training data is large, it is not feasible to calculate 

the loss over the whole data
• Randomly choose fraction of data and calculate 

the loss approximately
• The fraction of data (N samples)  is mini-batch  



Forward and Backward
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• We need to know how much x or y is changed when loss is changed

• Can rely on the chain rules in this case to calculate the derivatives analytically



Backward propagation with ReLU function

f(x) =

(
x (x > 0)

0 (x  0)
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Backward propagation with Sigmoid function
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Optimization
• Sometimes training a very large deep neural network is painfully slow

• We can speed up the training using a faster optimizer instead of using 
the regular Gradient descent optimizer 
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Momentum

• Imagine a bowling ball rolling down a gentle slop on a smooth 
surface
• It will start out slowly but it will quickly pick up momentum until it 

eventually reaches terminal velocity
• v is a new variable corresponding to velocity

• In contrast, gradient descent will simply take small regular steps 
down the slope
• It takes much more time to reach the bottom

19

w = w + v

v = ↵v � ⌘
@

@w



AdaGrad (adaptive gradient)

•Gradient is scaled down by a factor of h
• Low learning rates for frequently occurring features and high 

learning rates for infrequent features

•No need to tune the learning rate

•Often stops too early before reaching the global optimum 

• Should not use it to train deep neural network

•Might be efficient for simple tasks (Linear regression)
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Adam

• Adam stands for adaptive moment estimation
• Combination of Momentum and RMSProp (AdaGrad)
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• m and v are initialized at 0, they will be 
biased toward 0 at the beginning of training 

• These two steps will help boost m and v at 
the beginning of training



Comparisons
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• Gradient decent would not be the best way to optimize 
• Other method such as Adam should be considered for fast 

optimization  



Overtraining
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• Overfitting in statistics is production of an analysis that corresponds too 
closely or exactly to a particular set of data, and may therefore fail to fit 
additional data or predict future observations reliably 

• Can happen when…
• many weight parameters
• training data is small

• Possible solutions:
• Select one with fewer parameters
• Gather more training data

• Reduce the noise in the training data (fix data errors and remove outliers)

• Early stopping can also be one of the options to avoid overtraining 

• But we can usually get much higher performance when we combine it 
with other regularization techniques (see next slide)



Weight decay (L2 regularization)

• Regularization – constraining a model to make it simpler and 
reduce the risk of overfitting 

• Add term 
"
# λW

# to the loss function à

24

New term 1 − αλ W can constrain weights W 

Prevent weights from being too high 
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Dropout

• At every training step, every 
neuron has a probability p of 
being temporarily “dropped out”

• It will be entirely ignored during 
this training step but it may be 
active during the next step

•Here p is called the dropout rate
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Journal of Machine Learning Research 15 (2014) 1929-1958



Why convolution neural network?

• Fully connected network has problems
• A gray image has 28×28 = 784 weight parameters
• For RGB color image, it has 3×28×28 (𝑑×ℎ×𝑤) = 2352 weight 

parameters
• Ignores its spatial information
• Has too many parameters that should be determined from training 

• Convolution Neutral Network (CNN)
• Examples : images recognition, images classification, face recognition…
• Preserves the relationship between nearby pixels
• Keep the spatial information throughout the layers
• Start by collecting local information, at the end, it will represent more 

global, high-level and representative information
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Convolution

27

Input data Filter Output data
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Pooling
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• Down-sample input representation, e.g. keeping the max value (max 
pooling)

• There are no parameters to be learned 

• Goal is to subsample the input image to reduce computational load, 
the memory usage, and the number of parameters

• Stable and solid from the variations of input data



ConvNet architecture
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Conv ReLU Pooling Fully connected

• Start by collecting local information, at the end it will represent 
more global, high-level and representative information

Conv ReLU Pooling Conv ReLU Pooling



Machine Learning software and Tools

• Externally developed software such Tensorflow, theano, Caffe, 
MXNet,……
• Too many choices guaranteed to be supported over the lifetime of 

particle physics experiments 
• difficulty of adaptation to HEP specific requirements

• Focus on HEP-developed ML toolkits, Toolkit for Multivariate 
Analysis (TMVA) in ROOT.
• long-term support in HEP
• Can be adapted to specific needs of HEP
• Challenges in incorporating new algorithms and ideas

Two approaches
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• TMVA has been used for multivariate 
data analysis in High Energy Physics for 
two decades

• Compatible with ROOT data format

•Now deep learning framework is 
available in TMVA
• PyMVA interface to scikit-learn
• PyKeras interface to Keras
• High-level interface to Theano, TensorFlow 

deep-learning library 
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TMVA



Conclusion

• Since Higgs discovery, we have been looking for new physics 

•With HL-LHC, it is getting more challenging to analyze data

•Not only better computing resource but also different 
approaches to big data analysis are required
• Rare process 
• Huge pileup background
• Unknown physics

•Machine learning would be the promising approach

• Right moment to apply machine learning in High Energy Physics 

32


