
Introduction to deep Learning
for high energy physics

Tae Jeong Kim (Hanyang University)

For 2nd MadAnalysis 5 workshop at KIAS

Feb. 18 in 2020

1

Event selection

accept accept accept

linear nonlineartraditional way

Single top quark discovery with ML

• The small cross section à simple cut
and count does not work

• Single top quark was discovered with a
help of machine learning technique in
2009

4

Machine learning

Autonomous driving

Face recognition

Customers pattern

Voice recognition

Machine in Industry Success of Machine learning
Big data + GPU

Machine learning in Higgs discovery

0

0.5

1

1.5

2

2.5

3

3.5

4
 (7 TeV)-1 (8 TeV) + 5.1 fb-119.7 fb

CMS
γγ →H

0.34 GeV ± = 124.70Hm
0.23−
0.26+ 1.14=µ

310×

 (GeV)γγm
110 115 120 125 130 135 140 145 150

-100

0

100

200
B component subtracted

S/
(S

+B
) w

ei
gh

te
d

ev
en

ts
 /

G
eV S/(S+B) weighted sum

Data

S+B fits (weighted sum)
B component
σ1±
σ2±

Machine learning
• Photon energy by regression
• Photon ID by Boosted Decision

Tree (BDT)
• Multivariate Data Analysis for

event classification

Event categorization with Deep Neural Network

6

• Precision of categorization scheme using jets & b-tags is difficult with
high b-tag multiplicity

• Use DNNs to categorize using most probable process and jets

JHEP 03 (2019) 026

0.4 0.5 0.6 0.7 0.8 0.9

Ev
en

ts
 /

Bi
n

1

10

210

310

410
Data SMHt t´15

+lftt c+ctt
+btt +2btt

b+btt Single t
V+jets ~~~+Vtt
Diboson Uncertainty

3 b tags)³6 jets, ³SL (
H nodett

Pre-fit expectation

CMS (13 TeV)-135.9 fb

DNN discriminant
0.4 0.5 0.6 0.7 0.8 0.9

D
at

a
/ P

re
d.

0.5
1

1.5

Performance with DNN for b-tagging

b jet efficiency
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
is

id
. p

ro
ba

bi
lit

y

3-10

2-10

1-10

1
 (13 TeV, 2017)-141.9 fb

CMS Preliminary
 events tt

 > 30 GeV)
T

AK4jets (p
DeepJet
DeepCSV
DeepJet with SF applied
DeepCSV with SF applied

udsg
c
udsg with SF applied
c with SF applied

CMS DP-2018/033

b jet efficiency
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
is

id
. p

ro
ba

bi
lit

y

3-10

2-10

1-10

1
 = 13 TeVs

CMS Simulation Preliminary
 events tt

 > 30 GeV)
T

AK4jets (p

DeepFlavour phase 1

DeepCSV phase 1

DeepCSV phase 0

udsg
c

CMS DP-2018/058

What is Machine learning?

• Examples : spam filter
• Traditionally you would write a detection algorithm for each of the

pattern from spam à need to add rules forever
• Machine learning learns automatically which words and phrases are

good predictors of spam à short, easier to maintain and accurate

8

Traditional Programming

Computer
Data

Output
Program

Data

Program
OutputComputer

Machine Learning

Perceptron

• The idea of perceptron was created by Frank Rosenblatt in 1957

9

𝑥"

𝑥#

𝑦

𝑤"

𝑤#

𝑦 = 0 (𝑤"𝑥" + 𝑤#𝑥# ≤ 𝜃)
1 (𝑤"𝑥" + 𝑤#𝑥# > 𝜃)

𝑥"

𝑥#

𝑦

𝑠"

𝑠#

•Multi-layer perceptron

Activation function

• h(x) is the activation function which determine
whether or not we activate the sum of the input

10

𝑥"

𝑥#

𝑎
𝑤"

𝑤#

𝑏
𝑏

𝑎 = 𝑏 + 𝑤"𝑥" + 𝑤#𝑥#
𝑦 = ℎ(𝑎)

𝑦
ℎ()

Step function

Sigmoid function

Rectified Liner Unit

non-linear is essential for
deep neural network!

Adding bias to perceptron

What if h is linear?

y x = h h h x = c ∗ c ∗ c ∗ x = ax
No reason to have multi-layers

Deep neural network

11

•Weight (w) and bias (b) have to be determined manually by human

• In neural network, we will let computer to determine the weight
(w) and bias (b)

probability

𝑥"

𝑥#

𝑎"
["]

𝑎#
["]

𝑎;
["]

𝑎<
["]

input layer

hidden layer of size 4

𝑎[<]

3 hidden layers

𝑎"
[#]

𝑎#
[#]

𝑎;
[#]

𝑎"
[;]

𝑎#
[;]

output layer

Output layer

• Regression : parameter determination

• Classification
• Binary classification : sigmoid function
• Multi-classification : softmax function

12

𝑥#

𝑥; 𝑎;

𝑥"

𝑎#

𝑎"yk =
exp(ak)
nP

i=1
exp(ai)

=
Cexp(ak)

C
nP

i=1
exp(ai)

=
exp(ak + logC)
nP

i=1
exp(ai + logC)

=
exp(ak + C 0)
nP

i=1
exp(ai + C 0)

𝐶′ to prevent from being
1
1

Training

• From the training dataset, determine the weights automatically

•Will use loss function to find the weights in a way to minimize
the loss function

13

(x1, d1), (x2, d2), ..., (xn, dn)

training data

training sample

Adjust w@A and b@ so that output yC is close to dC

Gradient decent

• Find minimum of the loss function

14

η = leaning rate (hyperparameter)

w = w � ⌘
@L

@w

Mean Squared Error

Cross entropy

L =
1

2

X

k

(yk � tk)
2

L = �
X

k

tklogyk

L = � 1

N

X

n

X

k

tklogyk

• Mini-batch
• If training data is large, it is not feasible to calculate

the loss over the whole data
• Randomly choose fraction of data and calculate

the loss approximately
• The fraction of data (N samples) is mini-batch

Forward and Backward

15

• We need to know how much x or y is changed when loss is changed

• Can rely on the chain rules in this case to calculate the derivatives analytically

Backward propagation with ReLU function

f(x) =

(
x (x > 0)

0 (x 0)

16

f
x y

@y

@x
=

(
1 (x > 0)

0 (x 0)

0

x > 0

x 0

@L

@y

@L

@y

@L

@x
=

@L

@y
· @y
@x

=
@L

@y

Backward propagation with Sigmoid function

y =
1

1 + e�x

17

x y
f

can be simplified as follows:

@y

@x
= y2e�x

@L

@y

@L

@y
y2e�x =

@L

@y

1

(1 + e�x)2
e�x

=
@L

@y

1

1 + e�x

e�x

1 + e�x

=
@L

@y
y(1� y)

@L

@x
=

@L

@y
· @y
@x

=
@L

@y
· y2e�x

Optimization
• Sometimes training a very large deep neural network is painfully slow

• We can speed up the training using a faster optimizer instead of using
the regular Gradient descent optimizer

18

w = w � ⌘
@L

@w

h = h+
@L

@W
� @L

@W

W = W � ⌘
1p
h

@L

@W

m = �1m+ (1� �1)
@L

@W

v = �2v + (1� �2)
@L

@W
� @L

@W

m̂ =
m

1� �1

v̂ =
v

1� �2

w = w � ⌘p
v̂ + ✏

m̂

Adam

v = ↵v � ⌘
@

@w
w = w + v

Adaptive gradientMomentum

Momentum

• Imagine a bowling ball rolling down a gentle slop on a smooth
surface
• It will start out slowly but it will quickly pick up momentum until it

eventually reaches terminal velocity
• v is a new variable corresponding to velocity

• In contrast, gradient descent will simply take small regular steps
down the slope
• It takes much more time to reach the bottom

19

w = w + v

v = ↵v � ⌘
@

@w

AdaGrad (adaptive gradient)

•Gradient is scaled down by a factor of h
• Low learning rates for frequently occurring features and high

learning rates for infrequent features

•No need to tune the learning rate

•Often stops too early before reaching the global optimum

• Should not use it to train deep neural network

•Might be efficient for simple tasks (Linear regression)

20

h = h+
@L

@W
� @L

@W

W = W � ⌘
1p
h

@L

@W

Adam

• Adam stands for adaptive moment estimation
• Combination of Momentum and RMSProp (AdaGrad)

21

m = �1m+ (1� �1)
@L

@W

v = �2v + (1� �2)
@L

@W
� @L

@W

m̂ =
m

1� �1

v̂ =
v

1� �2

w = w � ⌘p
v̂ + ✏

m̂ �1 = 0.9 �2 = 0.999 ⌘ = 0.001

• m and v are initialized at 0, they will be
biased toward 0 at the beginning of training

• These two steps will help boost m and v at
the beginning of training

Comparisons

22

• Gradient decent would not be the best way to optimize
• Other method such as Adam should be considered for fast

optimization

Overtraining

23

• Overfitting in statistics is production of an analysis that corresponds too
closely or exactly to a particular set of data, and may therefore fail to fit
additional data or predict future observations reliably

• Can happen when…
• many weight parameters
• training data is small

• Possible solutions:
• Select one with fewer parameters
• Gather more training data

• Reduce the noise in the training data (fix data errors and remove outliers)

• Early stopping can also be one of the options to avoid overtraining

• But we can usually get much higher performance when we combine it
with other regularization techniques (see next slide)

Weight decay (L2 regularization)

• Regularization – constraining a model to make it simpler and
reduce the risk of overfitting

• Add term
"
λW

to the loss function à

24

New term 1 − αλ W can constrain weights W

Prevent weights from being too high

W = w � ↵
@L

@W
� ↵

�

2

@W 2

@W

= (1� ↵�)W � ↵
@L

@W

L = L+
�

2
W 2

Dropout

• At every training step, every
neuron has a probability p of
being temporarily “dropped out”

• It will be entirely ignored during
this training step but it may be
active during the next step

•Here p is called the dropout rate

25

Journal of Machine Learning Research 15 (2014) 1929-1958

Why convolution neural network?

• Fully connected network has problems
• A gray image has 28×28 = 784 weight parameters
• For RGB color image, it has 3×28×28 (𝑑×ℎ×𝑤) = 2352 weight

parameters
• Ignores its spatial information
• Has too many parameters that should be determined from training

• Convolution Neutral Network (CNN)
• Examples : images recognition, images classification, face recognition…
• Preserves the relationship between nearby pixels
• Keep the spatial information throughout the layers
• Start by collecting local information, at the end, it will represent more

global, high-level and representative information

26

Convolution

27

Input data Filter Output data

Padding

Stride

OH =
H + 2P � FH

S
+ 1

OW =
W + 2P � FW

S
+ 1

Output width and height

Pooling

28

• Down-sample input representation, e.g. keeping the max value (max
pooling)

• There are no parameters to be learned

• Goal is to subsample the input image to reduce computational load,
the memory usage, and the number of parameters

• Stable and solid from the variations of input data

ConvNet architecture

29

Conv ReLU Pooling Fully connected

• Start by collecting local information, at the end it will represent
more global, high-level and representative information

Conv ReLU Pooling Conv ReLU Pooling

Machine Learning software and Tools

• Externally developed software such Tensorflow, theano, Caffe,
MXNet,……
• Too many choices guaranteed to be supported over the lifetime of

particle physics experiments
• difficulty of adaptation to HEP specific requirements

• Focus on HEP-developed ML toolkits, Toolkit for Multivariate
Analysis (TMVA) in ROOT.
• long-term support in HEP
• Can be adapted to specific needs of HEP
• Challenges in incorporating new algorithms and ideas

Two approaches

30

• TMVA has been used for multivariate
data analysis in High Energy Physics for
two decades

• Compatible with ROOT data format

•Now deep learning framework is
available in TMVA
• PyMVA interface to scikit-learn
• PyKeras interface to Keras
• High-level interface to Theano, TensorFlow

deep-learning library
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Signal efficiency

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kg
ro

un
d

re
je

ct
io

n

MVA Method:
PyKeras
BDT

Background rejection versus Signal efficiency

31

TMVA

Conclusion

• Since Higgs discovery, we have been looking for new physics

•With HL-LHC, it is getting more challenging to analyze data

•Not only better computing resource but also different
approaches to big data analysis are required
• Rare process
• Huge pileup background
• Unknown physics

•Machine learning would be the promising approach

• Right moment to apply machine learning in High Energy Physics

32

