Introduction to deep Learning
for high energy physics

Tae Jeong Kim (Hanyang University)
For 274 MadAnalysis 5 workshop at KIAS
Feb. 18 in 2020

Event selection

traditional way linear nonlinear

Single top quark discovery with ML

* The small cross section = simple cut COF Run Il Preiminry, L = 3.2 1[It
and count does not work All channels B Ot Deson)

* Single top quark was discovered with a
help of machine learning technique in
2009

b Jet

b Jet

uoIoIpald O} PeZI|ew.IoN

0 0.1 02 03 04 05 06 07 08 09 1
Neural Network Output

Neutrino

Machine learning

Machine in Industry Success of Machine learning

Big data + GPU

Face
I Node

amazon
webservices™

Machine learning in Higgs discovery

S/(S+B) weighted events / GeV

-100 |-

19.7

fb' (8 TeV) + 5.1 fb™ (7 TeV)

S/(S+B) weighted sum
¢ Data

—— S+B fits (weighted sum)
=== B component

200
100

0

110

115

120

125

130

135 140 145 150
m

YY(

Machine learning

* Photon energy by regression

* Photon ID by Boosted Decision
Tree (BDT)

* Multivariate Data Analysis for
event classification

Event categorization with Deep Neural Network

* Precision of categorization scheme using jets & b-tags is difficult with
high b-tag multiplicity

* Use DNNs to categorize using most probable process and jets

CMSs 35.9 b (13 TeV)
E \\\\I\\\\‘\\\\‘\\\\‘\\\\‘\\\\I\\7
0\3 SL (=6 jets,>3btags) e Data 15 x tiHgy |
P 10* = {fH node [t Ml tt+cc
. - . c Pre-fit expectation W ti+h i
m (0]
Multi-classification Probability z M5 ESnget

I V+ets []ti+Vv

ﬁH 041 [l Diboson [\J Uncertainty %
- ttbb 0.18 10° E
% ‘ fice 0.13 Categorize -
Events I g *) "7 P by highest 0F
g ‘ ttif 0.09 output 1;
8—152:::Mm}:m}:m}:m_m‘:é
Z=1 S 1%\\\%\\\\\\\\&\\1\\\%\\@
© 05F =
o Bl b b b b L g

0.4 0.5 0.6 0.7 0.8 0.9
DNN discriminant

JHEP 03 (2019) 026

Performance with DNN for b-tagging

Charged (16 features) x25— 1x1 conv. 64/32/32/8— RNN 150 — b
bb
Neutral (8 features) x25 1x1 conv. 32/16/4— RNN 50— Dense topb
200 nodes x1, c
Secondary Vix (12 features) x4 - 1x1 conv. 64/32/32/8— RNN 50— 100 nodes x5 |
Global variables (15 features) g
\s=13 TeV

41.9 fo' (13 TeV, 2017)

> 1 - 1

= h=

o el

< ©

2 ol

o o

= P

Q o

°2 10’1 e Deepdet — S 4 DeepFlavour phase 1

2 F| —®— Deepcsv 3 D107 i DeenCSV ohace

S [C7’| —&— DeepJet with SF applied = IS i = Deep phase
[~'| —&— DeepCSV with SF applied - [=-i-:| = DeepCSV phase 0

I

7| = udsg

-=--c
©:| A udsg with SF applied [:::
A ¢ with SF applied

Liiiiil

i

il

L \::%:\ FIRTRT I R \

0.7 0.8 0.9 1

0.3

AP IR S L
0.3 0.4

0.2

08 09 1

0.7

04 05

CMS DP-2018/058

b jet efficiency

b jet efficiency

CMS DP-2018/033

What is Machine learning?

Traditional Programming

Data ————»
— Output
Program ———>

Machine Learning

* Examples : spam filter

* Traditionally you would write a detection algorithm for each of the
pattern from spam = need to add rules forever

* Machine learning learns automatically which words and phrases are
good predictors of spam =2 short, easier to maintain and accurate

Perceptron

* The idea of perceptron was created by Frank Rosenblatt in 1957
@ 0 (W1x1 + W» X~ < 9)
@ 1 (W1x1 + Wo X~ > 9)

* Multi-layer perceptron

: ()= ()
| >< \@

e A e @_,@/

Activation function

* h(x) is the activation function which determine
whether or not we activate the sum of the input

Adding bias to perceptron

a= b+ wix; +wyx,

@ y = h(a)
M
Wq @h() @

non-linear is essential for
deep neural network!

What if h is linear?

y(x) = h(h(h(x))) =C*C*C*X = ax
No reason to have multi-layers

@V

10 A1

0.8 4

0.6 4

044

021

0.0 4

10 A1

0.8 4
0.6
0.4 4
021
0.0 4

4.0 A1
351
301
25

20

15 A1
10 A

051

0.0 1

Deep neural network

* Weight (w) and bias (b) have to be determined manually by human

* In neural network, we will let computer to determine the weight
(w) and bias (b)

hidden layer of size 4

input layer

@%g g
O

—

T output layer
\
—» probability
/
|

3 hidden layers

Output layer

* Regression : parameter determination
* Classification
* Binary classification : sigmoid function
* Multi-classification : softmax function
__eplar) _ Ceaplap) @_,
Y = n T n
> explas) C) explai)
i=1 i=1
exp(ay + logC)

exp(a; + logC)
1

n
1=

exp(ar + C")

©.0) —

C' to prevent from being— L
00 > exp(a; + C")
i=1 Z

Training

* From the training dataset, determine the weights automatically

* Will use loss function to find the weights in a way to minimize
the loss function

training sample
) 2

(CCl, d1)7 (3327 d2)7 cee (:En7 dn)

\ /
|

training data

» Adjust wj; and b; so that output yy, is close to dy

Gradient decent

1

L=3 Z(?/k: ~t%)” Mean Squared Error

* Find minimum of the loss function s k
L=- Z trlogyr Cross entropy
k

oL
w:w—na—w

N = leaning rate (hyperparameter)

* Mini-batch
* If training data is large, it is not feasible to calculate
the loss over the whole data
» Randomly choose fraction of data and calcul Lz—iZZtlo
andomly choose raction of data and calculate m) N kLOGYK
the loss approximately
* The fraction of data (N samples) is mini-batch

Forward and Backward

Forwardpass Backwardpass
y %= 44

* We need to know how much x or y is changed when loss is changed

* Can rely on the chain rules in this case to calculate the derivatives analytically

Backward propagation with ReLU function

40 4

flz) = {:13 (x > 0) N

0 (ZU S O) 25 1

dy J1 (z>0) o

dx |0 (z<0) .

T i Y
| 7

o 9L _0L oy oL oL
T > or Oy Ox Oy Oy
r <0 OL
PR O i

Backward propagation with Sigmoid function

1 9,
1l+e 7 Or
T : Y

| 7
oL _ 0L oy 0L , oL
or dy ox dy ° dy

oL oL 1
can be simplified as follows: — 2%~ % = —x
i oy’ " T oy (e)2’

oL 1 e %

- oyl+e*1l+4+e®

oL
]
9y y(l—y)

Optimization

* Sometimes training a very large deep neural network is painfully slow

* We can speed up the training using a faster optimizer instead of using
the regular Gradient descent optimizer

oL

W=,

Momentum Adaptive gradient Adam
0 | 8L oL oL
v=av—n—y |h=h+ 8W pae m = 51m+(1—51)aw
Jw 1 OL ||v=fov+ (1-)2k o 9k
w=w+v W =W — — ~ 2w © aw
+ 77\/E ow || m
m =
1 —f
5 — v
1 -5

Momentum

* Imagine a bowling ball rolling down a gentle slop on a smooth
surface

* It will start out slowly but it will quickly pick up momentum until it
eventually reaches terminal velocity

* v is a new variable corresponding to velocity

* In contrast, gradient descent will simply take small regular steps
down the slope

* [t takes much more time to reach the bottom

o,
an
w=w +v

UV — Qv

AdaGrad (adaptive gradient)

oL oL

h=h+ 2% O 55
1 OL
W_W—n\/mw

» Gradient is scaled down by a factor of vh

* Low learning rates for frequently occurring features and high
learning rates for infrequent features

* No need to tune the learning rate
* Often stops too early before reaching the global optimum
* Should not use it to train deep neural network

* Might be efficient for simple tasks (Linear regression)

Adam

* Adam stands for adaptive moment estimation
* Combination of Momentum and RMSProp (AdaGrad)

oL
m — Blm (1 — 51)
8L oL
v =Paot (1= Pl g © Ay
) m
m = 1 * mand v are initialized at 0, they will be
— b biased toward 0 at the beginning of training
U = * These two steps will help boost m and v at
1 — 5 the beginning of training
W =w — An—l— m B1 =09 B2=0.999 n=0.001
€

10 T SGD Momentum
—&— AdaGrad 10 10
~&—- SGD
0.8 1 == Momentum
- Adam
0.6 1
A
S
0.4 4
0.2 1 =
0.0 T T T T T T T T T -10 T T T -10 T T T
0 250 500 750 1000 1250 1500 1750 2000 -10 -5 0 5 10 -10 -5 0 5 10
iterations X X

* Gradient decent would not be the best way to optimize
 Other method such as Adam should be considered for fast
optimization

Overtraining

* Overfitting in statistics is production of an analysis that corresponds too
closely or exactly to a particular set of data, and may therefore fail to fit
additional data or predict future observations reliably

e Can happen when...
* many weight parameters

* training data is small

* Possible solutions:
* Select one with fewer parameters
* Gather more training data

* Reduce the noise in the training data (fix data errors and remove outliers)
* Early stopping can also be one of the options to avoid overtraining

* But we can usually get much higher performance when we combine it
with other regularization techniques (see next slide)

Weight decay (L2 regularization)

* Regularization — constraining a model to make it simpler and
reduce the risk of overfitting

e Add term %AWZ to the loss function 2> L =1L+ %WQ
OL A\ OW?
W=w—agy —a 5w
OL
= (1—a\)W — a—t
(1 —al) T

New term (1 — aA)W can constrain weights W

Prevent weights from being too high

Dropout

* At every training step, every
neuron has a probability p of
being temporarily “dropped out”

* |t will be entirely ignored during
this training step but it may be
active durin g th e next Step (a) Standard Neural Net (b) After applying dropout.

¢ Here p is Ca||ed the dr‘opout rate Journal of Machine Learning Research 15 (2014) 1929-1958

Why convolution neural network!?

* Fully connected network has problems

* A gray image has 28X28 = 784 weight parameters

* For RGB color image, it has 3X28x28 (dxhXw) = 2352 weight
parameters

* Ignores its spatial information
* Has too many parameters that should be determined from training

* Convolution Neutral Network (CNN)
* Examples : images recognition, images classification, face recognition...
* Preserves the relationship between nearby pixels
* Keep the spatial information throughout the layers

* Start by collecting local information, at the end, it will represent more
global, high-level and representative information

Convolution ‘ Stride ‘

B o
i 310)
S L :Ed "’ (|
2(310[1/2(3/0| o =1
WETE: 1]2(3]|0]1 .
PR Y 210 |1 s o/1]/2]3]0 2 -
= x AL E 3/10/1(2]3 |
3 () 6
1 (o 2 Y
2 3)] 1 | 2 B 213
0|1 29340 2
Input data Filter Output data 3 1 0 Eeey O E 7
2]3]0|1 0| & '
1{2({3[0f1]2]3 —1-
0/1]2[3[o[1]2 |
3[of{1/2]3]0]1
| Padding |
I 1 &1el'V T 112118 2 . .
| 2 [0 Output width and height
1 L2 6 10
1 | 2
810]1|2 ® (o] 10| 6 | 15| 6
2 SEAE 8|10/4]3 OH—H+2P_FH
S
(4, 4) 3.3) (4, 4) W +2P — FW
‘ OW = +1
S

| Pooling |

* Down-sample input representation, e.g. keeping the max value (max

pooling)
* There are no parameters to be learned

e 1 (0 1 |2 PO
B 2 | 3 2 01 %S 2 3
S 101L] 2 10112
214|101 21401
1 [21119 1{2|110
011123 213 Uil1l|23 213
RO 1| 2 31 0 B { 12
21410 1 2|4 P01

* Goal is to subsample the input image to reduce computational load,
the memory usage, and the number of parameters
* Stable and solid from the variations of input data

ConvNet architecture

Start by collecting local information, at the end it will represent
more global, high-level and representative information

RELU RELU RELU RELU RELU RELU

CONV CONVl CONVlCONVl

= =]
=
v - car
- - | frlick

; E IE 4 gitplane
= =] =] =) "
TR e foee
=l || el= | =
N B =l [E .

RelLU Pooling » Fully connected

Conv RelLU » RelLU Pooling » Conv

Machine Learning software and Tools

Two approaches
* Externally developed software such Tensorflow, theano, Caffe,

* Too many choices guaranteed to be supported over the lifetime of
particle physics experiments

* difficulty of adaptation to HEP specific requirements

* Focus on HEP-developed ML toolkits, Toolkit for Multivariate
Analysis (TMVA) in ROOT.

* long-term support in HEP
* Can be adapted to specific needs of HEP
* Challenges in incorporating new algorithms and ideas

TMVA

 TMVA has been used for multivariate
data analysis in High Energy Physics for
two decades

* Compatible with ROOT data format

* Now deep learning framework is
available in TMVA
* PyMVA interface to scikit-learn
* PyKeras interface to Keras

* High-level interface to Theano, TensorFlow
deep-learning library

Background rejection

J ROOT

Data Analysis Framework

\\
\\ _
f_ ﬁﬁﬂ“ﬁ;’;‘e - \\ ;
—— BDT]
\ 3

01 02 03 04 05 06 07 08 09 1

Signal efficiency

Conclusion

* Since Higgs discovery, we have been looking for new physics
* With HL-LHC, it is getting more challenging to analyze data

* Not only better computing resource but also different
approaches to big data analysis are required

* Rare process
* Huge pileup background
* Unknown physics

* Machine learning would be the promising approach

* Right moment to apply machine learning in High Energy Physics

