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Event selection

traditional way linear nonlinear




Single top quark discovery with ML

* The small cross section = simple cut COF Run Il Preiminry, L = 3.2 1[It
and count does not work All channels B Ot Deson)

* Single top quark was discovered with a
help of machine learning technique in
2009
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Machine learning

Machine in Industry Success of Machine learning

Big data + GPU
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Machine learning in Higgs discovery
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Machine learning

* Photon energy by regression

* Photon ID by Boosted Decision
Tree (BDT)

* Multivariate Data Analysis for
event classification



Event categorization with Deep Neural Network

* Precision of categorization scheme using jets & b-tags is difficult with
high b-tag multiplicity

* Use DNNs to categorize using most probable process and jets
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Performance with DNN for b-tagging
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What is Machine learning?

Traditional Programming

Data ————»
— Output
Program ———>

Machine Learning

* Examples : spam filter

* Traditionally you would write a detection algorithm for each of the
pattern from spam = need to add rules forever

* Machine learning learns automatically which words and phrases are
good predictors of spam =2 short, easier to maintain and accurate




Perceptron

* The idea of perceptron was created by Frank Rosenblatt in 1957
@ 0 (W1x1 + W» X~ < 9)
@ 1 (W1x1 + Wo X~ > 9)

* Multi-layer perceptron
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Activation function

* h(x) is the activation function which determine
whether or not we activate the sum of the input

Adding bias to perceptron

a= b+ wix; +wyx,

@ y = h(a)
M
Wq @h() @

non-linear is essential for
deep neural network!

What if h is linear?

y(x) = h(h(h(x))) =C*C*C*X = ax
No reason to have multi-layers
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Deep neural network

* Weight (w) and bias (b) have to be determined manually by human

* In neural network, we will let computer to determine the weight
(w) and bias (b)
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Output layer

* Regression : parameter determination
* Classification
* Binary classification : sigmoid function
* Multi-classification : softmax function
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Training

* From the training dataset, determine the weights automatically

* Will use loss function to find the weights in a way to minimize
the loss function

training sample
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Gradient decent

1

L=3 Z(?/k: ~t%)” Mean Squared Error

* Find minimum of the loss function s k
L=- Z trlogyr  Cross entropy
k
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N = leaning rate (hyperparameter)

* Mini-batch
* If training data is large, it is not feasible to calculate
the loss over the whole data
» Randomly choose fraction of data and calcul Lz—iZZtlo
andomly choose raction of data and calculate m) N kLOGYK
the loss approximately
* The fraction of data (N samples) is mini-batch




Forward and Backward

Forwardpass Backwardpass
y %= 44

* We need to know how much x or y is changed when loss is changed

* Can rely on the chain rules in this case to calculate the derivatives analytically




Backward propagation with ReLU function
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Backward propagation with Sigmoid function
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Optimization

* Sometimes training a very large deep neural network is painfully slow

* We can speed up the training using a faster optimizer instead of using
the regular Gradient descent optimizer
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Momentum

* Imagine a bowling ball rolling down a gentle slop on a smooth
surface

* It will start out slowly but it will quickly pick up momentum until it
eventually reaches terminal velocity

* v is a new variable corresponding to velocity

* In contrast, gradient descent will simply take small regular steps
down the slope

* [t takes much more time to reach the bottom
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AdaGrad (adaptive gradient)
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» Gradient is scaled down by a factor of vh

* Low learning rates for frequently occurring features and high
learning rates for infrequent features

* No need to tune the learning rate
* Often stops too early before reaching the global optimum
* Should not use it to train deep neural network

* Might be efficient for simple tasks (Linear regression)



Adam

* Adam stands for adaptive moment estimation
* Combination of Momentum and RMSProp (AdaGrad)
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* Gradient decent would not be the best way to optimize
 Other method such as Adam should be considered for fast
optimization



Overtraining

* Overfitting in statistics is production of an analysis that corresponds too
closely or exactly to a particular set of data, and may therefore fail to fit
additional data or predict future observations reliably

e Can happen when...
* many weight parameters

* training data is small

* Possible solutions:
* Select one with fewer parameters
* Gather more training data

* Reduce the noise in the training data (fix data errors and remove outliers)
* Early stopping can also be one of the options to avoid overtraining

* But we can usually get much higher performance when we combine it
with other regularization techniques (see next slide)



Weight decay (L2 regularization)

* Regularization — constraining a model to make it simpler and
reduce the risk of overfitting

e Add term %AWZ to the loss function 2> L =1L+ %WQ
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(1 —al) T

New term (1 — aA)W can constrain weights W

Prevent weights from being too high




Dropout

* At every training step, every
neuron has a probability p of
being temporarily “dropped out”

* |t will be entirely ignored during
this training step but it may be
active durin g th e next Step (a) Standard Neural Net (b) After applying dropout.

¢ Here p is Ca||ed the dr‘opout rate Journal of Machine Learning Research 15 (2014) 1929-1958




Why convolution neural network!?

* Fully connected network has problems

* A gray image has 28X28 = 784 weight parameters

* For RGB color image, it has 3X28x28 (dxhXw) = 2352 weight
parameters

* Ignores its spatial information
* Has too many parameters that should be determined from training

* Convolution Neutral Network (CNN)
* Examples : images recognition, images classification, face recognition...
* Preserves the relationship between nearby pixels
* Keep the spatial information throughout the layers

* Start by collecting local information, at the end, it will represent more
global, high-level and representative information



Convolution ‘ Stride ‘
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| Pooling |

* Down-sample input representation, e.g. keeping the max value (max

pooling)
* There are no parameters to be learned
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* Goal is to subsample the input image to reduce computational load,
the memory usage, and the number of parameters
* Stable and solid from the variations of input data



ConvNet architecture

Start by collecting local information, at the end it will represent
more global, high-level and representative information
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Machine Learning software and Tools

Two approaches
* Externally developed software such Tensorflow, theano, Caffe,

* Too many choices guaranteed to be supported over the lifetime of
particle physics experiments

* difficulty of adaptation to HEP specific requirements

* Focus on HEP-developed ML toolkits, Toolkit for Multivariate
Analysis (TMVA) in ROOT.

* long-term support in HEP
* Can be adapted to specific needs of HEP
* Challenges in incorporating new algorithms and ideas



TMVA

 TMVA has been used for multivariate
data analysis in High Energy Physics for
two decades

* Compatible with ROOT data format

* Now deep learning framework is
available in TMVA
* PyMVA interface to scikit-learn
* PyKeras interface to Keras

* High-level interface to Theano, TensorFlow
deep-learning library

Background rejection

J ROOT
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Conclusion

* Since Higgs discovery, we have been looking for new physics
* With HL-LHC, it is getting more challenging to analyze data

* Not only better computing resource but also different
approaches to big data analysis are required

* Rare process
* Huge pileup background
* Unknown physics

* Machine learning would be the promising approach

* Right moment to apply machine learning in High Energy Physics




