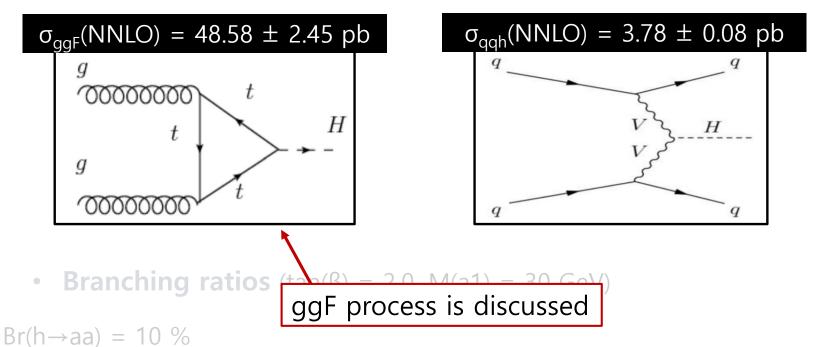

[Recasting: CMS-HIG-18-011]

Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two b quarks in pp collisions at 13 TeV

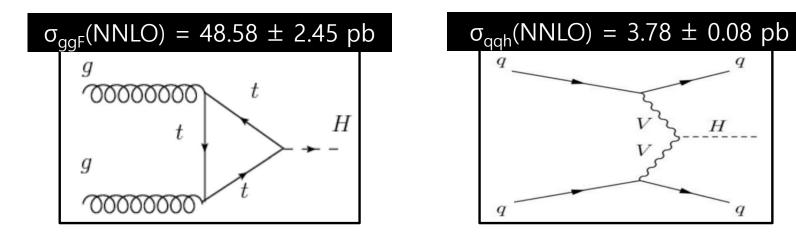
> Jehyun Lee, Jiyeong Choi, Joon Bin Lee^{*} and Minuk Choi


2nd MadAnalysis 5 Workshop on LHC recasting @ Korea

- Motivations: μμbb final state allows ...
 (1) a clear peak (μμ)
 (2) large branching ratio (bb)
- Previous works
 h→aa→µµττ (CMS-HIG-17-029)
 h→aa→µµbb (CMS-HIG-17-024)

Introduction: Model

Higgs boson production process



 $BR(a \rightarrow \tau \tau) = 48.37 \%$ $BR(a \rightarrow bb) = 48.01 \%$ $BR(a \rightarrow \mu \mu) = 0.17 \%$ \Rightarrow BR(aa \rightarrow µµbb) = 1.63 x 10⁻³

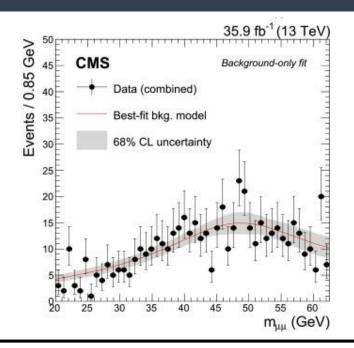
Introduction: Model

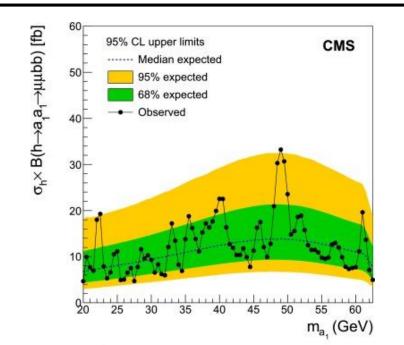
Higgs boson production process

Branching ratios $(tan(\beta) = 2.0, M(a1) = 30 \text{ GeV})$

Br(h
$$\rightarrow$$
aa) = 10 %
 $h \rightarrow aa \rightarrow \mu\mu bb$
BR(a $\rightarrow \tau\tau$) = 48.37 %
BR(a \rightarrow bb) = 48.01 %
BR(a $\rightarrow \mu\mu$) = 0.17 %
 $\sigma_{ggF} \times Br$
 $\sigma_{ggF} \times Br(h \rightarrow aa \rightarrow \mu\mu bb)_{expected} \sim 0.79$
 $\sigma_{ggF} \times Br(h \rightarrow aa \rightarrow \mu\mu bb)_{expected} \sim 0.79$

0.79


H


q

Introduction: Paper Results

Di-muon mass distribution

- Good resolution \rightarrow clear peak
- m_{bb} is not described due to the large jet p_T resolution
- No significant difference between data and MC

***** Upper limits on $\sigma \times Br$

 Observed limits are within 2 standard deviations of expected limits

Generator (MadGraph)

- model card: NMSSMHET
- PDF: NNPDF60_nlo_as_0118
- PYTHIA8 is used for hadronization and parton showering
- a₁ mass (GeV) ⊃ [20, 40, 60]
- 1K events are generated for each sample

Reconstruction (Delphes)

- Delphes default **b-tagging efficiency (loose working point)** is used
- CMS official b-tagging efficiency is described as a function of $p_{T},\,\eta$
- We use **p**_T^{jet} **dependent efficiency** (Delphes default setting)

Recasting: Preselection

 \overline{b} a_1 \mathbf{h} a_1 μ^+

Muon identification:

- p_T > 20, 9 GeV
- |η| < 2.4
- (CMS standard) tight ID
- **PF isolation**^[1] < 0.15
- 19.5 < M_{µµ} < 63.5 ^[2]

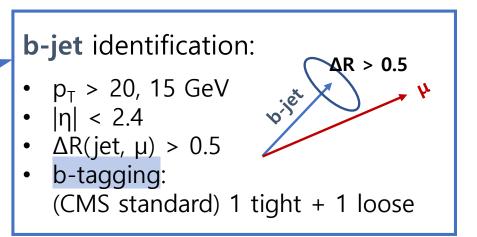
b-jet identification:

- p_T > 20, 15 GeV
- |η| < 2.4
- $\Delta R(jet, \mu) > 0.4$
 - b-tagging: (CMS standard) 1 tight + 1 loose

Particle-Flow(PF) isolation^[1]

Pile-up correction is not applied in this recasting (even though the paper uses it)

• **Dimuon mass cut** $(19.5 < M_{\mu\mu} < 63.5)^{[2]}$


Cover full M(a_1) region, [20, 62.5], but veto Υ and Z boson

Recasting: Preselection

 \overline{b} a_1 \mathbf{h} μ^+

Muon identification:

- p_T > 20, 9 GeV
- |η| < 2.4
- (CMS standard) tight ID
- PF isolation^[1] < 0.15
- 19.5 < M_{uu} < 63.5 ^[2]

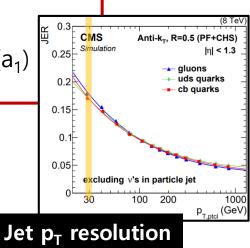
b-tagging

- Delphes simulation does not provide variables for b-tagging

 \rightarrow Cannot distinguish "tight" and "loose" working points

→ "loose + loose" working point is applied in Delphes and re-weights it using tight/loose efficiency

Final (event) selection

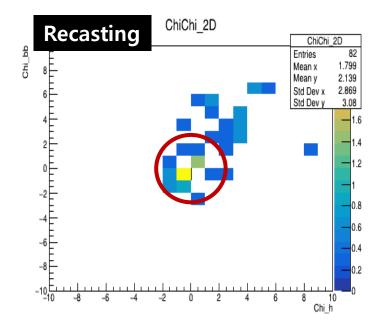

- MET < 60 GeV
- $\chi_{bb}^2 + \chi_h^2 < 5$, where $\chi_{bb} = \frac{m_{bb} m_{\mu\mu}}{\sigma_{bb}}$ and $\chi_h = \frac{m_{\mu\mu bb} m_h}{\sigma_h}$ \rightarrow This model independent selection features the signal very well!

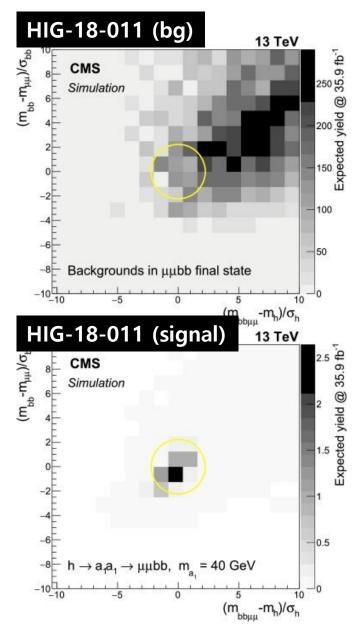
Final (event) selection

- MET < 60 GeV
- $\chi_{bb}^2 + \chi_h^2 < 5$, where $\chi_{bb} = \frac{m_{bb} m_{\mu\mu}}{\sigma_{bb}}$ and $\chi_h = \frac{m_{\mu\mu bb} m_h}{\sigma_h}$ \rightarrow This model independent selection features the signal very well!

σ calculation

- **Original method** (paper): Fit the signal mass plot
- Simplified method: $\sigma(p_T^{jet} \sim 30) \sim 17 \%$ $\rightarrow \sigma_{bb} \sim 17 \% \text{ of } M(a_1)$




Simplified method:

$$\sigma(p_T^{\mu} \sim 30) \sim 1 \%$$

 $\sigma(p_T^{jet} \sim 30) \sim 17 \%$
 $\rightarrow \sigma_h \sim \sqrt{(2\sigma^{\mu} + 2\sigma^{jet})/4}$
 $= 9.3 \text{ GeV}$

Chi2 discriminator

- $m(a_1) = 40$ GeV results
- Chi2 discriminator can separate the signal very well (Right two plots)
- We've got almost similar results for the paper (Bottom two plots)

Object selection

	Preselection		Final selection	
	HIG-18-011	recasting	HIG-18-011	recasting
m _{a1} = 20 GeV	14.0	15.9	6.0	1.0
m _{a1} = 40 GeV	14.8	15.0	7.5	3.9
m _{a1} = 60 GeV	16.7	16.8	10.1	6.3
	1			

Preselection results are very good!

Preselection		Final selection	
HIG-18-011	recasting	HIG-18-011	recasting
14.0	15.9	6.0	1.0
14.8	15.0	7.5	3.9
16.7	16.8	10.1	6.3
	HIG-18-011 14.0 14.8	HIG-18-011 recasting 14.0 15.9 14.8 15.0	HIG-18-011 recasting HIG-18-011 14.0 15.9 6.0 14.8 15.0 7.5

- Final yields are much different for $m_{a1} = 20$ GeV sample, but it will recover for high mass a_1
- (We carefully expect) At low mass region, boosted signature makes this kind of inefficiency
 → Delphes cannot reconstruct boosted jet signature(?)

- Exotic decay of h_{125} is studied with "h125 \rightarrow a1a1 \rightarrow µµbb" decay channel
- Signal yields and χ^2 distributions are presented to compare with the paper, HIG-18-011
- **Preselection results are almost identical**, but final selection can make some inefficiency (probably due to the boosted signature)

Next Action Items

- Generate large sample
- Check boosted signature
- Recalculated $\sigma_{bb(h)}$ using a fit function

Th→aank you ☺