

SARAH - A Tool for SUSY Model Builders

Florian Staub University of Würzburg

arXiv:0806.0538 Comput.Phys.Commun.181:1077-1086,2010. theorie.physik.uni-wuerzburg.de/~fnstaub/sarah.html

TOOLS 2010, Winchester 02. July 2010

Outline

Basic Idea

SARAH is a Mathematica package to get with minimal amount of information all properties of a $(N = 1)$ -SUSY-model

Basic Idea

SARAH is a Mathematica package to get with minimal amount of information all properties of a $(N = 1)$ -SUSY-model

Basic Idea

SARAH is a Mathematica package to get with minimal amount of information all properties of a $(N = 1)$ -SUSY-model

Supported Models

SARAH can handle a large variety of models

Particle Content and Interactions

- Gauge sector can be any direct product of $SU(N)$ groups
- All irreducible representations of $SU(N)$ for chiral superfields are possible
- Matter interactions are defined in a compact form by superpotential
- All gauge interactions automatically added
- Arbitrary number of field rotations/symmetry breakings
- **Gauge fixing terms can be specified in** R_{ϵ} **gauge**
- • Non canonical terms can be added in component fields

Full control about parameters

All properties of each parameter can be defined separately:

- Allow/Forbid off-diagonal values
- Define if real or complex, symmetric/antisymmetric
- Define relations between parameters
- GUT normalization for gauge couplings
- Give TeX and output form

What happens automatically:

- Model checked for Gauge Anomalies
- Charge conservation of superpotential checked
- Soft SUSY Breaking terms are added
- Complete Lagrangian is calculated for component fields
- Ghost interactions are added
- Particles can be integrated out

 \rightarrow Effective operators up to Dimension 6 calculated

Tree Level relations

- Masses / mass matrices are derived
- Tadpole equations for all VEVs are calculated

What can be calculated in addition:

- Specific vertices for given fields
- All vertices of the model: different lists for generic subclasses
- 1-loop corrections to Self Energies and Tadpoles

Renormalization Group Equations

1- and 2-loop anomalous dimensions of all superfields and all β -functions for

- **o** gauge couplings
- superpotential parameters
- soft breaking parameters
- **o** VFVs

Generations of fields can be treated as variable

Model Files

Model Files

Model files for CalcHep/CompHep and FenyArts/FormCalc can be generated.

Model Files

Model Files

Model files for CalcHep/CompHep and FenyArts/FormCalc can be generated.

Features of the model file for CalcHep/CompHep:

- Unitary and Feynman gauge supported
- Auxiliary fields for splitting of vertices with 4 colored particles included
- CP violation possible
- Can be used with MicrOmegas

LATEX

A model specific LATEX-file can be created:

- LAT_{EX}-form of all parameters and fields can be defined in SARAH
- TeX output with all information about the model (particle content, mass matrices, tadpole equations, self-energies, RGEs, vertices)
- Including Feynman diagrams for all vertices using FeynMP
- New Mathematica functions for output of long formulas

Verification of the Output

Some of the checks so far:

- MSSM results checked against FeynArts and CalcHep/CompHep
- Relic density calculations with MicrOmegas were compared
- Analytical expressions of RGEs for MSSM, NMSSM and MSSM with broken R-Parity were compared with literature
- • RGEs and loop corrections for the MSSM have been checked numerically against the implementation in SPheno (\rightarrow later more)

Verification of the Output

Some of the checks so far:

- MSSM results checked against FeynArts and CalcHep/CompHep
- Relic density calculations with MicrOmegas were compared
- Analytical expressions of RGEs for MSSM, NMSSM and MSSM with broken R-Parity were compared with literature
- RGEs and loop corrections for the MSSM have been checked numerically against the implementation in SPheno (\rightarrow later more)

Thanks to $\,$

- Björn Hermann for checking the NMSSM
- **•** Stefan Liebler for checking $\mu\nu$ SSM
- Avelino Vincente for checking $SU(2)_L \times SU(2)_R$ -Model

[Introduction and Functions](#page-2-0) [Tests](#page-12-0)

Included Model File

So far, the following models are included in the package

- MSSM: with/without flavor violation, in CKM basis, with CP violation
- NMSSM: with/without CP violation, in CKM basis
- \bullet $SU(5)$ -extensions of the MSSM
- MSSM with bilinear R-parity violation and $\mu\nu$ SSM
- \bullet SM, MSSM with additional $U(1)$, effective MSSM without gluino

Included Model File

So far, the following models are included in the package

- MSSM: with/without flavor violation, in CKM basis, with CP violation
- o NMSSM: with/without CP violation, in CKM basis
- \bullet $SU(5)$ -extensions of the MSSM
- MSSM with bilinear R-parity violation and $\mu\nu$ SSM
- \bullet SM, MSSM with additional $U(1)$, effective MSSM without gluino

 \rightarrow Easy to create new models ...

• The gauge sector hasn't to be changed

```
Gauge[[1]]={B, U[1], hypercharge, g1, False};
Gauge[[2]]=\{WB, SU[2], let, g2, True\};Gauge[3]]={G, SU[3], color, g3, False};
```


- The gauge sector hasn't to be changed
- Add singlet superfield

```
Fields[[1]] = \{\{uL, dL\}, 3, q, 1/6, 2, 3\};...
Fields[5]] = \{conj[dR], 3, d, 1/3, 1, -3\};Fields[[6]] = \{conj[uR], 3, u, -2/3, 1, -3\};Fields[7]] = \{conj[eR], 3, e, 1, 1, 1\};
```


- The gauge sector hasn't to be changed
- Add singlet superfield

```
Fields[[1]] = \{\{uL, dL\}, 3, q, 1/6, 2, 3\};...
Fields[5]] = \{conj[dR], 3, d, 1/3, 1, -3\};Fields[[6]] = \{conj[uR], 3, u, -2/3, 1, -3\};Fields[7]] = \{conj[eR], 3, e, 1, 1, 1\};Fields[[8]] = \{Sing, 1, S, 0, 1, 1\};
```


- The gauge sector hasn't to be changed
- Add singlet superfield
- Change superpotential

SuperPotential = {
$$
\{Yu, 1\}, \{q, Hu, u\}
$$
,

\n{ $\{Yd, -1\}, \{q, Hd, d\}$, { $\{Ye, -1\}, \{1, Hd, e\}$,

\n{ $\{\mu, 1\}, \{Hu, Hd\}$ }

- The gauge sector hasn't to be changed
- Add singlet superfield
- Change superpotential

```
SuperPotential = \{\{\{Yu, 1\}, \{q, Hu, u\}\}\,\{\{YA,-1\},\{q, Hd, d\}\},\{\{Ye,-1\},\{1, Hd, e\}\},\{\{\lambda,1\},\{Hu, Ha, S\}\}\,\{ {\kappa, 1/3}, {\S, S, S} \} \};
```


- The gauge sector hasn't to be changed
- Add singlet superfield
- Change superpotential
- Give VEV to scalar singlet

```
DEFINITION[EWSB][VEVs]=
\{[SHdO, \{vd, 1/\sqrt{2}\}, \{ \text{sigma}, 1/\sqrt{2}\}, \{ \text{sigma}, 1/\sqrt{2}\},{{SHu0, {vu, 1/√2}, {sigmau, 1/√2},{phiu, 1/√2}}};<br>{SHu0, {vu, 1/√2}, {sigmau, I/√2},{phiu, 1/√2}}};
```


- The gauge sector hasn't to be changed
- Add singlet superfield
- Change superpotential
- Give VEV to scalar singlet

```
DEFINITION[EWSB][VEVs]=
\{[SHdO, \{vd, 1/\sqrt{2}\}, \{ \text{sigma}, 1/\sqrt{2}\}, \{ \text{sigma}, 1/\sqrt{2}\},{{SHu0, {vu, 1/√2}, {sigmau, 1/√2},{phiu, 1/√2}}<br>{SHu0, {vu, 1/√2}, {sigmau, I/√2},{phiu, 1/√2}},
{Shuo, {vu, 1/\sqrt{2}}, {sigmau, 1/\sqrt{2}},{phiu, 1/\sqrt{2}}}<br>{SSing, {vS,1/\sqrt{2}},{sigmaS,I/\sqrt{2}},{phiS,1/\sqrt{2}}};
```


- The gauge sector hasn't to be changed
- Add singlet superfield
- Change superpotential
- Give VEV to scalar singlet
- Change particle mixings

```
DEFINITION[EWSB][MatterSector]=
\{\{\text{SdL, SdR}\}, \{\text{Sd, ZD}\}\},...
\{\{\text{phi}, \text{phi}\}, \{\text{h}, \text{ZH}\}\},\\{\{\text{sigma}, \text{sigma}\}, \{\text{Ah}, \text{ZA}\}\},{fFB, fWO, FHd0, FHu0}, {LO, ZN},{ { {fWm, FHdm}, {fWp, FHup}} , { {Lm,Um}, {Lp,Up}} }
```


- The gauge sector hasn't to be changed
- Add singlet superfield
- Change superpotential
- Give VEV to scalar singlet
- Change particle mixings

```
DEFINITION[EWSB][MatterSector]=
\{\{\text{SdL, SdR}\}, \{\text{Sd, ZD}\}\},...
\{\{\text{phi}, \text{phi}, \text{phi}\}, \{\text{h}, \text{ZH}\}\},\{\{\text{sigma}, \text{sigma}, \text{sigma}\}, \{\text{Ah}, \text{ZA}\}\}\,\{\{fB, fWO, FHd0, FHu0, FSing\}, \{LO, ZN\}\},{({fWm, FHdm}, fWp, FHup)}, {Lm,Um}, {Lp, Up}}
```


- The gauge sector hasn't to be changed
- Add singlet superfield
- Change superpotential
- Give VEV to scalar singlet
- Change particle mixings
- Define properties of parameters (optional)

```
\{\kappa,\{\text{LareX }\rightarrow\"\}\kappa",
     Real \rightarrow True.Dependence -> None,
     Value -> None,
     LesHouches \rightarrow {EXTPAR, 62} }}
```


- The gauge sector hasn't to be changed
- Add singlet superfield
- Change superpotential
- Give VEV to scalar singlet
- Change particle mixings
- Define properties of parameters (optional)

That's All!

The new model files are evaluated within few minutes

Evaluation time

Evaluation time in seconds (Intel Q8200, 2.33 GHz, 4GB Ram):

The current situation

SARAH:

- $+$ Easy to create new models
- $+$ Fast way to get analytical expressions for RGEs, vertices, masses, . . .
	- No routines for RGE running, phase space, . . .
	- Numerically slow

The current situation

SARAH:

- $+$ Easy to create new models
- $+$ Fast way to get analytical expressions for RGEs, vertices, masses, . . .
	- No routines for RGE running, phase space, . . .
	- Numerically slow

SPheno:

- $+$ Routines for RGE running, phase space integrals, loop integrals, . . .
- $+$ Numerically fast
	- Time consuming to implement new models

The current situation

SARAH:

- $+$ Easy to create new models
- $+$ Fast way to get analytical expressions for RGEs, vertices, masses, . . .
	- No routines for RGE running, phase space, . . .
	- Numerically slow

SPheno:

- $+$ Routines for RGE running, phase space integrals, loop integrals, . . .
- $+$ Numerically fast
	- Time consuming to implement new models

SPheno and SARAH

Is it possible to combine both programs?

[Preview:](#page-29-0) SPheno and SARAH

The Idea

\rightarrow Automatized way from model building to phenomenology

Status

Free parameters of the model and boundary conditions at different scales easy to define in SARAH

Completely general routines for source code generation of

- RGE running, even with thresholds: support of GUT theories
- All couplings
- Tree-level and 1-loop masses
- Two and three body decays
- In- and output
- Fit to electroweak data and low energy constraints adapted from SPheno

Check of the SPheno output

Comparison of a 'SARAH-SPheno' with SPheno 3v48

 $M_{1/2} = 250, A_0 = -300, \tan \beta = 10, \mu > 0$

(dashed line: SPheno 3v48, red line: SPheno 3v48 without 2-loop Higgs masses, blue line: 'SARAH-SPheno')

SPheno output for other models (e.g. NMSSM, left/right model) tested at the moment

Florian Staub University of Würzburg 18 / 19 States 18 June 18 June 18 J

Summary

- SARAH is a tool for analyzing SUSY models
- Fast calculation of all tree level masses and vertices
- Routines for 1-loop self-energies/tadpoles and 1- and 2-loop RGEs
- Model files for CalcHep/CompHep and FeynArts/FormCalc can be created
- The models can be changed in SARAH in an easy and intuitive way
- Next version supposed to be a 'spectrum-generator-generator'

Mass matrices, vertices, ...

• Loading SARAH and starting the model

```
<<path/SARAH.m
Start[''NMSSM'',''One_Rotation'']
```


Mass matrices, vertices, ...

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]

Mass[VWm] /. Masses[EWSB]

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]

$$
(g_2^2 \ast (v_d^2 + v_u^2))/4
$$

Mass matrices, vertices, ...

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]
- Mass matrices a returned by MassMatrix [particle]

MassMatrix[hh][[3,3]]

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]
- Mass matrices a returned by MassMatrix[particle]

$$
\frac{m_s^2+3v_S^2\kappa^2-v_dv_u\kappa\lambda+(v_d^2\lambda^2)/2+(v_u^2\lambda^2)/2+\\ \sqrt{2}*v_S*T_\kappa
$$

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]
- Mass matrices a returned by MassMatrix [particle]
- One specific vertex is calculated by Vertex

Vertex[{Ah,Ah,Ah,Ah}]

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]
- Mass matrices a returned by MassMatrix [particle]
- One specific vertex is calculated by Vertex

 $\{\nabla A \hbox{h}[\text{gt1}], \hbox{Ah}[\text{gt2}], \hbox{Ah}[\text{gt3}], \hbox{Ah}[\text{gt4}]\}\n$ ${(I/4)(Z_A[gt1,2](4\lambda Z_A[gt2,3](Z_A[gt3,3](\kappa Z_A[gt4,1] \lambda Z_A[\text{gt4}, 2]) + ...$))), 1}}

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]
- Mass matrices a returned by MassMatrix [particle]
- One specific vertex is calculated by Vertex
- Use MakeVertexList[Eigenstates] for calculating all vertices at once

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]
- Mass matrices a returned by MassMatrix [particle]
- One specific vertex is calculated by Vertex
- Use MakeVertexList[Eigenstates] for calculating all vertices at once
- Writing model files is done by MakeFeynArts, MakeCHep[]

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]
- Mass matrices a returned by MassMatrix [particle]
- One specific vertex is calculated by Vertex
- Use MakeVertexList[Eigenstates] for calculating all vertices at once
- Writing model files is done by MakeFeynArts, MakeCHep[]
- RGEs are calculated with CalcRGEs^[]

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]
- Mass matrices a returned by MassMatrix [particle]
- One specific vertex is calculated by Vertex
- Use MakeVertexList[Eigenstates] for calculating all vertices at once
- Writing model files is done by MakeFeynArts, MakeCHep[]
- RGEs are calculated with CalcRGEs []

BetaYijk[[5,1]]

Mass matrices, vertices, . . .

λ

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]
- Mass matrices a returned by MassMatrix [particle]
- One specific vertex is calculated by Vertex
- Use MakeVertexList[Eigenstates] for calculating all vertices at once
- Writing model files is done by MakeFeynArts, MakeCHep[]
- RGEs are calculated with CalcRGEs []

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]
- Mass matrices a returned by MassMatrix [particle]
- One specific vertex is calculated by Vertex
- Use MakeVertexList[Eigenstates] for calculating all vertices at once
- Writing model files is done by MakeFeynArts, MakeCHep[]
- RGEs are calculated with CalcRGEs []

BetaYijk[[5,2]]

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]
- Mass matrices a returned by MassMatrix [particle]
- One specific vertex is calculated by Vertex
- Use MakeVertexList[Eigenstates] for calculating all vertices at once
- Writing model files is done by MakeFeynArts, MakeCHep[]
- RGEs are calculated with CalcRGEs[]

$$
\begin{array}{lcl} -3g_1^2\lambda/5 & - & 3g_2^2\lambda & + & 2\kappa^2\lambda & + & 4\lambda^3 & + \\ \lambda(3\texttt{trace}[Y_d,\texttt{Adj}[Y_d]] & + & \texttt{trace}[Y_e,\texttt{Adj}[Y_e]] & + \\ 3\texttt{trace}[Y_u,\texttt{Adj}[Y_u]]) \end{array}
$$

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]
- Mass matrices a returned by MassMatrix [particle]
- One specific vertex is calculated by Vertex
- Use MakeVertexList[Eigenstates] for calculating all vertices at once
- Writing model files is done by MakeFeynArts, MakeCHep[]
- RGEs are calculated with CalcRGEs []
- CalcLoopCorrections[Eigenstates] calculates 1-loop self-energies and tadpoles

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]
- Mass matrices a returned by MassMatrix [particle]
- One specific vertex is calculated by Vertex
- Use MakeVertexList[Eigenstates] for calculating all vertices at once
- Writing model files is done by MakeFeynArts, MakeCHep[]
- RGEs are calculated with CalcRGEs []
- CalcLoopCorrections[Eigenstates] calculates 1-loop self-energies and tadpoles

SelfEnergySum[VZ]

- Loading SARAH and starting the model
- All tree level masses are saved in Masses [Eigenstates]
- Mass matrices a returned by MassMatrix [particle]
- One specific vertex is calculated by Vertex
- Use MakeVertexList[Eigenstates] for calculating all vertices at once
- Writing model files is done by MakeFeynArts, MakeCHep[]
- RGEs are calculated with CalcRGEs []
- CalcLoopCorrections[Eigenstates] calculates 1-loop self-energies and tadpoles

$$
\begin{array}{l}\n(|\Gamma_{Z,W^+,W^-}|^2(-8B_{22}(p^2,m^2_{W^-},m^2_{W^-})\\ \nB_0(p^2,m^2_{W^-},m^2_{W^-}]) * (4p^2+2m^2_{W^-})))/2 + \dots\n\end{array}
$$