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Demands for New Physics at TeV Scales

2

Hierarchy 
Problem

Gauge 
Unification

Dark 
Matter

can solve the problems



After EW Symmetry Breaking:

Minimal Supersymmetric Standard Model
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Minimal Supersymmetric Standard Model

Superpotential:

Soft SUSY-breaking terms:

105 new parameters

Constraints on FCNCs and CP-violation can help
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Minimal Supersymmetric Standard Model

SUSY

Gravity-
mediated

Anomaly-
mediated

Gauge-
mediated

Unified at GUT Scale

At EW scale:

mSUGRA/CMSSM

S. P. Martin [arXiv:hep-ph/9709356]



Goal: given a particular version of supersymmetry, determine 
which parameter combinations fit all experiments, and how well

Issue 1: Combining fits to different experiments

Easy – composite likelihood

dark matter relic density from WMAP

precision electroweak tests at LEP

LEP limits on sparticle masses

B-factory data (rare decays,           )

muon anomalous magnetic moment

Issue 2: Finding the points with the best likelihoods

Tough – grid scans, MCMCs, nested sampling or genetic

algorithms

Public codes: SuperBayeS, SFitter, Fittino
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Scanning Supersymmetric Parameter Spaces
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SUSY Global Fit



8

Two fundamentally different approaches:

•Bayesian statistics:

We are interested in the marginal posterior for the parameters:

•Frequentist statistics:

We are interested in the profile likelihood for the parameters:

Thus in the profile likelihood one maximizes the value of the likelihood along the hidden dimensions, rather than integrating it

out as in the marginal posterior.

prior dependent

in principle independent of priors

Statistical Framework



Statistical Framework

Bayes’ Theorem:

posterior 

probability density 

function

likelihood

prior probability 

density function

evidence or model 

likelihood
(just a renormalization factor for 

our purpose)

•One practically interesting consequence of Bayesian inference is 

that it gives a powerful way of estimating how robust a fit is, i.e., if the 

posterior is strongly dependent on different priors, this actually means 

that the data are not sufficient or accurate enough to constrain the 
model parameters.

•If a fit is robust, the Bayesian and frequentist methods should result 

in similar confidence regions of the parameter space. This is NOT the 

case for SUSY models.
9



Flat Prior:

Log Prior:

R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The impact of priors and observables 

on parameter inferences in the Constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792]

Statistical Framework

Some CMSSM Scans with SuperBayeS:
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•Developed by Roberto Ruiz de Austri, Roberto Trotta, Farhan Feroz, Leszek

Roszkowski, and Mike Hobson.

•It is a package for fast and efficient sampling of the CMSSM.

•Compares SUSY predictions with observable quantities, including sparticle

masses, collider observables, B-factory data, dark matter relic abundance, 

direct detection cross sections, indirect detection quantities etc. 

•The package combines  SoftSusy,  DarkSusy,  FeynHiggs,  Bdecay and  
MicrOMEGAs.

•It uses Bayesian techniques to explore multidimensional SUSY parameter 

spaces. Scanning can be performed using Markov Chain Monte Carlo 

(MCMC) technology or more efficiently by employing the new scanning 

technique called nested sampling (MultiNest algorithm).

•Although these methods have been used for the profile likelihood analysis 

of the model, they are essentially optimized for the marginal posterior 

analysis of the model.

SuperBayes
(www.superbayes.org)
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New version v1.5 now 

available (June 2010) 

2
0

0
 t

im
e

s 
fa

st
e

r



•Developed by Roberto Ruiz de Austri, Roberto Trotta, Farhan Feroz, Leszek

Roszkowski, and Mike Hobson.

•It is a package for fast and efficient sampling of the CMSSM.

•Compares SUSY predictions with observable quantities, including sparticle

masses, collider observables, B-factory data, dark matter relic abundance, 

direct detection cross sections, indirect detection quantities etc. 

•The package combines  SoftSusy,  DarkSusy,  FeynHiggs,  Bdecay and  
MicrOMEGAs.

•It uses Bayesian techniques to explore multidimensional SUSY parameter 

spaces. Scanning can be performed using Markov Chain Monte Carlo 

(MCMC) technology or more efficiently by employing the new scanning 

technique called nested sampling (MultiNest algorithm).

•Although these methods have been used for the profile likelihood analysis 

of the model, they are essentially optimized for the marginal posterior 

analysis of the model.

SuperBayes
(www.superbayes.org)

12

New version v1.5 now 

available (June 2010) 

2
0

0
 t

im
e

s 
fa

st
e

r



•Developed by Roberto Ruiz de Austri, Roberto Trotta, Farhan Feroz, Leszek

Roszkowski, and Mike Hobson.

•It is a package for fast and efficient sampling of the CMSSM.

•Compares SUSY predictions with observable quantities, including sparticle

masses, collider observables, B-factory data, dark matter relic abundance, 

direct detection cross sections, indirect detection quantities etc. 

•The package combines  SoftSusy,  DarkSusy,  FeynHiggs,  Bdecay and  
MicrOMEGAs.

•It uses Bayesian techniques to explore multidimensional SUSY parameter 

spaces. Scanning can be performed using Markov Chain Monte Carlo 

(MCMC) technology or more efficiently by employing the new scanning 

technique called nested sampling (MultiNest algorithm).

•Although these methods have been used for the profile likelihood analysis 

of the model, they are essentially optimized for the marginal posterior 

analysis of the model.

SuperBayes
(www.superbayes.org)

13

New version v1.5 now 

available (June 2010) 

2
0

0
 t

im
e

s 
fa

st
e

r



Look very different: prior dependent ?!!

Not a very interesting technique for profile likelihood approach

Flat Prior:

Log Prior:

Profile Likelihoods:

CMSSM + SuperBayes (MultiNest)
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R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The impact of priors and observables on parameter 

inferences in the Constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792]

According to the SB people, MCMC scans give similar results up to some statistical noise



Marginal Posterior vs. Profile Likelihood:

Complex Parameter Spaces
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Spike-like best-fit region

(problematic)

In order to make a profile likelihood analysis of a model correctly, it is extremely 

important to know, with enough accuracy, the highest value of the likelihood function in 

the parameter space of the model. Otherwise, the calculated confidence regions might 

be very far from the real ones.

In thermodynamic language:

Thermal Energy

Temperature

Posterior Mass

Highest Likelihood



GAs can be helpful, because:

•The actual use of these algorithms is to

maximize/minimize a specific function; this is

exactly what we need in the case of a profile likelihood scan.

•GAs are usually considered as powerful

methods in probing global extrema when

the parameter space is very large,

complex or poorly understood; these are precisely

what we have in the case of the supersymmetric models including the

CMSSM.

Genetic Algorithms (GAs)
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GAs are a class of adaptive heuristic search 

techniques that incorporate the evolutionary 

ideas of natural selection and survival of the 
fittest in biology. As such, they represent an 

intelligent random search within a defined 

search space to solve a complex problem.

Genetic Algorithms (GAs)
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. . .

Generation 1

•Selection

•Crossover

•Mutation

•Elitism

Average fitness of the whole population increases. (Survival of the Fittest)

Generation 1



Genetic Algorithms (GAs)

SuperBayes v1.35 PIKAIA 1.2*

* Developed by P. Charbonneau et. al., can be downloaded from http://www.hao.ucar.edu/modeling/pikaia/pikaia.php
18

General Structure:

Reproduction

Mutation

Crossover

Selection
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Model + Nuisance Parameters

CMSSM: GUT-scale parameterisation

m0: scalar mass parameter            m1/2: gaugino mass parameter              

tanβ: ratio of Higgs VEVs                 A0: trilinear coupling              

sgn μ: Higgs mass parameter (+ve in our scans)

Just a testbed – techniques are applicable to any MSSM parameterisation

SM nuisances: reflecting our imperfect knowledge of the values of 
relevant SM parameters 

mt: pole top quark mass                 mb: bottom quark mass              

αem: EM coupling constant             αs: strong coupling constant



20

Data and Other Constraints Included

Physicality
self-consistent solutions to the 

RGEs exist

conditions of EW symmetry 

breaking are satisfied

no masses become 

tachyonic)

Neutralino is the LSP
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2D Profile Likelihoods in m0-m1/2 Plane

Contours based on 

GA best-fit point:

Contours based on 

MN best-fit point:

GAs find better fits than nested sampling (Χ2 = 9.35 vs. Χ2 = 13.51).
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Contours based on 

GA best-fit point:

Contours based on 

MN best-fit point:

2D Profile Likelihoods in A0-tanβ Plane
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1D Profile Likelihoods for CMSSM Parameters

GA COA BFP

GA Global 

(FP) BFP
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Best-fit Parameter Values
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Best-fit Parameter Values
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Mass Spectrum at Best-fit Points
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1D Profile Likelihoods for Some Observables 

GA COA BFP

GA Global 

(FP) BFP

The LHC is in principle able to investigate a large fraction of the high-likelihood points in the CMSSM 

parameter space if it explores sparticle masses up to around 3 TeV.  
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2D Profile Likelihoods in DM Direct Detection Plane (SI)

Contours based on 

GA best-fit point:

Contours based on 

MN best-fit point:

Best-fit point is actually ruled out by direct detection (under standard halo assumptions).

Secondary maximum still OK.
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2D Profile Likelihoods in DM Indirect Detection Plane

Contours based on 

GA best-fit point:

Contours based on 

MN best-fit point:

Global best-fit point should be probed soon by Fermi (See e.g. P. Scott, J. Conrad, J. Edsjö, L.

Bergström, C. Farnier & YA. Direct Constraints on Minimal Supersymmetry from Fermi-LAT Observations of

the Dwarf Galaxy Segue 1, JCAP 01, 031 (2010) [arXiv:0909.3300])

The GA turns up a ‘new’ region at moderate <σv>, around 400 GeV. This region is a high-m0 stau

coannihilation region, apparently missed in other scans.
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Summary and Conclusions

1. Constraining the parameter space of the MSSM using existing data is

under no circumstances an easy or straightforward task. Even in the case of

the CMSSM, a highly simplified and economical version of the model, the present data are not

sufficient to constrain the parameters in a way completely independent of computational and

statistical techniques.

1. Many recent activities in this field have used scanning methods
optimised for calculating the Bayesian evidence and posterior PDF. Highly

successful in revealing the complex structure of SUSY models, demonstrating that some patience

will be required before we can place any strong constraints on their parameters.

2. Bayesian scanning methods have also been employed for frequentist

analyses of the problem, particularly in the framework of the profile

likelihood. These methods are not optimised for such frequentist analyses, so care should be

taken in applying them to such tasks.

3. We have employed a completely new scanning algorithm, based on

GAs. They seem to be a powerful tool for frequentist approaches to the problem of scanning

the CMSSM parameter space. We compared the outcomes of GA scans directly with those of the

state-of-the-art Bayesian algorithm MultiNest, in the framework of the CMSSM.

4. We found many new high-likelihood CMSSM points, which have a strong

impact on the final statistical conclusions of the study. These not only influence

considerably the inferred high-likelihood regions and confidence levels on the parameter

values, but also indicate that the applicability of the conventional Bayesian scanning techniques

is highly questionable in a frequentist context.
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Summary and Conclusions

5. Although our initial motivation in using GAs was to gain a correct

estimate of the likelihood at the global best-fit point, which is crucial in a

profile likelihood analysis, we also realised that they can find many new

and interesting points in almost all the relevant regions of parameter

space. These points strongly affect the inferred confidence regions around the best-t point.

Even though we cannot be confident of exactly how completely our algorithm is really mapping

these high-likelihood regions, it has certainly covered large parts of them better than any

previous algorithm.

6. By improving the different ingredients of GAs, such as the crossover and

mutation schemes, this ability might even be enhanced further. We largely

employed the standard, simplest versions of the genetic operators in our analysis, as well as very

typical genetic parameters. These turned out to work sufficiently well for our purposes. Although

we believe that tuning the algorithm might produce even more interesting results, it is good news

that satisfactory results can be produced even with a very generic version. This likely means that

one can apply the method to more complicated SUSY models without extensive ne-tuning.

7. We have also compared our algorithm with MultiNest in terms of speed

and convergence, and argued that GAs are no worse than MultiNest in

this respect. GAs have a large potential for parallelisation, reducing considerably the time

required for a typical run. This property, as well as the fact that the computational eort scales

linearly (i.e. as kN for an N-dimensional parameter space), also makes GAs an excellent method

for the frequentist exploration of higher-dimensional SUSY parameter spaces.
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Summary and Conclusions

8. The focus point region is favoured in our analysis over the co-annihilation
region, in contrast to findings from some other MCMC studies, where the

opposite is claimed. We also found a rather large part of the stau co-

annihilation region, consistent with all experimental data, located at

high m0. That is, at least in our particular setup, high masses, corresponding either to the FP or

the COA regions, are by no means disfavoured by current data (except perhaps direct detection

of dark matter). The discrepancy might originate in the different scanning algorithms employed,

or in the different physics and likelihood calculations performed in each analysis. We have

however shown, by comparing our results with others produced using exactly the same setup

except for the scanning algorithm, that one should not be at all confident that all the relevant

points for a frequentist analysis can be found by scanning techniques optimised for Bayesian

statistics, such as nested sampling and MCMCs.
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Summary and Conclusions

The bottom line of our work is that:

We once again see that even the CMSSM, despite its simplicity, possesses a

highly complex and poorly-understood structure, with many small, fine-

tuned regions. This makes investigation of the model parameter space

very difficult and still very challenging for modern statistical scanning

techniques. Although the method proposed in this paper seems to

outperform the usual Bayesian techniques in a frequentist analysis, it is

important to remember that it may by no means be the final word in this

direction. Dependence of the results on the chosen statistical

framework, measure and method calls for caution in drawing strong

conclusions based on such scans. The situation will of course improve

significantly with additional constraints provided by forthcoming data.
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