micrOMEGAs : a tool for dark matter studies

G. Bélanger LAPTH

G. B, F. Boudjema, A. Pukhov, A. Semenov hep-ph/0112278, hep-ph/0405253, hep-ph/0607059, arXiv:08032360[hep-ph] arXiv:1004.1092[hep-ph]

Outline

- General description
- Interactive session
 - Running the code
 - New models

- Download
 - http:://wwwlapp.in2p3.fr/lapth/micromegas
- Installation
 - tar -zxvf micromegas_2.4.O.tgz

Motivation

- Strong evidence for dark matter
- CMB (WMAP+SDSS) gives precise information on the amount of dark matter
- Most attractive explanation for dark matter: new weakly interacting particle
- Many models for new physics whose main motivation is to solve the hierarchy problem also have a dark matter candidate – symmetry that ensures that lightest particle is stable
 - MSSM and extensions, UED, warped extra-dim, little Higgs, techinicolour +....
- R-parity like symmetry introduced to avoid rapid proton decay or guarantee agreement with electroweak precision

- Cosmological measurements are strongly constraining dark matter models
- Direct and indirect searches are also probing models of dark matter
 - Xenon, CDMS, Cogent, Picasso, Coupp, DAMA, Fermi, PAMELA
- Public codes for dark matter studies in the MSSM:
 - micrOMEGAs, DarkSUSY, Isatools, superIso

•Complete tool for dark matter studies : precise calculation of relic density, direct detection, indirect detection, cross section at colliders and decays in a wide variety of models: micrOMEGAs2.4

Relic density of wimps

- In early universe WIMPs are present in large number and they are in thermal equilibrium
- As the universe expanded and cooled their density is reduced through pair annihilation
- Eventually density is too low for annihilation process to keep up with expansion rate
 - Freeze-out temperature
- LSP decouples from standard model particles, density depends only on expansion rate of the universe

$$\frac{dn}{dt} = -3Hn - \langle \sigma v \rangle \left[n^2 - n_{eq}^2 \right]$$

$$\frac{dY}{dT} = \sqrt{\frac{\pi g_*(T)}{45}} M_p < \sigma v > (Y(T)^2 - Y_{eq}(T)^2)$$

Solving numerically, get present day abundance $Y(T_0)$ and

$$\Omega_{LOP}h^2 = \frac{8\pi}{3} \frac{s(T_0)}{M_p^2 (100 (\text{km/s/Mpc}))^2} M_{LOP} Y(T_0) = 2.742 \times 10^8 \frac{M_{LOP}}{GeV} Y(T_0)$$

Weakly interacting particle gives roughly the right annihilation cross section to have $\Omega h^2 \sim 0.1$ 'WIMP miracle'

$$\Omega_X h^2 \approx \frac{3 \times 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma v \rangle}$$

Typical annihilation cross-section at FO

 $<\sigma v>= 3 \times 10^{-26} \mathrm{cm}^3/\mathrm{sec}$

Coannihilation

- If M(NLSP)~M(LSP) then $\chi + X \rightarrow \chi' + Y$ maintains thermal equilibrium between NLSP-LSP even after non standard particles decouple from standard ones
- Relic density depends on rate for all processes involving LSP/NLSP → SM
- All particles eventually decay into LSP, calculation of relic density requires summing over all possible processes

$$<\sigma v>=\frac{\sum\limits_{i,j}^{\infty}g_ig_j\int\limits_{(m_i+m_j)^2}ds\sqrt{s}K_1(\sqrt{s}/T)p_{ij}^2\sigma_{ij}(s)}{2T(\sum\limits_i g_im_i^2K_2(m_i/T))^2}$$
Exp(- Δ M)/T

- Important processes are those involving particles close in mass to LSP, for example up to 3000 processes can contribute in MSSM
- Need for automation

micrOMEGAs

micrOMEGAs_2.4

- A generic program to calculate DM properties in any model
- Assume some "R-parity ", particles odd/even under R (odd particles: ~)
- Need to specify model file in CalcHEP notation : particles, variables, vertices, functions (do by hand or with LanHEP)
- After the model is implemented and checked with CalcHEP
 - Code then automatically looks for "LSP"
 - Computes all annihilation and coannihilation cross-sections
 - Complete tree-level matrix elements for all subprocesses
 - Automatically check for presence of resonances and improves the accuracy near pole
 - Numerical solution of evolution equation and calculation of relic density with non-relativistic thermal averaging and proper treatment of poles and thresholds
 - Gondolo, Gelmini, NPB 360 (1991)145
 - coannihilation : Edsjo, Gondolo PRD56(1997) 1879

• Includes and compiles relevant channels only if needed (Beps)

$$B = \frac{K_1((m_i + m_j)/T)}{K_1(2m_{LOP}/T)} \approx e^{-X \frac{(m_i + m_j - 2M_{LOP})}{M_{LOP}}} > B_{\epsilon}$$

- Calculates the relic density for any LSP (even charged)
- Computes σv , v->0 for LSP,LSP annihilation and signatures for γ and positron/antiproton including propagation
- Automatically compute elastic scattering rate on nucleon/nucleus
- CalcHEP is included: computes all 2->2 processes and 1-> 2,3 decays at tree-level
- Some facilities provided for pp collisions
- Interactive link to CalcHEP
- For new models : constraints and auxiliary routines must be provided by the user in fortran or C routine
- C code

Dark matter models

- Models distributed
 - MSSM
 - NMSSM (with C. Hugonie, hep-ph/0505142)
 - CPV-MSSM (with S. Kraml, hep-ph/0604150)
 - Right-handed neutrino (with G. Servant, arXiv:0706.0526)
 - Little Higgs (A. Belyaev)
- Other models available
 - Scalar DM (Lopez-Honorez et al., S. Su)
- Models to be distributed
 - SUSY N=2 (with K. Benakli et al arXiv:0905.1043)
 - UED (with M. Kakizaki)
 - MSSM+RHneutrino (with M. Kakizaki, S. Kraml, E.K. Park)

Direct detection

- Elastic scattering of WIMPs off nuclei in a large detector
- Measure nuclear recoil energy, E_R
- Would give best evidence that WIMPs form DM
- Two types of scattering
 - Coherent scattering on A nucleons in nucleus, for spin independent interactions
 - Dominant for heavy nuclei
 - Spin dependent interactions only on one unpaired nucleon
 - Dominant for light nuclei

Direct detection

- Typical diagrams
- Higgs exchange often dominates

For Dirac fermions Z exchange contributes to SI and SD

WIMP- Nucleon amplitude

- For any WIMP, need effective Lagrangian for WIMP-nucleon amplitude *at small momentum* ~100MeV,
- Generic form for a fermion
- $\mathcal{L}_{F} = \lambda_{N} \overline{\psi}_{\chi} \psi_{\chi} \overline{\psi}_{N} \psi_{N} + i\kappa_{1} \overline{\psi}_{\chi} \psi_{\chi} \overline{\psi}_{N} \gamma_{5} \psi_{N} + i\kappa_{2} \overline{\psi}_{\chi} \gamma_{5} \psi_{\chi} \overline{\psi}_{N} \psi_{N} + \kappa_{3} \overline{\psi}_{\chi} \gamma_{5} \psi_{\chi} \overline{\psi}_{N} \gamma_{5} \psi_{N} \psi_{N} + \kappa_{4} \overline{\psi}_{\chi} \gamma_{\mu} \gamma_{5} \psi_{\chi} \overline{\psi}_{N} \gamma^{\mu} \psi_{N} + \xi_{N} \overline{\psi}_{\chi} \gamma_{\mu} \gamma_{5} \psi_{\chi} \overline{\psi}_{N} \gamma^{\mu} \gamma_{5} \psi_{N}$
 - For Majorana fermion only 2 operators survive at small q²
 - First need to compute the WIMP quark amplitudes
 - normally computed symbolically from Feynman diagrams+ Fierz
 - Automatic approach (works for all models)
 - Effective Lagrangian for WIMP-quark scattering has same generic form as WIMP nucleon

WIMP quark effective Lagrangian

		WIMP	Even	Odd
		Spin	operators	operators
S	SI	$0 \\ 1/2 \\ 1$	$\frac{2M_{\chi}\phi_{\chi}\phi_{\chi}\phi_{\chi}\overline{\psi}_{q}\psi_{q}}{\overline{\psi}_{\chi}\psi_{\chi}\psi_{\chi}\overline{\psi}_{q}\psi_{q}}$ $2M_{\chi}A_{\chi,\mu}A_{\chi}^{\mu}\overline{\psi}_{q}\psi_{q}\psi_{q}$	$i(\partial_{\mu}\phi_{\chi}\phi_{\chi}^{*}-\phi_{\chi}\partial_{\mu}\phi_{\chi}^{*})\overline{\psi}_{q}\gamma^{\mu}\psi_{q}$ $\frac{i(\partial_{\mu}\phi_{\chi}\phi_{\chi}\phi_{\chi}\phi_{\chi}\phi_{\chi}\phi_{\chi}\phi_{\chi}\phi_{\chi$
s	D	$\frac{1/2}{1}$	$ \frac{\overline{\psi}_{\chi}\gamma_{\mu}\gamma_{5}\psi_{\chi}\overline{\psi}_{q}\gamma_{\mu}\gamma_{5}\psi_{q}}{\sqrt{6}(\partial_{\alpha}A_{\chi,\beta}^{*}A_{\chi\nu} - A_{\chi\beta}^{*}\partial_{\alpha}A_{\chi\nu})}_{\epsilon^{\alpha\beta\nu\mu}\overline{\psi}_{q}\gamma_{5}\gamma_{\mu}\psi_{q}} $	$-\frac{1}{2}\overline{\psi}_{\chi}\sigma_{\mu\nu}\psi_{\chi}\overline{\psi}_{q}\sigma^{\mu\nu}\psi_{q}$ $i\frac{\sqrt{3}}{2}(A_{\chi\mu}A^{*}_{\chi\nu}-A^{*}_{\chi\mu}A_{\chi\nu})\overline{\psi}_{q}\sigma^{\mu\nu}\psi_{q}$

• Operators for WIMP quark Lagrangian, extract automatically the coefficients for SI and SD –

$$\hat{\mathcal{L}}_{eff}(x) = \sum_{q,s} \lambda_{q,s} \hat{\mathcal{O}}_{q,s}(x) + \xi_{q,s} \hat{\mathcal{O}}'_{q,s}(x)$$

- In micrOMEGAs: evaluate coefficients numerically using projection operators
- Add all projection operators as new vertices in the model
- Compute χq-χq scattering element at zero momentum transfer
- Interference between one projection operator and effective vertex- single out SI or SD contribution

$$\lambda_{q,e} + \lambda_{q,o} = \frac{-i\langle q(p_1), \chi(p_2) | \hat{S}\hat{\mathcal{O}}_{q,e} | q(p_1), \chi(p_2) \rangle}{\langle q(p_1), \chi(p_2) | \hat{\mathcal{O}}_{q,e} \hat{\mathcal{O}}_{q,e} | q(p_1), \chi(p_2) \rangle}$$

- Use quark and anti-quark scattering elements to split even/odd contributions
- The projection operators are added to the model file by micrOMEGAs
- Warning: in the model file must include couplings proportional to light quark masses (eg. Hqq coupling)

WIMP-quark to WIMP-nucleon

- Coefficients relate WIMP-quark operators to WIMP nucleon operators
 - Extracted from experiments
 - Source of theoretical uncertainties
- Example , scalar coefficients, contribution of q to nucleon mass

$$\langle N|m_q \overline{\psi}_q \psi_q |N\rangle = f_q^N M_N \qquad \lambda_{N,p} = \sum_{q=1,6} f_q^N \lambda_{q,p}$$
$$f_Q^N = \frac{2}{27} \left(1 - \sum_{q \le 3} f_q^N \right)$$

- Can be defined by user
- Different coefficients can lead to one order magnitude correction in cross section

- Scalar coefficients extracted from ratios of light quark masses, pion-nucleon sigma term and σ_0 (size of SU(3) breaking effect)
- Large uncertainty in s-quark contribution

Nucleon	f _{Tu}	f _{Td}	f _{Ts} [24]	f _{Ts} [25]	f _{Ts} [20, 26]
n	0.023	0.034	0.08	0.14	0.46
р	0.019	0.041	0.08	0.14	0.46

- Lattice calculations have provide new estimates of those coefficients soon should help reduce uncertainties
- For example varying coefficients within this range can in the MSSM lead to almost one order of magnitude change in cross section
 - Bottino et al hep-ph/0010203, Ellis et al hep-ph/0502001

WIMP-nucleon to WIMP-nucleus

• Rates (SI and SD) depends on nuclear form factors and velocity distribution of WIMPs + local density

• Modularity and flexibility: can change velocity distribution, nuclear form factors, quark coefficients in nucleon

Indirect detection

- Annihilation of pairs of DM particles into SM : decay products observed
- Searches for DM in 4 channels
 - Antiprotons (Pamela)
 - Positrons/electrons from galactic halo/center (Pamela, ATIC, Fermi..)
 - Photons from galactic halo/ center (Egret, Fermi, Hess..)
 - Neutrinos from Sun (IceCube)
- Rate for production of e^+ , p, γ
 - $\begin{array}{ll} & Dependence \ on \ the \ DM \\ & distribution \ (\rho) not \ well \ known \\ & in \ center \ of \ galaxy \end{array}$

Photons

• Flux calculation

$$\Phi_{\gamma,\nu} = \frac{1}{8\pi} \underbrace{\left\{ \begin{array}{c} <\sigma_{ann}v > \\ m_{\chi}^2 \end{array}\right\}}_{f.s.} \left(\frac{dN_{\gamma,\nu}}{dE} \right)_{f.s.} \int_{l.o.s.} \rho_s^2$$

- Photon production
 - In decay of SM particles + R-even new particles
 - dN/dE : basic channels ff, VV, VH, HH and polarization of gauge bosons
 - For particles of unknown mass (H,Z'..) compute 1->2 decay recursively until only basic channels
 - Monochromatic gamma rays $(\gamma\gamma,\gamma Z)$ for MSSM
 - Internal bremsstrahlung ($\chi \chi -> e^+e^-\gamma$)
- Integral over line of sight depends strongly on the galactic DM distribution

Dark matter profile

• Dark matter profile parametrisation

$$\rho_s(r) = \rho_\odot \left[\frac{r_\odot}{r}\right]^{\gamma} \left[\frac{1 + (r_\odot/a)^{\alpha}}{1 + (r/a)^{\alpha}}\right]^{\frac{\beta - \gamma}{\alpha}}$$

$$r_{\odot} = 8 \text{ kpc}$$

 $\rho_{\odot} = 0.3 \text{ GeV.cm}^{-3}$

• Different halo profile rather similar except in center of galaxy

Halo model	α	β	γ	a (kpc)
Isothermal with core	2	2	0	4
NFW	1	3	1	20
Moore	1.5	3	1.5	28

• Also Einasto profile

$$F_{halo}(r) = \exp\left[\frac{-2}{\alpha}\left(\left(\frac{r}{r_{\odot}}\right)^{\alpha} - 1\right)\right]$$

Antiprotons and positrons from DM annihilation in halo

M. Cirelli, Pascos2009

$$\frac{\partial N}{\partial t} - \nabla \cdot [K(\mathbf{x}, E) \nabla N] - \frac{\partial}{\partial E} [b(E) N] = q(\mathbf{x}, E)$$

diffusion Energy losses Source

Propagation of cosmic rays

• For Charged particle spectrum detected different than spectrum at the source

$$\frac{\partial N}{\partial t} - \nabla \cdot \left[K(\mathbf{x}, E) \nabla N \right] - \frac{\partial}{\partial E} \left[b(E) N \right] = q(\mathbf{x}, E)$$

- Charged cosmic rays deflected by irregularities in galactic magnetic field
 For strong magnetic turbulence effect similar to space diffusion
- Energy losses due to interactions with interstellar medium
- Convection driven by galactic wind and reacceleration due to interstellar shock wave
- For positron, antiproton : solution propagation equations based on
 Lavalle, Pochon, Salati, Taillet, astro-ph/0603796

Propagation

• Choice of diffusion parameters

Model	δ	$K_0 \; (\rm kpc^2/Myr)$	$L (\mathrm{kpc})$	$V_C(\rm km/s)$
MIN	0.85	0.0016	1	13.5
MED	0.7	0.0112	4	12
MAX	0.46	0.0765	15	5

Donato et al

• Strong impact on the predictions

Model 1
$\mu = -440, M_A = 1000$
$M_2 = 800, M_0 = 2500$
$A_t = A_b = 1000$
$\tan\beta = 10$

• At low energies solar modulation effect

MSSM

Parameters of MSSM model file

MSSM-Specific features

- Independent parameters of model are physical parameters of SHLA, flexibility: any model for which the MSSM spectrum can be calculated with an external code can be incorporated easily
- Input parameters to micromegas can be specified at the weak scale or at the GUT scale using some SpectrumCalc program, includes CMSSM, non-univ. SUGRA, AMSB
- Uses SUSY Les Houches Accord
- Radiative corrections to masses can be important SUSY masses and Higgs masses (via spectrum calculator)
- Package includes other constraints (developed for MSSM) not automatic b->s γ (NLO), (g-2)_μ, B_s->μμ, B->τν, Δρ

Extensions of MSSM

- Spectrum calculation, constraints on models: make use of existing programs develop independently, when possible interface with SLHA2
 - NMSSM
 - relies on NMSSMTools (NMSPEC and NMHDECAY) for spectrum calculation, indirect constraints (B physics, g-2, Higgs collider constraitns)
 - Ellwanger, Gunion, Hugonie
 - CPVMSSM:
 - interface to CPSuperH (J.S. Lee et al) for spectrum calculation, effective Higgs potential and constraints: edm, Bphysics
 - Interface to Higgs bounds for LEP/Tevatron Higgs constraints (next release)

Interactive session

Download

- New version micromegas_2.4
 - http:://wwwlapp.in2p3.fr/lapth/micromegas
 - For help, bug report : <u>micro.omegas@lapp.in2p3.fr</u>
- Installation

tar -zxvf micromegas_2.4.O.tgz

• cd micromegas_2.4.0

calc	clean	LHM	MSSM	README
CalcHEP_src	CPVMSSM	Makefile	newProject	RHNM
cgwRun	etc	manual240.tex	NMSSM	sources

- make
- Go to the directory of model you want to work with
- cd MSSM
 - sample main file main.c fix switches

Main program - description

```
/*===== Spectrum calculator ========
  Choose RGE from the list below. SuSpect is included
  in micrOMEGAs, to use another code define the path
  to the corresponding package in lib/Makefile
#define RGE suspect
    /* choose 'suspect','isajet','softSusy','spheno'*/
/*========
            SUSY scenario =======
 One can define SUGRA, AMSB, EWSB (for low scale input).
 By default program reads SLHA data file
----*/
#define SUGRA
/* #define AMSB */
/*#define EWSB */
Keys to switch on
  various modules of micrOMEGAs
=============================*/
#define MASSES INFO
     /* Display information about SUSY and Higgs masses
     */
#define CONSTRAINTS
     /* Display deltarho, B_>sgamma, Bs->mumu, gmuon and
        check LEP mass limits
     */
#define OMEGA
     /* Calculate relic density and display contribution of
        individual channels
     */
```

#define INDIRECT_DETECTION

/* Compute spectra of gamma/positron/neutrinos
 for DM annihilation; calculate <sigma*v> and
 integrate gamma signal over DM galactic squared
 density for given line of sight.
*/

```
/*#define RESET_FORMFACTORS*/
```

```
/* Modify default nucleus form factors,
DM velocity distribution,
```

```
#define CDM_NUCLEON
```

```
/* Calculate amplitudes and cross-sections for
CDM-mucleon collisions
```

*/

```
/* #define TEST_Direct_Detection */
```

```
/*
```

Compare analytical formula for DD against micrOMEGAS calculation. As well as compare tree level and box improved approaches.

*/

```
#define CDM_NUCLEUS
```

```
/* Calculate number of events for 1kg*day
```

and recoil energy distibution for various nuclei */

```
#define DECAYS
```

```
/* Calculate decay widths and branchings */
/* #define CROSS_SECTIONS */
```

/* Calculate cross sections of reactions specified by the user */

```
/*==== end of Modules =====*/
```

Choosing options

```
#ifdef INDIRECT_DETECTION
```

```
{
    int err,i;
    double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/
    double sigmaV;
    double vcs_gz,vcs_gg;
    char txt[100];
    double SpA[NZ],SpE[NZ],SpP[NZ];
    double SpNe[NZ],SpNm[NZ],SpN1[NZ];
    double Etest=Mcdm/2;
    K_dif=0.036;
    L_dif=4;
    sigmaV=calcSpectrum( 1+2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec. SpX - calculated spectra of annihilation.
        Use SpectdNdE(E, SpX) to calculate energy distribution in 1/GeV units.
```

```
First parameter 1-includes W/Z polarization
2-includes gammas for 2->2+gamma
4-print cross sections
```

*/

Global	parameters

Name	Default value	Units	Comments
Medm		GeV	Mass of Dark Matter particle, M_{χ}
Rsun	8.	kpc	Distance from the Sun to the Galactic center, r_{\odot}
rhoDM	0.3	${\rm GeV/cm}^3$	Dark Matter density at Rsun, ρ_{\odot}
Rdisk	20	kpc	Radius of the galactic diffusion disk, R
K_dif	0.0112	$\rm kpc^2/Myr$	Diffusion coefficient K_0
L_dif	4	kpc	Half height of the galactic diffusion zone L

make main=main.c ./main 120 500 -300 10 1 173.1

```
====== mSUGRA scenario =====
Spectrum calculator is suspect
Warnings from spectrum calculator:
 ....none
Dark matter candidate is '~o1' with spin=1/2 mass=2.06E+02
~o1 = 0.997*bino -0.015*wino +0.074*higgsino1 -0.029*higgsino2
=== MASSES OF HIGGS AND SUSY PARTICLES: ===
Higgs masses and widths
   h
       115.99 2.52E-03
       766.59 1.78E+00
   Н
  нз
       766.34 1.82E+00
  H+
       770.85 1.73E+00
Masses of odd sector Particles:
~o1 : MNE1 = 205.9 || ~11 : MS11 =
                                       212.3 || ~eR : MSeR =
                                                               223.7
~mR : MSmR = 223.7 || ~nl : MSnl =
                                       344.8 || ~ne : MSne =
                                                               346.8
~nm : MSnm = 346.8 || ~eL
                           : MSeL =
                                       355.4 || ~mL : MSmL =
                                                               355.4
~12 : MS12 = 356.5 || ~1+ : MC1 =
                                       389.6 || ~o2 : MNE2 =
                                                               389.7
~o3 : MNE3 = 692.7 || ~2+ : MC2 =
                                       704.2 || ~o4 : MNE4 =
                                                               704.3
~t1 : MSt1 = 767.9 || ~b1 : MSb1 =
                                        959.3 || ~b2 : MSb2 =
                                                               1005.7
~t2
    : MSt2 = 1006.1 || ~dR : MSdR = 1009.9 || ~sR : MSsR =
                                                               1009.9
    : MSuR = 1013.4 || ~cR : MScR = 1013.4 || ~uL : MSuL = 1050.2
~uR
    : MScL = 1050.2 || ~dL : MSdL = 1053.1 || ~sL : MSsL = 1053.1
~cL
~g
     : MSG = 1146.4 ||
```

Relic density

```
==== Physical Constraints: =====
deltartho=1.51E-05
gmuon=9.47E-10
bsgnlo=3.58E-04
bsmumu=3.09E-09
btaunu=9.91E-01
MassLimits OK
==== Calculation of relic density =====
Xf=2.65e+01 Omega=1.10e-01
Channels which contribute to 1/(omega) more than 1%.
Relative contrubutions in % are displyed
29% ~o1 ~l1 -> A l
21% ~11 ~11 -> 1 1
 8% ~o1 ~l1 -> Z l
 6% ~11 ~L1 -> A A
 4% ~o1 ~o1 -> 1 L
 3% ~o1 ~o1 -> m M
 3% ~o1 ~o1 -> e E
 3% ~o1 ~eR -> A e
 3% ~o1 ~mR -> A m
 3% ~11 ~L1 -> A Z
 3% ~eR ~11 -> e 1
 3% ~mR ~l1 -> m l
The rest 7.79 %
```

Indirect and direct detection

```
==== Indirect detection =======
      Channel vcs[cs^3/s]
    ~o1,~o1 -> b B 2.25E-29
    ~o1,~o1 -> t T 2.55E-29
    ~o1,~o1 -> 1 L 5.37E-29
    ~o1,~o1 -> W+ W- 2.95E-31
    ~o1,~o1->e,E,A
    ~01,~01->m,M,A
    ~o1,~o1->1,L,A
  sigmav=1.02E-28[cm^3/s]
Photon flux for angle of sight f=0.00[rad]
and spherical region described by cone with angle 0.0349[rad]
Photon flux = 7.51E-16[cm<sup>2</sup> s GeV]<sup>{-1</sup>} for E=103.0[GeV]
Executable
 /home/genevieve/tools/micromegas_2.4.0/MSSM/work/../nngg/lGamma.exe
 is not found. Launch 'make -C nngg'
Positron flux = 3.50E-14[cm<sup>2</sup> sr s GeV]<sup>{-1</sup>} for E=103.0[GeV]
Antiproton flux = 2.06E-15[cm<sup>2</sup> sr s GeV]<sup>{-1</sup> for E=103.0[GeV]</sup>
==== Calculation of CDM-nucleons amplitudes =====
CDM-nucleon micrOMEGAs amplitudes:
proton: SI -1.316E-09 SD -1.575E-08
neutron: SI -1.332E-09 SD 1.984E-08
CDM-nucleon cross sections[pb]:
proton SI 7.497E-10 SD 3.223E-07
 neutron SI 7.691E-10 SD 5.113E-07
====== Direct Detection =======
73Ge: Total number of events=1.74E-04 /day/kg
```

```
Number of events in 10 - 50 KeV region=9.40E-05 /day/kg
131Xe: Total number of events=2.87E-04 /day/kg
Number of events in 10 - 50 KeV region=1.43E-04 /day/kg
```

Decays and cross sections

~o2->2*x : total width=3.837725E-01 and Branchings: 2.128198E-03 ~o2 -> Z,~o1 2.914427E-02 ~o2 -> h,~o1 6.004674E-02 ~o2 -> E,~eL 6.004674E-02 ~o2 -> e,~EL 1.052718E-03 ~o2 -> E,~eR 1.052718E-03 ~o2 -> e,~ER 6.004674E-02 ~o2 -> M,~mL 6.004674E-02 ~o2 -> m,~ML 1.052718E-03 ~o2 -> M,~mR 1.052718E-03 ~o2 -> m,~MR 4.205439E-02 ~o2 -> L,~11 4.205439E-02 ~o2 -> 1,~L1 5.482904E-02 ~o2 -> L,~12 5.482904E-02 ~o2 -> 1,~L2 8.582378E-02 ~o2 -> Ne, ~ne 8.582378E-02 ~o2 -> ne, ~Ne 8.582378E-02 ~o2 -> Nm, ~nm 8.582378E-02 ~o2 -> nm,~Nm 9.363385E-02 ~o2 -> N1,~n1 9.363385E-02 ~o2 -> n1,~N1

Implementing and working with a new model

micromegas_2.x

- A generic program to calculate the relic density of DM in any model
- Assume some "R-parity " particles either odd/even under this parity (odd particles: ~)
- A simple example : RH neutrino
- Create new model
 - ./newProject name
- New directory created with all routines to compute annihilation cross sections find the "LSP', look for possible resonances, 'main program'
- User needs to specify model file in CalcHEP notation : particles, variables, vertices, functions in work/models (do by hand or with LanHEP)

Particles : prtcls1.mdl

RH neutrino

Particles

Full name	e ∣A	A+	number	2*spi	n mass	width	colo:	r au	(>LaTex(A)	< >LaTeX(A+) <
photon	A	A	22	2	0	0	1	G	\gamma	\gamma
gluon	G	G	21	2	0	0	8	G	lg	lg
electron	le	E	11	1	0	0	1		e	\bar{e}
e-neutrino	ne	Ne	12	1	0	0	1	ΙL	\nu_e	\bar{\nu}_e
muon	m	M	13	1	Mm	0	1	1	\mu	\bar{\mu}
m-neutrino	nm	Nm	14	1	0	0	1	ΙL	\nu_\mu	\bar{\nu}_\mu
tau-lepton	1	ΙL	15	1	Ml	0	1		\tau	\bar{\tau}
t-neutrino	nl	Nl	16	1	0	0	1	ΙL	\nu_\tau	\bar{\nu}_\tau
u-quark	u	U	2	1	Mu	0	3		u	\bar{u}
d-quark	d	D	1	1	Md	0	3	I	d	\bar{d}
c-quark	c	C	4	1	Mc	0	3		c	\bar{c}
s-quark	s	S	3	1	Ms	0	3		s	\bar{s}
t-quark	t	T	6	1	Mtp	lwtp	3		lt	
b-quark	b	B	5	1	Mb	0	3	1	b	\bar{b}
Higgs	H	 H	25	0	MH	∣!wH	1		H	H
W-boson	W+	W-	24	2	MW	WW	1	I	W^+	W^-
Z-boson	ΙZ	ΙZ	23	2	MZ	WΖ	1	I I	Z	Z
LZP	~n-	4 ~N4	100000	1	MLZP	wn4	1	1	1	

Vertices (lgrng1.mdl)

RH neutrino (RS-inspired)

Vertices

A1	A2	A3	A4	> Factor	< > Lorentz part
G	G	G		SC	m1.m2*(p1-p2).m3+m2.m3*(p2-p3).m1+m3.m1
W+	W-	A		-EE	m1.m2*(p1-p2).m3+m2.m3*(p2-p3).m1+m3.m1
W+	W-	A	A	-EE^ 2	2*m1.m2*m3.m4-m1.m3*m2.m4-m1.m4*m2.m3
Н	W+	W-		EE*MW/SW	m2.m3
Н	H	H		-(3/2)*EE*MH^ 2/(MW*SW)	1
Н	H	H	H	(-3/4)*(EE*MH/(MW*SW))^ 2	1
U	lu	H		-EE*Mu/(2*MW*SW)	1
Т	lt	H		-EE*Mtp/(2*MW*SW)	1
Ne	e	W+		EE/(2*Sqrt2*SW)	G(m3)*(1-G5)
Е	ne	W-		EE/(2*Sqrt2*SW)	G(m3)*(1-G5)
Е	e	ΙZ		-EE/(4*SW*CW)	G(m3)*(1-G5)-4*(SW^ 2)*G(m3)
Т	lt	A		(2/3)*EE	G(m3)
U	d	W+		EE*Vud/(2*Sqrt2*SW)	G(m3)*(1-G5)
~N4	~n4	H		gH	1
~N4	~n4	ΙZ		gZ/2	G(m3)*(1+G5)

Parameters (vars1.mdl)

RH neu	ıtrino						
Paran	neters						
Name	Value	> Comment	<				
EE	0.31223	Elementary charge (alpha=	=1/128.9, on-shell, MZ point, PDG96)				
alfSMZ	2 0.1172	MS-bar Srong coupling at	MZ				
Q	100	QCD SCALE					
SW	0.4730	sine of the electroweak mixing angle (PDG96)					
s12	0.221	Parameter of C-K-M matrix	x (PDG96)				
Ml	1.777	tau-lepton mass (PDG	396)				
Mu	0.005	1					
Md	0.007	1					
МсМс	1.25	Mc(Mc) MS-bar PDG-07					
MbMb	4.20	Mb(Mb) MS-bar value PDG-	-07				
Mtpole	e 171.4	t-quark mass (pole mass)					
MZ	91.1884	Z-boson mass (PDG	396)				
MH	300	higgs mass					
wtp	1.59	t-quark width (tre	ee level 1->2x)				
wΖ	2.49444	Z-boson width (tre	ee level 1->2x)				
wW	2.08895	W-boson width (tre	ee level 1->2x)				
gH	0.3	H-lZP coupling					
gZ	0.3	Z-1ZP coupling					
MLZP	100.	n4 mass					
wn4	0	n4 width					

Constraints (func1.mdl)

RH neu Const	itrino craints					
Name > Expression						
QCDok	<pre>initQCD(alfSMZ,1.4,MbMb,Mtpole)</pre>					
Mb	MbEff(Q)*one(QCDok)					
Mtp	MtEff(Q)*one(QCDok)					
CW	sqrt(1-SW^2)	%	cos of the Weinberg angle			
MW	MZ*CW	%	W-boson mass			
c12	sqrt(1-s12^2)	%	parameter of C-K-M matrix			
Vud	c12*c13	%	C-K-M matrix element			
Vus	s12*c13	%	C-K-M matrix element			
Vub	s13	%	C-K-M matrix element			

micromegas_2.x

• After the model is implemented and check with CalcHEP

- In directory micromegas_2.2.CPC/name/work
- Launch ./calchep
 - Edit model
 - Check model
 - Correct mistakes until model is OK
- Code then automatically
 - looks for "LSP" and for resonances
 - Computes all annihilation and coannihilation cross-sections
 - Solves the evolution equation and obtains the relic density
 - Gets any 2->2 cross section and 1->2,3 decay
 - Computes σ v (for indirect detection) and direct detection rate

- Note: for direct detection needs coupling of Higgs to light quarks
- Other constraints must be provided by the user in fortran or C routine

- Run the code
 - main.c is the default main program fix switches
 - define input parameters
 - make main=main.c
 - ./main test1.par

Input parameters (test1.par)

This file is intended for changing of model parameters. While it is empty, default paremeters defined in work/models/vars1.mdl file # # are used. Format of the input data is # variable_name new_value. 3.122300E-01 EE SW 4.730000E-01 4.20MbMb Mtpole 171.4 9.118840E+01 MZ MH 200. 1.590000E+00 wtp wΖ 2.494440E+00 2.088950E+00 wW gН 0.025 gΖ 0.002

MLZP 46.

Results

=== MASSES OF ODD SECTOR: ===

```
Masses of odd sector Particles: n4 : MLZP = 46.0 ||
==== Physical Constraints: =====
==== Calculation of relic density =====
Dark Matter candidate is ~n4 Xf=2.38e+01 Omega=1.00e-01
Channels which contribute to 1/(omega) more than 1%.
Relative contrubutions in % are displyed
15% ~n4 ~N4 -> d D
15% ~n4 ~N4 -> s S
15% ~n4 ~N4 -> b B
 12% ~n4 ~N4 -> u U
 12% ~n4 ~N4 -> c C
 7% ~n4 ~N4 -> nl Nl
 7% ~n4 ~N4 -> nm Nm
 7% ~n4 ~N4 -> ne Ne
 3% ~n4 ~N4 -> e E
 3% ~n4 ~N4 -> m M
 3% ~n4 ~N4 -> 1 L
```

==== Indirect detection =======

sigma*v=5.49E-26 [cm^3/sec] 1.41E+01 gamma with E > 1.00E-01 are generated at one collision gamma flux for fi=0.00E+00[rad] is $1.04E-06[ph/cm^2/s/sr]$

WIMP annihilation at V_rel=1.0E-03 (Pcm=2.30E-02)

~n4,~N4	->	b	В	sigma*v=1.66E-26 [cm^3/sec] sigma[pb]=5.55E+02
~n4,~N4	->	s	S	sigma*v=1.67E-26 [cm^3/sec] sigma[pb]=5.58E+02
~n4,~N4	->	с	С	sigma*v=1.30E-26 [cm^3/sec] sigma[pb]=4.34E+02
~n4,~N4	->	d	D	sigma*v=1.67E-26 [cm^3/sec]sigma[pb]=5.58E+02
~n4,~N4	->	u	U	sigma*v=1.30E-26 [cm^3/sec] sigma[pb]=4.35E+02
~n4,~N4	->	nl	Nl	sigma*v=7.47E-27 [cm^3/sec] sigma[pb]=2.49E+02
~n4,~N4	->	1	L	sigma*v=3.77E-27 [cm^3/sec] sigma[pb]=1.26E+02
~n4,~N4	->	ne	Ne	sigma*v=7.47E-27 [cm^3/sec] sigma[pb]=2.49E+02
~n4,~N4	->	е	Е	sigma*v=3.78E-27 [cm^3/sec] sigma[pb]=1.26E+02

Outlook

- Incorporating one-loop for dominant processes in MSSM – beyond improved Higgs vertices – Sloops (Baro, Boudjema, Chalons, Semenov)
- Neutrino signals from capture in Sun, Earth
- Pursue implementation of new models

Conclusion

• To understand the nature of dark matter clearly need information and cross checks from cosmology, direct and indirect detection as well as from collider physics

• micrOMEGAs_2.4 is tool to perform these analyses in a generic model