HEPHY VIENNA Institute for High Energy Physics

HFOLD a program package for calculating two-body MSSM Higgs decays at full one-loop level

Wolfgang Frisch, Helmut Eberl

Tools 2010, Winchester, UK 2nd July 2010

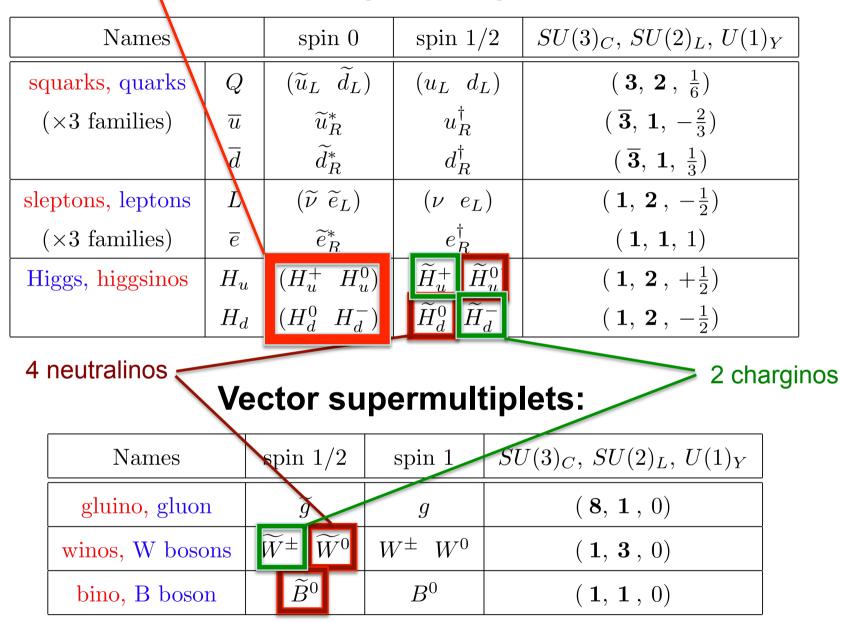
Outline

- HFOLD Higgs Full One-Loop Decays
- Motivation
- The MSSM
- Higgs decays
- Details of program
- Numerics
- Outlook

Motivation

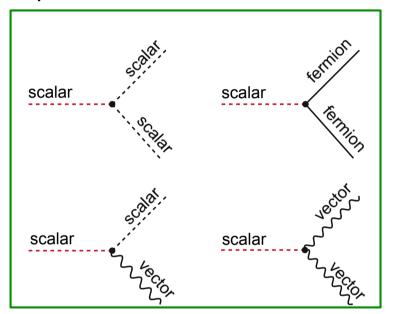
- All SUSY-QCD corrections to MSSM 1->2 Higgs decays are known, but the calculation of the full electroweak corr. has just started.
- No complete full one-loop code public available
- Total one-loop widths are necessary for 1->3 processes at one-loop level with resonant propagators

The Minimal Supersymmetric Standard Model


- The MSSM is the mininal supersymmetric extension of the Standard Model
 - minimal (=1) set of SUSY generator
 - minimal (=2) set of Higgs doublets
- The SM particles and their supersymmetric partners are located in chiral and vector multiplets
- The Superpotential is the source of the yukawa interactions $W_{\text{MSSM}} = \overline{u} \mathbf{y}_{\mathbf{u}} Q H_u - \overline{d} \mathbf{y}_{\mathbf{d}} Q H_d - \overline{e} \mathbf{y}_{\mathbf{e}} L H_d + \mu H_u H_d$

 $\mathbf{y_u}, \mathbf{y_d}, \mathbf{y_e}$ are the 3 x 3 Yukawa matrices $\,\mu$ can be complex

• Supersymmetry is broken in Nature, therefore one has to introduce SUSY breaking terms in the Lagrangian


$$\mathcal{L}_{soft} = -m_{ij}^2 \phi_i^* \phi_j - \left(b_{ij} \phi_i \phi_j + A_{ijk} \phi_i \phi_j \phi_k + \frac{M_a}{2} \lambda_a \lambda_a + h.c. \right)$$

5 phys. Higgs bosons Chiral supermultiplets:

Two-body Higgs decays

possible tree-level structures:

MSSM Higgs decay channels

 $\phi = h^0, H^0, A^0$ $\begin{array}{ccc} \phi & \to & f \, \bar{f} \\ \phi & \to & \tilde{f}_i \, \bar{\tilde{f}}_j \end{array}$ $\phi \rightarrow \tilde{\chi}^0_k \tilde{\chi}^0_l$ $\begin{array}{rcl}
\phi & \to & \tilde{\chi}_r^+ \, \tilde{\chi}_s^- \\
H^0 & \to & Z^0 \, Z^0, \ W^+ \, W^\end{array}$ $H^0 \rightarrow h^0 h^0$ $A^0 \rightarrow h^0 Z^0$ $H^+ \rightarrow f \bar{f}'$ $\begin{array}{rcl} H^+ & \to & \tilde{f}_i \, \bar{\tilde{f}}'_j \\ H^+ & \to & \tilde{\chi}^0_k \, \tilde{\chi}^-_s \\ H^+ & \to & h^0 \, W^+ \end{array}$ Loop induced: $h^0 \to \gamma \gamma, gg$ Higgs sector in the MSSM

$$H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix} \qquad \qquad H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}$$

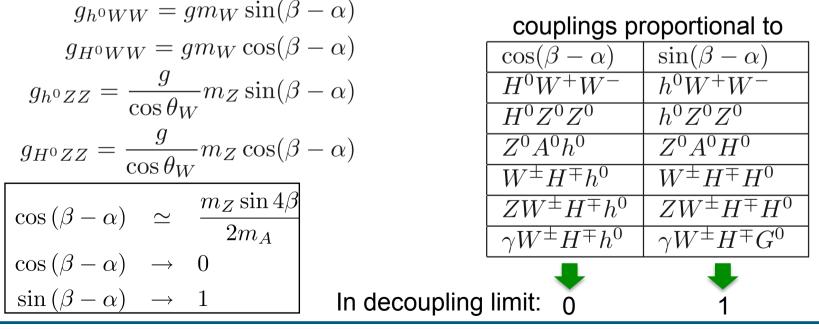
- electroweak SSB $\langle H_d^0 \rangle = v_d$ $\langle H_u^0 \rangle = v_u$
- tree-level: 2 free parameters $an \beta = \frac{v_u}{v_d}, m_A$
- upper bound for $m_{h^0}^{\max} \leq m_Z |\cos 2\beta|$
- one-loop corr. important for m_{h^0} leading terms $\sim rac{m_t^4}{m_W^2}$

$$m_{h^0}^{\rm corr} \le 135 \; {\rm GeV}$$

The Higgs sector in the decoupling limit

- The decoupling is reached for large values of $\ M_A >> M_Z$
- The H^0, A^0, H^{\pm} become heavy and degenerate in mass
- The light CP-even Higgs boson reaches its maximal mass value
- Higgs couplings to vector bosons and fermions can be enhanced or suppressed

Higgs couplings to gauge bosons


From the Lagrangian with the covariant derivatives

$$\mathcal{L} = \left(D^{\mu}H_{u}\right)^{\dagger}D_{\mu}H_{u} + \left(D^{\mu}H_{d}\right)^{\dagger}D_{\mu}H_{d}$$

we get the gauge boson masses

$$m_W^2 = \frac{v^2 g^2}{4}, \qquad m_{Z^0}^2 = \frac{v^2}{4} (g^2 + g^{'2}) = \frac{m_W^2}{\cos^2 \theta_W}, \qquad \text{and} \quad v^2 = v_u^2 + v_d^2$$

and the couplings with one and two gauge bosons to the Higgs bosons, e.g.

2nd July 2010

W. Frisch

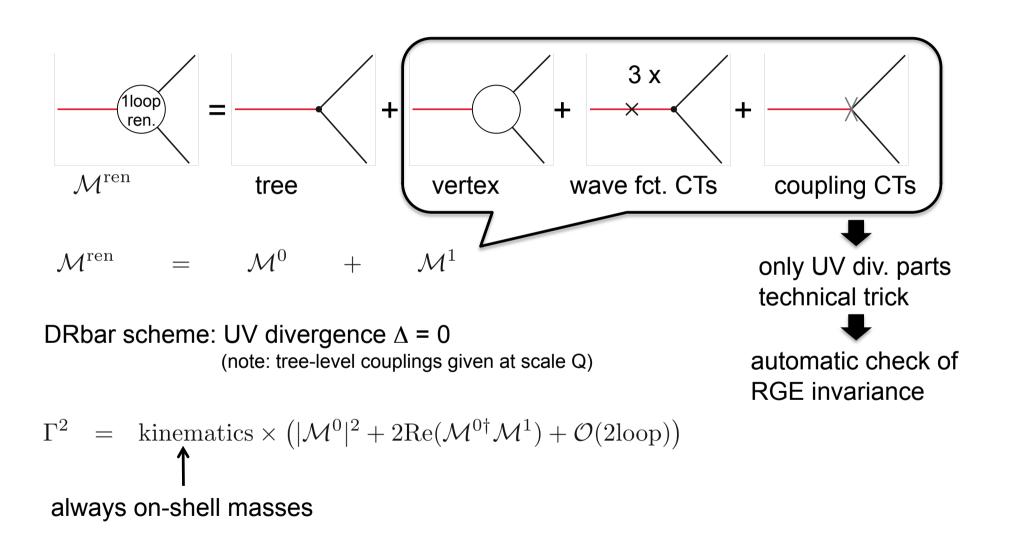
Higgs couplings to fermions

$$-\mathcal{L} = h_t \left(\bar{t} P_L t H_u^0 - \bar{t} P_L b H_u^+ \right) + h_b \left(\bar{b} P_L b H_d^0 - \bar{b} P_L t H_d^- \right) + \text{h.c.}$$
Yukawa couplings $h_b = \frac{\sqrt{2}m_b}{v_d} = \frac{\sqrt{2}m_b}{v\cos\beta}, \quad h_t = \frac{\sqrt{2}m_t}{v_u} = \frac{\sqrt{2}m_t}{v\sin\beta}$

$$h^0 b \bar{b} : -\frac{\sin\alpha}{\cos\beta} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha) \rightarrow 1$$

$$h^0 t \bar{t} : \frac{\cos\alpha}{\sin\beta} = \sin(\beta - \alpha) - \cot\beta\cos(\beta - \alpha) \rightarrow 1$$
Decoupling limit
$$H^0 b \bar{b} : \frac{\cos\alpha}{\cos\beta} = \cos(\beta - \alpha) + \tan\beta\cos(\beta - \alpha) \rightarrow \tan\beta$$

$$A^0 \text{ as } H^0, \text{ but } \propto \gamma^5$$


$$H^0 t \bar{t} : \frac{\sin\alpha}{\sin\beta} = \cos(\beta - \alpha) - \cot\beta\cos(\beta - \alpha) \rightarrow -\cot\beta$$
From loops we get effectively $h_b H_d^0 \bar{b} b - h_b \Delta_b \cot\beta H_u^{0*} \bar{b} b + \dots$ The term Δ_b

prop. to $\tan\beta$ can be resummed [1]. $\Delta_{b}^{L} = \frac{2\alpha_{s}}{3\pi}m_{\tilde{g}}\mu \tan\beta I(m_{\tilde{b}_{1}}, m_{\tilde{b}_{2}}, m_{\tilde{g}}) + \frac{h_{t}^{2}}{16\pi^{2}}\mu A_{t} \tan\beta I(m_{\tilde{t}_{1}}, m_{\tilde{t}_{2}}, \mu)$ $h_b \rightarrow \frac{h_b}{1+\Lambda}$ $- \frac{g_2^2}{16\pi^2} \mu M_2 \tan\beta \left[U_{11}^{\tilde{t}} U_{11}^{\tilde{t}*} I(m_{\tilde{t}_1}, M_2, \mu) + U_{21}^{\tilde{t}} U_{21}^{\tilde{t}*} I(m_{\tilde{t}_2}, M_2, \mu) \right]$ $I(a,b,c) = \frac{a^2 b^2 \log(\frac{a^2}{b^2}) + b^2 c^2 \log(\frac{b^2}{c^2}) + c^2 a^2 \log(\frac{c^2}{a^2})}{(a^2 - b^2)(b^2 - c^2)(a^2 - c^2)}$ [1] M. Carena et al, 1999, 2000

2nd July 2010

_

Renormalization

Public available programs

- HDecay, hep-ph/9704448 by Djouadi, Kalinowski, Spira
 - RGE improvements via running masses
 - Off-shell decays
- FeynHiggs 2.7 by Heinemeyer, Hollik, Weiglein, Hahn, MSSM Higgs mass calculator
 - Higgs decays into fermions are calculated at full one-loop level, flavor violating case
- SPheno, hep-ph/0301101 by Porod, MSSM spectrum calculator
 - Higgs decays into pairs of quarks have RGE improvements
- ISAJET,.....

Status of our calculations

- flavor conserving MSSM for real input parameters
- all necessary amplitudes are calculated using FeynArts 3.2/FormCalc 5.3
- SUSY spectrum is calculated using SPHENO
- the renormalization is done in the DRbar-scheme following the SPA convention
- own written counter term file for the relevant terms of the MSSM
- automatic generation of fortran code of each channel
- general $R_{\mbox{\tiny E}}$ gauge implementation for W,Z-boson
- hard Bremsstrahlung included with generic formulas
- "naïve" $h_b = Yuk(4,3)$ resummation included
- easy usable Mathematica link
- In- and output in Les Houches Format

SUSY Parameter Analysis project*

http//spa.desy.de/spa

- For the LHC and even more for the ILC, MSSM observables will be measured with high accuracy
- Calculations including higher-orders are necessary, to get information on fundamental SUSY parameters and SUSY-breaking mechanism
- A well-defined theoretical framework is needed when higher-order corrections are included.
- The aim of the SPA convention is to provide such a theoretical framework
- SPA convention provides a clear base for calculating masses, couplings, mixing angles, decay widths and production cross sections.
- Program repository on the web: LHC+ILC tools, Les Houches Accord
- Reference point SPS1a'

* J. A. Aguillar-Saavedra et al., EPJ C46 (2006) 43; see also J. Kalinowski, Acta Phys. Polon. B37 (2006), 1215

SPA convention

- Masses of SUSY particles and Higgs bosons defined as pole masses
- All SUSY Lagrangian parameters are in the DRbar scheme at Q = 1TeV
- All elements in mass matrices, rotation matrices and corresponding mixing angles are def. DRbar at Q , except (h⁰ –H⁰) mixing angle is defined on-shell with p = m_{h0}
- SM input parameters: $G_{\rm Fermi}, lpha, M_Z, lpha_s(M_Z)$ and fermion masses
- Decay widths/branching ratios and production cross section are calculated for the set of parameters specified above

Linear R_ξ gauge

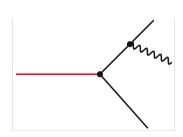
The gauge fixing Lagrangian is

$$\mathcal{L}^{GF} = -\frac{1}{\xi_W} F^+ F^- \frac{1}{\xi_A} |F^A|^2$$
, with $A = Z, \gamma, g$,

with $F^+ = \partial_\mu W^{\mu +} + i\xi_W m_W G^+$, $F^Z = \partial_\mu Z^\mu + \xi_Z m_Z G^0$, $F^\gamma = \gamma_\mu A^\mu$, and $F^g = \gamma_\mu G^{a\mu}$.

The Higgs-ghost propagators are $i/(q^2 - \xi_V m_V^2)$ and the vector-boson propagator in the R_{ξ} gauge reads

$$D_V^{\mu\nu} = \frac{-i\left(g^{\mu\nu} - (1 - \xi_V)\frac{q^{\mu}q^{\nu}}{q^2 - \xi m_V^2}\right)}{q^2 - m_V^2}$$

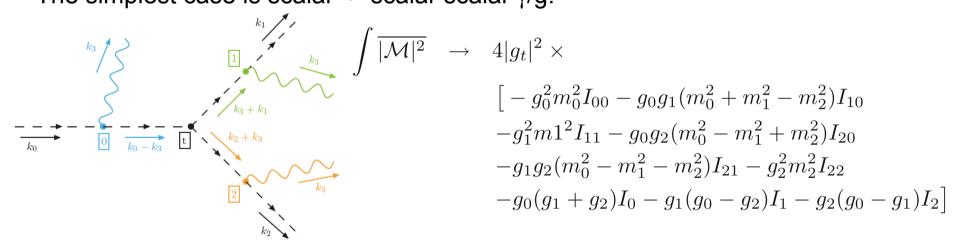

and can be split in a form with single propagators, $L_x f[x] = \frac{f[x] - f[x\xi]}{x}$,

$$D_V^{\mu\nu}|_{\xi} = \frac{-i\,g^{\mu\nu}}{q^2 - m_V^2} + \frac{i}{m_V^2} \left(\frac{q^{\mu}q^{\nu}}{(q^2 - m_V^2)} - \frac{q^{\mu}q^{\nu}}{(q^2 - \xi m_V^2)}\right) = D_V^{\mu\nu}|_{\xi=1} + L_{m_V^2}\frac{i\,q^{\mu}q^{\nu}}{(q^2 - m_V^2)}$$

This second form we used in order to check gauge independence using the automatic tools FA and FC for W and Z. For the massless particles γ and Gluon we performed analytic proofs of gauge invariance.

2nd July 2010

Bremsstrahlung



In order to cancel the IR divergencies we have included real photon/gluon radiation:

- soft radiation dependent on cut ΔE , automatized in FormCalc
- hard radiation analytic results for integrals used from [1] four generic structures analytically derived and used

$$\Gamma^{\text{total}} = \Gamma(\phi \to p_1 p_2) + \Gamma(\phi \to p_1 p_2 \gamma/g)$$

The simplest case is scalar -> scalar scalar γ/g :

The integrals I_{ij} depend on $\log \lambda$, λ is the auxiliary mass for γ/g .

All numerical results preliminary

Reference point SPS1a'

mSUGRA point: $M_{1/2} = 250$ GeV, $M_0 = 70$ GeV, $A_0 = -300$ GeV,

 $\tan \beta = 10, \, \mathrm{sign}\mu = +1$

Note, the point SPS1a' is close to the original Snowmass point SPS1a (has $M_0 = 100 \text{ GeV}$, $A_0 = -100 \text{ GeV}$).

Parameter	${ m SPS1a'}$ value	Parameter	${ m SPS1a'}$ value	700	SPS1a' mass spectrum
g'	0.3636	M_1	103.3	$m [{ m GeV}]$	Si Sia mass spectrum
g	0.6479	M_2	193.2	600	$\tilde{g} \longrightarrow \tilde{t}_2$
g_s	1.0844	M_3	571.7		\tilde{q}_L
Y_{τ}	0.1034	A_{τ}	-445.2	500	\tilde{b}_1
Y_t	0.8678	A_t	-565.1		· · · · · · · · · · · · · · · · · · ·
Y_b	0.1354	A_b	-943.4	400	$H^0, A^0 _ H^{\pm} \qquad \qquad$
μ	396.0	an eta	10.0	100	$\tilde{\chi}_3$ \tilde{t}_1
M_{H_d}	159.8	M_{H_u}	378.3	300	
M_{L_1}	181.0	M_{L_3}	179.3	300	
M_{E_1}	115.7	M_{E_3}	110.0		
M_{Q_1}	525.8	M_{Q_3}	471.4	200	$\tilde{l}_L = \tilde{\tau}_2 \tilde{\chi}_2^0 = \tilde{\chi}_1^1$
M_{U_1}	507.2	M_{U_3}	387.5		$\nu_l = \nu_{\tau}$
M_{D_1}	505.0	M_{D_3}	500.9	100	$h^{0} \underline{\qquad} \stackrel{\tilde{l}_{L}}{\overset{\scriptstyle \longrightarrow}{\nu_{l}}} \underbrace{\stackrel{\tilde{\tau}_{2}}{\overset{\scriptstyle \longrightarrow}{\nu_{\tau}}}}_{\tilde{l}_{R}} \underbrace{\tilde{\chi}_{2}^{0}}_{\tilde{\tau}_{1}} \underbrace{\tilde{\chi}_{1}^{0}}_{\tilde{\tau}_{1}} \underbrace{\tilde{\chi}_{1}^{0}}_{$
DRbar	parameter	at Q = 1	TeV	0	

0

MSSM Higgs decays at SPS1a'

H^0	FH 2.65	HDECAY	tree*	sqcd^*	full*	$\mathbf{sqcd}/\mathbf{full}$
$tar{t}$	0.040132	0.046685	0.025642	0.034871	0.031492	0.903116
$bar{b}$	0.638195	0.660744	0.504388	0.626518	0.620139	0.989818

H^0	FH 2.65	HDECAY	tree*	full*	$\mathbf{tree}/\mathbf{full}$
$ auar{ au}$	0.087343	0.088975	0.084946	0.086736	1.021073
$ ilde{\chi}_1^+ ilde{\chi}_1^-$	0.044219	0.030739	0.014502	0.017172	1.184131
$ ilde{\chi}^0_1 ilde{\chi}^0_1$	0.013708	0.014807	0.013897	0.013299	0.956968
$ ilde{\chi}^0_2 ilde{\chi}^0_1$	0.044657	0.042718	0.037066	0.037994	1.025028
$ ilde{\chi}^0_2 ilde{\chi}^0_2$	0.017010	0.011779	0.005485	0.006589	1.201235
$ ilde{ au}_1 ilde{ au}_1$	0.010339	0.010663	0.011072	0.012911	1.166045
$ ilde{ au}_1 ilde{ au}_2$	0.010847	0.010228	0.010027	0.012683	1.264867
h^0h^0	0.011322	0.009004	0.009592	0.011366	1.184922
Z^0Z^0	0.000102	0.001834	0.000834	0.000722	0.865899
W^+W^-	0.000217	0.003773	0.001716	0.002035	1.185894

* The On-shell Higgs masses calculated using FH 2.65

MSSM Higgs decays at SPS1a'

A^0	FH 2.65	HDECAY	tree*	sqcd^*	full*	$\mathbf{sqcd/full}$
$tar{t}$	0.129248	0.130480	0.091412	0.116383	0.102741	0.882784
$bar{b}$	0.6347855	0.661894	0.505094	0.627339	0.622234	0.991862

A^0	FH 2.65	HDECAY	tree*	full*	$\mathbf{tree}/\mathbf{full}$
$ auar{ au}$	0.086827	0.089097	0.085032	0.087083	1.024118
$ ilde{\chi}_1^+ ilde{\chi}_1^-$	0.248475	0.208640	0.157644	0.188297	1.194444
$ ilde{\chi}^0_1 ilde{\chi}^0_1$	0.020982	0.022525	0.013897	0.013299	0.956968
$ ilde{\chi}^0_2 ilde{\chi}^0_1$	0.099111	0.096063	0.088606	0.090732	1.023992
$ ilde{\chi}^0_2 ilde{\chi}^0_2$	0.098491	0.082084	0.005485	0.006589	1.201235

* The On-shell Higgs masses calculated using FH 2.65

MSSM Higgs decays at SPS1a'

H^+	FH 2.65	HDECAY	tree*	sqcd^*	full*	$\mathbf{sqcd/full}$
$tar{b}$	0.592691	0.519319	0.468341	0.58647	0.531737	0.906674

H^+	FH 2.65	HDECAY	tree*	full*	${f tree}/{f full}$
$ au u_{ au}$	0.088582	0.090915	0.086906	0.076974	0.885723
$1 ilde{\chi}_1^+ ilde{\chi}_1^0$	0.129379	0.127584	0.116956	0.113783	0.972870
$ ilde{\chi}_1^+ ilde{\chi}_2^0$	0.000874	0.000797	0.000587	0.000522	0.890147
$ec{ u_{\mu} ilde{\mu}_{1}}$	0.036808	0.036546	0.036777	0.04274	1.162136
$ ilde{ u_{\mu} ilde{\mu}_{1}}$	0.000165	0.000271	0.000211	0.000356	1.682552
h^0W^+	0.001776	0.002035	0.001667	0.001719	1.031060

* The On-shell Higgs masses calculated using FH 2.65

HFOLD

Program description:

The program code is written in Fortran 77

•At the program start the input file **hfold.in** is read with the following options:

- name of Les Houches input file
- selection of higgs particle: $h^0 = 1$, $H^0 = 2$, $A^0 = 3$, $H^+ = 4$, All = 5
- contribution: tree = 0, full one loop = 1, SQCD = 2
- bremsstrahlung: off = 0, hard bremsstrahlung = 1, soft bremsstrahlung = 2
- Higgs masses calculator: tree level masses = 0, approximation= 1,

FeynHiggs masses = 2

Name of output file

Outlook

- Bottom Yukawa coupling resummation to improve, see [1]
- Decay with vanishing tree-level, use of (one-loop)^{2,} see e.g. [2]
- Extension to complex MSSM
- h⁰ loop decays two-loop improvements?
- leading (strong) two-loop contributions?
- developed technique applicable for any 1 to 2 and 2 to 2 processes

First version of the program will be on the web soon!

[1] L. Hofer, U. Nierste, D. Scherer, 2009, [2] S. Bejar, talk at HEPTOOLS meeting, Lisbon 2009

Thank you for your attention!