The Physics of EWSB: The Higgs in the SM and beyond

Abdelhak Djouadi (U. Paris-Sud / CERN TH)

The Higgs in the Standard Model: status
 The Higgs at the Tevatron and the LHC

 The Higgs beyond the SM
 The Higgs in SUSY theories
 Conclusion

The Physics of EWSB – A. Djouadi – p.1/29

1. The Higgs in the SM: EWSB

To generate particle masses in an SU(2)×U(1) gauge invariant way: introduce a doublet of scalar fields $\Phi = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix}$ with $\langle 0 | \Phi^0 | 0 \rangle \neq 0$

$$\begin{split} \mathcal{L}_{\mathbf{S}} &= \mathbf{D}_{\mu} \Phi^{\dagger} \mathbf{D}^{\mu} \Phi - \mu^{2} \Phi^{\dagger} \Phi - \lambda (\Phi^{\dagger} \Phi)^{2} \\ \mathbf{v} &= (-\mu^{2}/\lambda)^{1/2} = 246 \; \mathrm{GeV} \\ \Rightarrow \text{ three d.o.f. for } \mathbf{M}_{\mathbf{W}^{\pm}} \text{ and } \mathbf{M}_{\mathbf{Z}} \\ \text{For fermion masses, use } \underline{same} \; \Phi \text{:} \\ \mathcal{L}_{Yuk} &= -\mathbf{f}_{\mathbf{e}}(\mathbf{\bar{e}}, \mathbf{\bar{\nu}})_{\mathbf{L}} \Phi \mathbf{e}_{\mathbf{R}} + \dots \end{split}$$

The residual degree corresponds to the spin–zero Higgs particle, H.

 \bullet The Higgs boson: $J^{\rm PC}=0^{++}$ quantum numbers.

• Masses and self–couplings from $V: M_{H}^{2}\!=\!2\lambda v^{2}, g_{H^{3}}=3\frac{M_{H}^{2}}{v},...$

• Higgs couplings \propto particle masses: $g_{Hff} = \frac{m_f}{v}, g_{HVV} = 2\frac{M_V^2}{v}$ Since v is known, the only free parameter in the SM is M_H (or λ). TOOLS 2010, 29/06/2010 The Physics of EWSB – A. Djouadi – p.2/29

1. The Higgs in the SM: constraints on $\rm M_{H}$

Theory constraints from energy/ $M_{f H}$ range up to which the SM is valid

Heavy Higgs: strong W/Z interactions

$$\begin{split} |A_0(VV \to VV)| \stackrel{s \gg M_H^2}{\longrightarrow} \frac{M_H^2}{8\pi v^2} < \frac{1}{2} \\ \Rightarrow M_H \lesssim 710 \; GeV \end{split}$$

(OK with lattice: $M_{H} \lesssim 650~GeV)$

$$egin{aligned} |\mathbf{A_0}(\mathbf{VV}
ightarrow \mathbf{VV})| & \stackrel{\mathbf{s} \ll \mathbf{M}_{\mathbf{H}}^2}{\longrightarrow} rac{\mathbf{s}}{32\pi \mathbf{v}^2} < rac{1}{2} \ & \Rightarrow \sqrt{\mathbf{s}} \lesssim 1.2 \ \mathbf{TeV} \end{aligned}$$

Hambye+Riesselman.

1. The Higgs in the SM: constraints on $\mathbf{M}_{\mathbf{H}}$

Indirect constraints from high-precision data

H contributes to RC to W/Z masses:

W/Z W/Z

Fit the EW precision measurements: one obtains $M_H=87^{+35}_{-26}$ GeV, or $M_H\lesssim 157$ GeV at 95% CL New Gfitter: $M_H\lesssim 153$ GeV@95%CL

?What top mass should be in the fit? High precision data: on–shell mass Tevatron: OS, $\overline{M}S$ mass? 10 GeV diff. $m_t^{OS} = m_t^{\overline{M}S}(\mu) (1 - \frac{\alpha_s}{\pi} [\frac{4}{3} + \log \frac{\mu^2}{m_t^2} + ..])$ $\overline{M}S$ top mass from NNLO $\sigma(p\bar{p} \rightarrow t\bar{t})$ convert to $m_t^{pole} \approx 169 \pm 3.5$ GeV TOOLS 2010, 29/06/2010

1. The Higgs in the SM: constraints on $\mathbf{M}_{\mathbf{H}}$

Constraints from Higgs non–observation at colliders (LEP/Tevatron).
 Direct searches at LEP:

- We have a limit at 95% CL: $M_H > 114.4 \; \mbox{GeV} \label{eq:mass}$
- New results from the Tevatron: Mainly: $gg \rightarrow H \rightarrow WW \rightarrow \ell \ell \nu \nu$

exclude $M_{\rm H} = 162 - 166~GeV$ (to be discussed in detail later).

TOOLS 2010, 29/06/2010

1. The Higgs in the SM: decay modes

 \bullet H decays into the heaviest particle available by phase space: $g\propto m.$

- $M_H \lesssim 130~GeV, H \rightarrow b\bar{b}$
- $\mathbf{H} \rightarrow \mathbf{cc}, \tau^+ \tau^-, \mathbf{gg} = \mathcal{O}(\mathbf{few}\%)$
- H $\rightarrow \gamma \gamma = \mathcal{O}(0.1\%)$
- $M_H\gtrsim 130~GeV$, $H\rightarrow WW, ZZ$
- below threshold decays possible
- above threshold: B(WW)= $\frac{2}{3}$, B(ZZ)= $\frac{1}{3}$
- decays into $t\overline{t}$ for heavy Higgs.
- Total Higgs decay width:
- very small for a light Higgs
- comparable to mass for heavy Higgs.

^aAD, Kalinowski, Spira (95–10). Includes all relevant higher order corretions. TOOLS 2010, 29/06/2010 The Physics of EWSB – A. Djouadi – p.6/29

2. The Higgs at Tevatron and LHC

H discovery: a very challenging task!

- Huge cross sections for QCD processes.
- Small cross sections for EW Higgs signal. S/B $\gtrsim 10^{10} \Rightarrow$ a needle in a haystack!
- Need some strong selection criteria: Trigger: get rid of uninteresting events... Select clean channels: $\mathbf{H} \rightarrow \gamma \gamma, \mathbf{VV} \rightarrow \ell$ Use different kinematic features for Higgs **Combine different decay/production channels** Have a precise knowledge of S and B rates. (note: higher orders can be factor of 2!) Gigantic experimental (+theoretical) efforts (more than 20 years of very hard work!)

2. Higgs at Tevatron: production

 $\begin{array}{l} \bullet \ M_H \gtrsim 150 \ GeV: \ gg \rightarrow H \\ \mbox{(with } H \rightarrow W^*W^* \rightarrow \ell\ell\nu\nu \mbox{)} \end{array}$

LO^a already at one loop exact NLO^b : K \approx 2 (1.7) EFT NLO^c: good approx. QCD: EFT NNLO^d: K \approx 3 (2) EFT NNLL^e: \approx +10% (5%) EFT NLO EW^f: \approx ± very small exact NLO EW^g: \approx ± a few % EFT NNLO QCD+EW^h: a few %

^aGeorgi et al., Ellis et al, Wilczek
 ^bSpira+AD+Graudenz+Zerwas (exact)
 ^cAD, Spira, Zerwas; Dawson (EFT)
 ^dHarlander+Kilgore, Anastasiou+Melnikov
 Ravindran+Smith+van Neerven
 ^eCatani+de Florian+Grazzini+Nason
 ^fAD,Gambino; Degrassi et al.
 ^gActis+Passarino+Sturm+Uccirati
 ^hAnastasiou+Boughezal+Pietriello
 TOOLS 2010, 29/06/2010

The Physics of EWSB – A. Djouadi – p.8/29

2. Higgs at the Tevatron: production

 $\begin{array}{ll} \bullet \ M_H \lesssim 150 \ GeV: \ q\bar{q} \rightarrow HV \\ q\bar{q} \rightarrow HW \rightarrow b\bar{b}\ell\nu \\ q\bar{q} \rightarrow HZ \rightarrow b\bar{b}\ell\ell, b\bar{b}\nu\bar{\nu} \\ q\bar{q} \rightarrow HW \rightarrow \ell\ell\ell\nu\nu\nu \\ \mathsf{LO}^a: \equiv \sigma(\mathbf{V}^*) \times \mathsf{BR}(\mathbf{V}^* \rightarrow \mathbf{VH}) \\ \mathsf{exact} \ \mathsf{NLO} \ \mathsf{QCD}^b: \mathbf{K} \approx 1.4 \\ \mathsf{exact} \ \mathsf{NNLO} \ \mathsf{QCD}^c: \mathbf{K} \approx 1.5 \\ \mathsf{exact} \ \mathsf{NLO} \ \mathsf{EW}^d & :\approx -5\% \end{array}$

In practice combine ggH+HZ/HW

- $p\overline{p} \rightarrow Hqq$: bkg. too high.
- $p\overline{p} \rightarrow Ht\overline{t}$: rates too low.

 ^aGlashow, Nanopoulos, Yildiz
 ^bAltarelli et al; Han, Willenbrock
 ^cHamberg+van Neerven+Matsuura; Brein+AD+Harlander
 ^dCiccolini+Dittmaier+Krämer

TOOLS 2010, 29/06/2010

The Physics of EWSB – A. Djouadi – p.9/29

2. Higgs at the Tevatron: $gg \rightarrow H$ Baglio+AD (2010)

• K factors very large:

good: Tevatron sensitive to $H_{\rm SM}$! bad: perturbation theory in danger uggly: HO corrections important...

- Analysis of theory errors on σ : – from scale: $\frac{M_H}{3} \leq \mu_{F/R} \leq 3M_H$ very important (HO large) \approx 20% – PDFs: small within given param. but # param. large spread \approx 20% – Difference due to $\Delta^{exp+th}\alpha_s$: $\alpha_s(M_Z^2)$ =0.1171±0.0034±0.003 – Use of EFT for σ^{NNLO} : \approx 5%
- Combine all theory errors:
- PDFs on σ_{\min}^{\max} + EFT \approx 40%
- CDF/D0 assign only 10% error
- \bullet Same for HV: ${\approx}10\%$ error

1600 $\Delta^{
m total}\sigma^{
m NNLO+EW}~(\kappa=4)$ [20] $\Lambda^{\text{total}}\sigma^{\text{NNLL+EW}}$ ($\kappa = 2$) 1000 600 300 200 $\sigma(\mathbf{gg} \to \mathbf{H})$ [fb] NNLO+EW NNLL+EW 100 150160 170 180 120130140 190200 $M_H [GeV]$ u ایر س L=4.8-5.4 fb Expected Expected $\pm 1\sigma$ Expected $\pm 2\sigma$ SM=1 140 150 160 170 180 190 130 200 m_µ(GeV)

CDF/D0 exclusion range M_{H} =162–166 GeV needs to be reconsidered. TOOLS 2010, 29/06/2010 The Physics of EWSB – A. Djouadi – p.10/29

2. Higgs at the LHC: the case of the \ellHC

20

10

 ℓ HC: $\sqrt{s} = 7~TeV, \int \mathcal{L} = 1~fb^{-1}$

Same production as at Tevatron:

- rates pprox 10 times higher
- much larger backgrounds
- much lower luminosity: $1\,fb^{-1}$

Only: $gg \rightarrow H \rightarrow W^*W^* \rightarrow \ell\ell\nu\nu$ (\approx 200 of Higgs signal events)

Compared to the Tevatron case:

- \bullet Smaller HO: $K_{\rm NNLO}\!=\!2,5$
- Scale: κ =2 enough \Rightarrow 15%
- \bullet PDF errors smaller, pprox10%
- Again 5% error from EFT Combined uncertainty $\approx \pm 30\%$

excludes $M_{H}\!\approx\!150\!-\!190~\text{GeV}_{^{1}}$

2. SM Higgs at the (full) LHC

TOOLS 2010, 29/06/2010

LHC: $\sqrt{s}=7+7=14 \text{ TeV} \Rightarrow \sqrt{s}_{eff} \sim \sqrt{s}/3 \sim 5 \text{ TeV}^{-1}$ $\mathcal{L} \sim 10 \text{ fb}^{-1}$ first years and 100 fb⁻¹ later gluon-gluon fusion:

 $gg
ightarrow au au, bar{b}, tar{t}$ hopeless $gg
ightarrow H
ightarrow \gamma\gamma$ (below $M_{H} pprox$ 150 GeV)

 $m gg
ightarrow
m H
ightarrow
m ZZ^*
ightarrow 4\ell$ (130–500 GeV)

 ${f gg}
ightarrow {f H}
ightarrow {f WW}
ightarrow \ell
u \ell
u$ (130–200 GeV)

 $\mathbf{H}
ightarrow \mathbf{ZZ}, \mathbf{WW}
ightarrow \mathbf{jj} + \ell$ (above 500 GeV)

Vector boson fusion:

 $\begin{array}{l} \mbox{S/B}\sim\mbox{1 after standard VBF cuts} \\ pp\rightarrow H\rightarrow \tau\tau, \gamma\gamma, ZZ^*, WW^* \\ \mbox{Association with top pairs:} \\ H\rightarrow \gamma\gamma \mbox{ bonus, } H\rightarrow b\bar{b} \mbox{ hopeless?} \\ \mbox{Association with W,Z:} \\ \mbox{jet substructure; measurements?} \end{array}$

Only question: when?

The Physics of EWSB – A. Djouadi – p.12/29

3. Beyond the SM

The SM has many attractive theoretical/experimental features:

- Based on gauge principle, unitary, perturbative, renormalisable \cdots
- ullet Once M_{H} fixed: everything is predictible with great accuracy.
- And has passed all experimental tests up to now.

But the model has too many shortcomings:

- Too many free parameters (19!) in the model, put by hand...
- No satisfactory explanation for $\mu^{\mathbf{2}} < \mathbf{0}$ (put ad hoc).
- Does not include the fourth fundamental force, gravity, ...
- Does not say anything about the masses of the neutrinos.
- No real unification of the three gauge interactions.
- Does not explain the baryon asymmetry in the universe.
- There is no stable, weak, massive particle for dark matter.

And above all that, there is the hierarchy or naturalness problem.

The Physics of EWSB – A. Djouadi – p.13/29

3. BSM: the hierarchy problem

A major problem in the SM: the hierarchy/naturalness problem

• Radiative corrections to M_{H}^{2} in SM with a cut–off $\Lambda = M_{NP} = M_{GUT}$ $\Delta M_{H}^{2} \propto \frac{H_{max}}{2}$

 $\Delta M_{H}^2 = N_f rac{\lambda_f^2}{8\pi^2} [-\Lambda^2 + 6m_f^2 log rac{\Lambda}{m_f} - 2m_f^2] + \mathcal{O}(1/\Lambda^2)$

 $M_{\rm H}$ prefers to be close to the high scale than to the EWSB scale. This is the hierarchy problem...

But we want a light Higgs ($M_H \lesssim 1$ TeV) for unitarity etc... reasons. We need thus to make: $M_H^2|^{\rm Physical} = M_H^2|^0 + \Delta M_H^2$ + countreterm And adjust this counterterm with a precision of 10^{-30} (30 digits)

This fine-tunning would be very unnatural...

Adding the gauge boson and Higgs loops does not help:

 $\Rightarrow \Delta M_{H}^{2} \propto [3(M_{W}^{2} + M_{Z}^{2} + M_{H}^{2})/4 - \sum m_{f}^{2}](\Lambda^{2}/M_{W}^{2})$ Unless, $M_{H} \sim 200$ is very finely adjusted (with some problems). However: does not work at two–loop level or at higher orders....

TOOLS 2010, 29/06/2010

The Physics of EWSB – A. Djouadi – p.14/29

H

3. BSM: the hierarchy problem

- "Easiest" solution: no fundamental scalar particle in the game.
- Technicolor theories: QCD–like theories with f_{π} at the TeV scale.
- Extra dimension models: EWSB via choice of boundary conditions. If no Higgs to unitarise the theory: strongly interacting W/Z bosons Deviations in V³ and V⁴ cplgs: Resonances at the TeV scale

- \bullet Higgs as a composite object: a $t\overline{t}$ condensate...
- \bullet Bring $\Lambda_{\rm NP}$ down to 1 TeV: extra dimensions, etc...
- A protecting symmetry: the SUSY path.

TOOLS 2010, 29/06/2010

The Physics of EWSB – A. Djouadi – p.15/29

3. BSM: the SUSY path

Imagine now that you have additional scalar particles: Add the contributions of scalar fermion partner loops to ΔM_{H}^{2} • $\lambda_{\mathbf{f}}^2 = -\lambda_{\mathbf{S}}$. \tilde{f} • N_S = N_f (nb: 2 scalars). $H - \cdots - m_1 = m_2 = m_S.$ • Add f+S contributions. $\Delta M_{H}^{2}|_{\text{tot}} = rac{\lambda_{f}^{2}N_{f}}{4\pi^{2}} \left[(m_{f}^{2} - m_{S}^{2}) \log \left(rac{\Lambda}{m_{S}}
ight) + 3m_{f}^{2} \log \left(rac{m_{S}}{m_{f}}
ight)
ight]$ The quadratic divergences have disappeared in the sum!! (same job for W/Z/H). Logarithmic divergence still there, but contribution small. No divergences at all if in addition $m_S = m_f$ (exact SUSY)! \Rightarrow Symmetry fermions–scalars \rightarrow no divergence in Λ^2 "Supersymmetry" no divergences at all: $M_{\rm H}$ is protected! Note that if $M_S \gg 1~{
m TeV}$ the fine tunning problem is back!!!

The Physics of EWSB – A. Djouadi – p.16/29

3. BSM: the SUSY path

SUSY: symmetry relating fermions $s=\frac{1}{2}$ and bosons s=0,1 $\mathcal{Q}|\text{fermion} >= |\text{boson} > , \mathcal{Q}|\text{boson} >= |\text{fermion} >$

is the most attractive extension of SM also for other reasons

• Links internal and space-time symmetries: larger for S matrix..

• If SUSY is gauged \Rightarrow s = $rac{3}{2},$ 2 \Rightarrow link with 4th force, gravity...

Naturally present in Superstrings (theory of everything?).
 In the MSSM with minimal group/particles/interactions useft. SUSY

In the MSSM with minimal group/particles/interactions+soft-SUSY breaking

- The spectrum of superparticles fixes unification of couplings and P.
- \bullet Possibility of unifying the fermion Yukawa couplings at $M_{\rm GUT}.$
- SUSY SO(10): extra space for a Majorana neutrino, see–saw $\rightarrow m_{\nu}$.
- Heavy neutrinos trigger baryogenesis via leptogenesis.
- The LSP can have the right relic density and solve the DM problem.
- Radiative breaking of the EW symmetry: $\mu^2 > 0$ at ${f M_{GUT}}, < {f 0}$ at ${f M_{EV}}$
- \cdots and all this at once \cdots But we need $M_{{
 m SUSY}} \sim {\cal O}$ (TeV)!

otherwise, back to the hierarchy, dark matter and unification problems \cdots

The Physics of EWSB – A. Djouadi – p.17/29

3. BSM: the SUSY path

 $\begin{array}{l} \quad \quad \text{Only 4.5 param: } \tan\beta \ , \ \mathbf{m_{1/2}} \ , \ \mathbf{m_0} \ , \ \mathbf{A_0} \ , \ \ \mathrm{sign}(\mu) \\ \\ \text{All soft breaking parameters at } M_S \ \text{are obtained through RGEs.} \\ \\ \text{With } \mathbf{M}_{\rm GUT} \sim \mathbf{2} \cdot \mathbf{10^{16}} \ \text{GeV and } \mathbf{M}_{\rm SUSY} \sim \sqrt{\mathbf{m_{\tilde{t}_L} m_{\tilde{t}_R}}} \mathbf{:} \end{array}$

4. The Higgs sector in the MSSM

In MSSM with two Higgs doublets: $m H_1=inom{H_1^0}{H_1^-}$ and $m H_2=inom{H_2^+}{H_2^0}$, • to cancel the chiral anomalies introduced by the new ${f h}$ field, give separately masses to d and u fermions in SUSY invariant way. EWSB: Three dof to make $\mathbf{W}^{\pm}_{\mathbf{L}}, \mathbf{Z}_{\mathbf{L}} \Rightarrow$ 5 physical states: $\mathbf{h}, \mathbf{H}, \mathbf{A}, \mathbf{H}^{\pm}$ Only two free parameters at the tree level: $tan \beta$, M_A ; others are: $\mathbf{M_{h,H}^2} = \frac{1}{2} \left| \mathbf{M_A^2} + \mathbf{M_Z^2} \mp \sqrt{(\mathbf{M_A^2} + \mathbf{M_Z^2})^2 - 4\mathbf{M_A^2M_Z^2\cos^2 2\beta}} \right|$ $M_{H^{\pm}}^{2} = M_{A}^{2} + M_{W}^{2}$; $tan 2\alpha = tan 2\beta \frac{M_{A}^{2} + M_{Z}^{2}}{M_{A}^{2} - M_{Z}^{2}}$ We have important constraint on the MSSM Higgs boson masses: $\mathbf{M}_{\mathbf{h}} \leq \min(\mathbf{M}_{\mathbf{A}}, \mathbf{M}_{\mathbf{Z}}) \cdot |\cos 2\beta| \leq \mathbf{M}_{\mathbf{Z}}, \ \mathbf{M}_{\mathbf{H}^{\pm}} > \mathbf{M}_{\mathbf{W}}, \ \mathbf{M}_{\mathbf{H}} > \mathbf{M}_{\mathbf{A}}...$ Radiative corrections important in MSSM Higgs sector; dominant one: $\Delta M_h^2 = \frac{3g^2}{2\pi^2} \frac{m_t^4}{M_{wr}^2} \log \frac{m_{\tilde{t}}^2}{m_{\star}^2} \text{large:} \frac{M_h^{\max} \rightarrow M_Z + 40 \, \text{GeV}}{M_L} \gtrsim 115 \, \text{GeV}$ $M_{\mathbf{A}} \gg M_{\mathbf{Z}}$: decoupling regime, all Higgses heavy except for h. $|\mathbf{M_h} \lesssim \mathbf{M_Z}|\mathbf{cos2}eta| + \mathbf{RC} \lesssim \mathbf{130}\ \mathbf{GeV}\,,\ \mathbf{M_H} pprox \mathbf{M_A} pprox \mathbf{M_{H^\pm}} pprox \mathbf{M_{EWSB}}$

The Physics of EWSB – A. Djouadi – p.19/29

4. The Higgs sector in the MSSM

– Couplings of $\boldsymbol{h},\boldsymbol{H}$ to VV are suppressed; no AVV couplings (CP).

– For $an\!eta \gg 1$: couplings to b (t) quarks enhanced (suppressed).

Φ	$g_{\Phi ar{u} u}$	$g_{\Phi ar{d} d}$	$g_{\Phi VV}$
h	$\frac{\cos \alpha}{\sin \beta} \rightarrow 1$	$\frac{\sin \alpha}{\cos \beta} \rightarrow 1$	$\sin(\beta - \alpha) \rightarrow 1$
H	$\frac{\sin \alpha}{\sin \beta} \rightarrow 1/\tan \beta$	$\frac{\cos \alpha}{\cos \beta} \rightarrow \tan \beta$	$\cos(\beta - \alpha) \rightarrow 0$
A	$1/\tan\beta$	$\tan eta$	0

In the decoupling limit: MSSM reduces to SM but with a light Higgs.

Constraints: $114 \lesssim M_H \lesssim 130 \, GeV \, or \, M_h, M_A \lesssim M_Z$

TOOLS 2010, 29/06/2010

The Physics of EWSB – A. Djouadi – p.20/29

4. MSSM Higgses: decay modes

The Physics of EWSB – A. Djouadi – p.21/29

4. MSSM Higgses: production cross sections

SM production mechanisms

What is different in MSSM

- All work for CP–even h,H bosons.
- in ΦV , $qq\Phi$ h/H complementary
- $-\sigma(\mathbf{h}) + \sigma(\mathbf{H}) = \sigma(\mathbf{H}_{\mathbf{SM}})$
- additional mechanism: $qq \rightarrow A+h/H$
- ullet For $\mathbf{gg}
 ightarrow \Phi$ and $\mathbf{pp}
 ightarrow \mathbf{tt} \Phi$
- include the contr. of b–quarks
- dominant contr. at high tan β !
- For pseudoscalar A boson:
- CP: no ΦA and qqA processes
- $gg \rightarrow A$ and $pp \rightarrow bbA$ dominant.
- For charged Higgs boson:
- $M_{H} \lesssim m_{t} {:} pp \to t\overline{t}$ with $t \,{\to}\, H^{+}b$
- $M_{H}\gtrsim m_{t}$: continuum $pp \rightarrow t \bar{b} H^{-}$

The Physics of EWSB – A. Djouadi – p.22/29

4. MSSM Higgses: detection at the LHC

The lighter Higgs boson:

same as in the SM for $M_h \lesssim 140 \text{ GeV}$ (in particular in the decoupling regime) $gg \rightarrow h \rightarrow \gamma \gamma, WW^*$ $pp \rightarrow hqq \rightarrow qq\gamma\gamma, qq\tau\tau, qqWW^*$

The heavier neutral Higgses:

same production/decays for H/A in general $pp \rightarrow b\bar{b} + H/A \rightarrow b\bar{b} + \tau \tau/\mu\mu$ reach depends on M_A and tan β (as in SM for H in anti-decoupling regime).

The charged Higgs:

$$\label{eq:total_total_states} \begin{split} t &\to b H^- \to b \tau \nu \mbox{ for } M_{\mathbf{H}} \lesssim m_t \\ g b &\to t H^+ \to t \tau \nu \mbox{ for } M_{\mathbf{H}} \gtrsim m_t \\ \mbox{ reach depends on } M_{\mathbf{A}} \mbox{ and } tan \beta \end{split}$$

but at least one Higgs to be found!

The Physics of EWSB – A. Djouadi – p.23/29

4. Difficult scenarios in the MSSM

However: life can be much more complicated even in this MSSM

- There is the "bad luck" scenario in which only h is observed:
- looks SM–like at the 10% level (and $M_{
 m SUSY}\gtrsim 3$ TeV...): SM
- There are scenarii where searches are different from standard case:
- The intense coupling regime: h,H,A almost mass degenerate....
- SUSY particles might play an important role in production/decay:
- light \tilde{t} loops might make $\sigma(gg \!\rightarrow\! h \!\rightarrow\! \gamma\gamma)$ smaller than in SM.
- Higgses can be produced with sparticles ($pp \to \tilde{t} \tilde{t}^*h$,..).
- Cascade decays of SUSY particles into Higgs bosons....
- SUSY decays, if allowed, might alter the search strategies:
- $h \to \chi^0_1 \chi^0_1, \tilde{\nu} \tilde{\nu}$ are still possible in non universal models...
- Decays of ${f A}, {f H}, {f H}^\pm$ into $\chi^\pm_{f i}, \chi^{f 0}_{f i}$ are possible but can be useful...

Life can be even more complicated in extensions of the MSSM

4. The Higgs sector beyond the MSSM

Giving up some assumptions: the example of the CP-violating MSSM

We can allow for some amount of CP-violation in eg. M_i , μ and A_f Higgs sector: CP-conserving at tree level \Rightarrow CP-violating at one-loop (good to address the issue of baryogenesis at the electroweak scale....) \Rightarrow h, H,A are not CP definite states: h_1 , h_2 , h_3 are CP mixtures determination of Higgs spectrum slightly more complicated than usual

Additional Higgs representations: the example of the NMSSM

MSSM problem: μ is SUSY-preserving but $\mathcal{O}(M_Z)$; a priori no reason Solution, μ related to the vev of additional singlet field, $\langle S \rangle \propto \mu$ NMSSM: introduce a gauge singlet in Superpotential: $\lambda \hat{H}_1 \hat{H}_2 \hat{S} + \frac{1}{3} \hat{S}$ Nilles et al, Frere et al, Ellis et al, Drees, Ellwanger et al, King et al, ... \Rightarrow SUSY spectrum extended by χ_5^0 and two neutral Higgs particles h_3, a_2 less fine-tuning, richer phenomenology, interesting constrained version, ... Both lead to a possibly very light Higgs that has escaped detection!

Many Other possibilities also exist (e.g.: E6SSM, King+Moretti+...)!TOOLS 2010, 29/06/2010The Physics of EWSB – A. Djouadi – p.25/29

4. Difficult scenarios: the CP-violating MSSM

h, H,A are not CP definite states and h_1, h_2, h_3 are CP-mixed states The relation for the Higgs masses and couplings different from MSSM. There is the possibility of a light Higgs which has escaped detection. An example is the CPX scenario (Carena et al; Ellis et al; ...)

- h_1 light but weak cplgs to W,Z
- $h_2 \rightarrow h_1 h_1$ decays allowed
- h₃ couplings to VV reduced...
- All neutral Higgses escape detection: only (SM-like) h_2 has large cross section $h_2 \rightarrow h_1 h_1 \rightarrow 4b, 4\tau$ unobservable. Still, one has $t \rightarrow H^+ b \rightarrow b + h W^*$

Schumacher/ATLAS

The Physics of EWSB – A. Djouadi – p.26/29

4. Difficult scenarios: the NMSSM

In the NMSSM with $h_{1,2,3}, a_{1,2}, h^\pm$ one can have Higgs to Higgs decays: then the possibility of missing all Higgs bosons is not yet ruled out!

2250 2000

(Ellwanger, Hugonie, Gunion, Moretti; King..., Nevzorov..., Barger...)

 $\begin{array}{l} \mbox{Higgs} \rightarrow \mbox{Higgs} \rightarrow \mbox{4b}, \mbox{2b} \mbox{2} \tau \\ \mbox{searches very difficult at the LHC:} \\ \mbox{pp} \rightarrow \mbox{qq} \rightarrow \mbox{W}^* \mbox{W}^* \mbox{qq} \rightarrow \mbox{h}_1 \mbox{qq} \\ \mbox{-----} h_1 \rightarrow \mbox{a}_1 \mbox{a}_1 \rightarrow \mbox{b} \box{b} \mbox{\tau} \mbox{\tau} \times \mbox{500} \end{array}$

(Ellwanger..., Baffioni+D.Zerwas)

 $\begin{array}{l} \mbox{Higgs} \rightarrow \mbox{Higgs+Higgs} \rightarrow 4\tau \rightarrow 4\ell X \\ \mbox{also difficult but detection possible} \\ \mbox{using VBF + all } h_1 \mbox{ decay channels} \\ \mbox{(same for all Higgses can be done)} \\ \mbox{(Nikitenko ..., Schumacher+Rottlander)} \end{array}$

1750 1500 1250 750 500 250 Ω 200 400 800 600 1000 0.6 κ Hı→yy 0.5 /RF: H1→T1 :H: H1→bb 0.4 FP excl. heory exd. 0.3 H₁ visible 0.2 0.1 -0.1 -0.2 0.2 0.3 0.4 0.1 0.5

TOOLS 2010, 29/06/2010

4. Difficult scenarios: invisible Higgs?

There are many scenarios in which a Higgs boson would decay invisibly

- In MSSM, Higgs $\rightarrow \chi_1^0 \chi_1^0, \tilde{\nu} \tilde{\nu}$, etc.. as already discussed.
- In MSSM with $R_{\!/\!p}$: Higgs ightarrow JJ could be dominant. Valle ea

 \bullet The SM when minimally extended to contain a singlet scalar field (which decouples from f/V), $H \to SS$ can be dominant $\ \mbox{Bij}$, Wells ea,...

- In large extra dimensions H mixing with graviscalars. Gunion ea
 ... or very different couplings to fermions and bosons...
- Radion mixing in warped extra dimension models: suppressed f/V couplings and Higgs decays to radions
 Hewett+ Rizzo, Gunion ea
- Presence of new quarks which alter production
- Composite light Higgs boson

Grojean ea

Moreau ea

... Many possible surprises/difficult scenarios......

The Physics of EWSB – A. Djouadi – p.28/29

5. Conclusions

The LHC will tell!

But: probably in a few years we will find the Higgs (and maybe nothing els after celebrating, should we declare Particle Physics closed and go home' No. We need to check that it is indeed responsible of spontaneous EWSB.

Measure its fundamental properties in the most precise way:

- ${\scriptstyle \bullet}$ its mass and total decay width and check $J^{\rm PC}=0^{++}$,
- its couplings to fermions and gauge bosons and check that they are indeed proportional to the particle masses (fundamental prediction),
- \bullet its self–couplings to reconstruct the potential $V_{\rm H}$ that makes EWSB.
- If SUSY is there, plenty of other very important things to do...

A very ambitious and challenging program!

which is even more difficult to achieve than the Higgs discovery itself...

There is still some way to go.....

TOOLS 2010, 29/06/2010

The Physics of EWSB – A. Djouadi – p.29/29